1
|
Thoreson WB, Bartol TM, Conoan NH, Diamond JS. Geometric tortuosity at invaginating rod synapses slows glutamate diffusion and shapes synaptic responses: insights from anatomically realistic Monte Carlo simulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621088. [PMID: 39554003 PMCID: PMC11565802 DOI: 10.1101/2024.10.30.621088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
At the first synapse in the vertebrate retina, rod photoreceptor terminals form deep invaginations occupied by multiple second-order rod bipolar and horizontal cell (RBP and HC) dendrites. Synaptic vesicles are released into this invagination at multiple sites beneath an elongated presynaptic ribbon. We investigated the impact of this complex architecture on the diffusion of synaptic glutamate and activity of postsynaptic receptors. We obtained serial electron micrographs of mouse retina and reconstructed four rod terminals along with their postsynaptic RBP and HC dendrites. We incorporated these structures into an anatomically realistic Monte Carlo simulation of neurotransmitter diffusion and receptor activation. We compared passive diffusion of glutamate in these realistic structures to existing, geometrically simplified models of the synapse and found that glutamate exits anatomically realistic synapses ten times more slowly than previously predicted. By comparing simulations with electrophysiological recordings, we modeled synaptic activation of EAAT5 glutamate transporters in rods, AMPA receptors on HC dendrites, and metabotropic glutamate receptors (mGluR6) on RRBP dendrites. Our simulations suggested that ~3,000 EAAT5 transporters populate the rod presynaptic membrane and that, while uptake by surrounding glial Müller cells retrieves much of the glutamate released by rods, binding and uptake by EAAT5 influences RBP response kinetics. The long lifetime of glutamate within the cleft allows mGluR6 on RBP dendrites to temporally integrate the steady stream of vesicles released at this synapse in darkness. Glutamate's tortuous diffusional path through realistic synaptic geometry confers quantal variability, as release from nearby ribbon sites exerts larger effects on RBP and HC receptors than release from more distant sites. While greater integration may allow slower sustained release rates, added quantal variability complicates the challenging task of detecting brief decreases in release produced by rod light responses at scotopic threshold.
Collapse
|
2
|
Dittrich A, Ramesh G, Jung M, Schmitz F. Rabconnectin-3α/DMXL2 Is Locally Enriched at the Synaptic Ribbon of Rod Photoreceptor Synapses. Cells 2023; 12:1665. [PMID: 37371135 DOI: 10.3390/cells12121665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/08/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Ribbon synapses reliably transmit synaptic signals over a broad signalling range. Rod photoreceptor ribbon synapses are capable of transmitting signals generated by the absorption of single photons. The high precision of ribbon synapses emphasizes the need for particularly efficient signalling mechanisms. Synaptic ribbons are presynaptic specializations of ribbon synapses and are anchored to the active zone. Synaptic ribbons bind many synaptic vesicles that are delivered to the active zone for continuous and faithful signalling. In the present study we demonstrate with independent antibodies at the light- and electron microscopic level that rabconnectin-3α (RC3α)-alternative name Dmx-like 2 (DMXL2)-is localized to the synaptic ribbons of rod photoreceptor synapses in the mouse retina. In the brain, RC3α-containing complexes are known to interact with important components of synaptic vesicles, including Rab3-activating/inactivating enzymes, priming proteins and the vesicular H+-ATPase that acidifies the synaptic vesicle lumen to promote full neurotransmitter loading. The association of RC3α/DMXL2 with rod synaptic ribbons of the mouse retina could enable these structures to deliver only fully signalling-competent synaptic vesicles to the active zone thus contributing to reliable synaptic communication.
Collapse
Affiliation(s)
- Alina Dittrich
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| | - Girish Ramesh
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
- Institute of Biophysics, Saarland University, 66421 Homburg, Germany
| | - Martin Jung
- Institute of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany
| | - Frank Schmitz
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
3
|
Mesnard CS, Barta CL, Sladek AL, Zenisek D, Thoreson WB. Eliminating Synaptic Ribbons from Rods and Cones Halves the Releasable Vesicle Pool and Slows Down Replenishment. Int J Mol Sci 2022; 23:6429. [PMID: 35742873 PMCID: PMC9223732 DOI: 10.3390/ijms23126429] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 01/25/2023] Open
Abstract
Glutamate release from rod and cone photoreceptor cells involves presynaptic ribbons composed largely of the protein RIBEYE. To examine roles of ribbons in rods and cones, we studied mice in which GCamP3 replaced the B-domain of RIBEYE. We discovered that ribbons were absent from rods and cones of both knock-in mice possessing GCamP3 and conditional RIBEYE knockout mice. The mice lacking ribbons showed reduced temporal resolution and contrast sensitivity assessed with optomotor reflexes. ERG recordings showed 50% reduction in scotopic and photopic b-waves. The readily releasable pool (RRP) of vesicles in rods and cones measured using glutamate transporter anion currents (IA(glu)) was also halved. We also studied the release from cones by stimulating them optogenetically with ChannelRhodopsin2 (ChR2) while recording postsynaptic currents in horizontal cells. Recovery of the release from paired pulse depression was twofold slower in the rods and cones lacking ribbons. The release from rods at -40 mV in darkness involves regularly spaced multivesicular fusion events. While the regular pattern of release remained in the rods lacking ribbons, the number of vesicles comprising each multivesicular event was halved. Our results support conclusions that synaptic ribbons in rods and cones expand the RRP, speed up vesicle replenishment, and augment some forms of multivesicular release. Slower replenishment and a smaller RRP in photoreceptors lacking ribbons may contribute to diminished temporal frequency responses and weaker contrast sensitivity.
Collapse
Affiliation(s)
- Chris S. Mesnard
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.S.M.); (C.L.B.); (A.L.S.)
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Cody L. Barta
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.S.M.); (C.L.B.); (A.L.S.)
| | - Asia L. Sladek
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.S.M.); (C.L.B.); (A.L.S.)
| | - David Zenisek
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06510, USA;
| | - Wallace B. Thoreson
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.S.M.); (C.L.B.); (A.L.S.)
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
4
|
Hays CL, Sladek AL, Thoreson WB. Resting and stimulated mouse rod photoreceptors show distinct patterns of vesicle release at ribbon synapses. J Gen Physiol 2021; 152:211528. [PMID: 33175961 PMCID: PMC7664508 DOI: 10.1085/jgp.202012716] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/01/2020] [Accepted: 10/19/2020] [Indexed: 01/04/2023] Open
Abstract
The vertebrate visual system can detect and transmit signals from single photons. To understand how single-photon responses are transmitted, we characterized voltage-dependent properties of glutamate release in mouse rods. We measured presynaptic glutamate transporter anion current and found that rates of synaptic vesicle release increased with voltage-dependent Ca2+ current. Ca2+ influx and release rate also rose with temperature, attaining a rate of ∼11 vesicles/s/ribbon at -40 mV (35°C). By contrast, spontaneous release events at hyperpolarized potentials (-60 to -70 mV) were univesicular and occurred at random intervals. However, when rods were voltage clamped at -40 mV for many seconds to simulate maintained darkness, release occurred in coordinated bursts of 17 ± 7 quanta (mean ± SD; n = 22). Like fast release evoked by brief depolarizing stimuli, these bursts involved vesicles in the readily releasable pool of vesicles and were triggered by the opening of nearby ribbon-associated Ca2+ channels. Spontaneous release rates were elevated and bursts were absent after genetic elimination of the Ca2+ sensor synaptotagmin 1 (Syt1). This study shows that at the resting potential in darkness, rods release glutamate-filled vesicles from a pool at the base of synaptic ribbons at low rates but in Syt1-dependent bursts. The absence of bursting in cones suggests that this behavior may have a role in transmitting scotopic responses.
Collapse
Affiliation(s)
- Cassandra L Hays
- Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE.,Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Asia L Sladek
- Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Wallace B Thoreson
- Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE.,Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
5
|
Thoreson WB. Transmission at rod and cone ribbon synapses in the retina. Pflugers Arch 2021; 473:1469-1491. [PMID: 33779813 DOI: 10.1007/s00424-021-02548-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/29/2022]
Abstract
Light-evoked voltage responses of rod and cone photoreceptor cells in the vertebrate retina must be converted to a train of synaptic vesicle release events for transmission to downstream neurons. This review discusses the processes, proteins, and structures that shape this critical early step in vision, focusing on studies from salamander retina with comparisons to other experimental animals. Many mechanisms are conserved across species. In cones, glutamate release is confined to ribbon release sites although rods are also capable of release at non-ribbon sites. The role of non-ribbon release in rods remains unclear. Release from synaptic ribbons in rods and cones involves at least three vesicle pools: a readily releasable pool (RRP) matching the number of membrane-associated vesicles along the ribbon base, a ribbon reserve pool matching the number of additional vesicles on the ribbon, and an enormous cytoplasmic reserve. Vesicle release increases in parallel with Ca2+ channel activity. While the opening of only a few Ca2+ channels beneath each ribbon can trigger fusion of a single vesicle, sustained release rates in darkness are governed by the rate at which the RRP can be replenished. The number of vacant release sites, their functional status, and the rate of vesicle delivery in turn govern replenishment. Along with an overview of the mechanisms of exocytosis and endocytosis, we consider specific properties of ribbon-associated proteins and pose a number of remaining questions about this first synapse in the visual system.
Collapse
Affiliation(s)
- Wallace B Thoreson
- Truhlsen Eye Institute, Departments of Ophthalmology & Visual Sciences and Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
6
|
Hays CL, Sladek AL, Field GD, Thoreson WB. Properties of multivesicular release from mouse rod photoreceptors support transmission of single-photon responses. eLife 2021; 10:67446. [PMID: 33769285 PMCID: PMC8032395 DOI: 10.7554/elife.67446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/20/2021] [Indexed: 01/18/2023] Open
Abstract
Vision under starlight requires rod photoreceptors to transduce and transmit single-photon responses to the visual system. Small single-photon voltage changes must therefore cause detectable reductions in glutamate release. We found that rods achieve this by employing mechanisms that enhance release regularity and its sensitivity to small voltage changes. At the resting membrane potential in darkness, mouse rods exhibit coordinated and regularly timed multivesicular release events, each consisting of ~17 vesicles and occurring two to three times more regularly than predicted by Poisson statistics. Hyperpolarizing rods to mimic the voltage change produced by a single photon abruptly reduced the probability of multivesicular release nearly to zero with a rebound increase at stimulus offset. Simulations of these release dynamics indicate that this regularly timed, multivesicular release promotes transmission of single-photon responses to post-synaptic rod-bipolar cells. Furthermore, the mechanism is efficient, requiring lower overall release rates than uniquantal release governed by Poisson statistics.
Collapse
Affiliation(s)
- Cassandra L Hays
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, United States.,Cellular and Integrative Physiology, Omaha, United States
| | - Asia L Sladek
- Pharmacology and Experimental Neuroscience, Omaha, United States
| | - Greg D Field
- Department of Neurobiology, Duke University School of Medicine, Durham, United States
| | - Wallace B Thoreson
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, United States.,Pharmacology and Experimental Neuroscience, Omaha, United States
| |
Collapse
|
7
|
Abstract
JGP study shows that small voltage changes disrupt semi-regular bursts of vesicle release from rod photoreceptors, potentially facilitating low-light vision.
Collapse
|
8
|
Field GD, Sampath AP. Behavioural and physiological limits to vision in mammals. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0072. [PMID: 28193817 DOI: 10.1098/rstb.2016.0072] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2016] [Indexed: 01/22/2023] Open
Abstract
Human vision is exquisitely sensitive-a dark-adapted observer is capable of reliably detecting the absorption of a few quanta of light. Such sensitivity requires that the sensory receptors of the retina, rod photoreceptors, generate a reliable signal when single photons are absorbed. In addition, the retina must be able to extract this information and relay it to higher visual centres under conditions where very few rods signal single-photon responses while the majority generate only noise. Critical to signal transmission are mechanistic optimizations within rods and their dedicated retinal circuits that enhance the discriminability of single-photon responses by mitigating photoreceptor and synaptic noise. We describe behavioural experiments over the past century that have led to the appreciation of high sensitivity near absolute visual threshold. We further consider mechanisms within rod photoreceptors and dedicated rod circuits that act to extract single-photon responses from cellular noise. We highlight how these studies have shaped our understanding of brain function and point out several unresolved questions in the processing of light near the visual threshold.This article is part of the themed issue 'Vision in dim light'.
Collapse
Affiliation(s)
- Greg D Field
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alapakkam P Sampath
- Stein Eye Institute, Department of Ophthalmology, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Van Hook MJ, Thoreson WB. Weak endogenous Ca2+ buffering supports sustained synaptic transmission by distinct mechanisms in rod and cone photoreceptors in salamander retina. Physiol Rep 2015; 3:3/9/e12567. [PMID: 26416977 PMCID: PMC4600400 DOI: 10.14814/phy2.12567] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Differences in synaptic transmission between rod and cone photoreceptors contribute to different response kinetics in rod- versus cone-dominated visual pathways. We examined Ca2+ dynamics in synaptic terminals of tiger salamander photoreceptors under conditions that mimicked endogenous buffering to determine the influence on kinetically and mechanistically distinct components of synaptic transmission. Measurements of ICl(Ca) confirmed that endogenous Ca2+ buffering is equivalent to ˜0.05 mmol/L EGTA in rod and cone terminals. Confocal imaging showed that with such buffering, depolarization stimulated large, spatially unconstrained [Ca2+] increases that spread throughout photoreceptor terminals. We calculated immediately releasable pool (IRP) size and release efficiency in rods by deconvolving excitatory postsynaptic currents and presynaptic Ca2+ currents. Peak efficiency of ˜0.2 vesicles/channel was similar to that of cones (˜0.3 vesicles/channel). Efficiency in both cell types was not significantly affected by using weak endogenous Ca2+ buffering. However, weak Ca2+ buffering speeded Ca2+/calmodulin (CaM)-dependent replenishment of vesicles to ribbons in both rods and cones, thereby enhancing sustained release. In rods, weak Ca2+ buffering also amplified sustained release by enhancing CICR and CICR-stimulated release of vesicles at nonribbon sites. By contrast, elevating [Ca2+] at nonribbon sites in cones with weak Ca2+ buffering and by inhibiting Ca2+ extrusion did not trigger additional release, consistent with the notion that exocytosis from cones occurs exclusively at ribbons. The presence of weak endogenous Ca2+ buffering in rods and cones facilitates slow, sustained exocytosis by enhancing Ca2+/CaM-dependent replenishment of ribbons in both rods and cones and by stimulating nonribbon release triggered by CICR in rods.
Collapse
Affiliation(s)
- Matthew J Van Hook
- Truhlsen Eye Institute and Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Wallace B Thoreson
- Truhlsen Eye Institute and Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
10
|
Cangiano L, Asteriti S, Cervetto L, Gargini C. The photovoltage of rods and cones in the dark-adapted mouse retina. J Physiol 2012; 590:3841-55. [PMID: 22641773 DOI: 10.1113/jphysiol.2011.226878] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Research on photoreceptors has led to important insights into how light signals are detected and processed in the outer retina. Most information about photoreceptor function, however, comes from lower vertebrates. The large majority of mammalian studies are based on suction pipette recordings of outer segment currents, a technique that doesn't allow examination of phenomena occurring downstream of phototransduction. Only a small number of whole-cell recordings have been made, mainly in the macaque. Due to the growing importance of the mouse in vision research, we have optimized a retinal slice preparation that allows the reliable collection of perforated-patch recordings from light responding rods and cones. Unexpectedly, the frequency of cone recordings was much higher than their numeric proportion of ∼3%. This allowed us to obtain direct functional evidence suggestive of rod–cone coupling in the mouse. Moreover, rods had considerably larger single photon responses than previously published for mammals (3.44 mV, SD 1.37, n = 19 at 24°C; 2.46 mV, SD 1.08, n = 10 at 36°C), and a relatively high signal/noise ratio (6.4, SD 1.8 at 24°C; 6.8, SD 2.8 at 36°C). Both findings imply a more favourable transmission at the rod–rod bipolar cell synapse. Accordingly, relatively few photoisomerizations were sufficient to elicit a half-maximal response (6.7, SD 2.7, n = 5 at 24°C; 10.6, SD 1.7, n = 3 at 36°C), leading to a narrow linear response range. Our study demonstrates new features of mammalian photoreceptors and opens the way for further investigations into photoreceptor function using retinas from mutant mouse models.
Collapse
Affiliation(s)
- Lorenzo Cangiano
- Department of Physiological Sciences, University of Pisa, Via San Zeno 31, I-56123 Pisa, Italy.
| | | | | | | |
Collapse
|
11
|
Experimental protocols alter phototransduction: the implications for retinal processing at visual threshold. J Neurosci 2011; 31:3670-82. [PMID: 21389222 DOI: 10.1523/jneurosci.4750-10.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Vision in dim light, when photons are scarce, requires reliable signaling of the arrival of single photons. Rod photoreceptors accomplish this task through the use of a G-protein-coupled transduction cascade that amplifies the activity of single active rhodopsin molecules. This process is one of the best understood signaling cascades in biology, yet quantitative measurements of the amplitude and kinetics of the rod's response in mice vary by a factor of ∼ 2 across studies. What accounts for these discrepancies? We used several experimental approaches to reconcile differences in published properties of rod responses. First, we used suction electrode recordings from single rods to compare measurements across a range of recording conditions. Second, we compared measurements of single-cell photocurrents to estimates of rod function from in vitro electroretinograms. Third, we assayed the health of the post-receptor retinal tissue in these different conditions. Several salient points emerge from these experiments: (1) recorded responses can be altered dramatically by how the retina is stored; (2) the kinetics of the recovery of responses to bright but not dim flashes are strongly sensitive to the extracellular concentration of magnesium; (3) experimental conditions that produce very different single-photon responses measured in single rods produce near identical derived rod responses from the electroretinogram. The dependence of rod responses on experimental conditions will be a key consideration in efforts to extract general principles of G-protein signaling from studies of phototransduction and to relate these signals to downstream mechanisms that facilitate visual sensitivity.
Collapse
|
12
|
Pahlberg J, Sampath AP. Visual threshold is set by linear and nonlinear mechanisms in the retina that mitigate noise: how neural circuits in the retina improve the signal-to-noise ratio of the single-photon response. Bioessays 2011; 33:438-47. [PMID: 21472740 DOI: 10.1002/bies.201100014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In sensory biology, a major outstanding question is how sensory receptor cells minimize noise while maximizing signal to set the detection threshold. This optimization could be problematic because the origin of both the signals and the limiting noise in most sensory systems is believed to lie in stimulus transduction. Signal processing in receptor cells can improve the signal-to-noise ratio. However, neural circuits can further optimize the detection threshold by pooling signals from sensory receptor cells and processing them using a combination of linear and nonlinear filtering mechanisms. In the visual system, noise limiting light detection has been assumed to arise from stimulus transduction in rod photoreceptors. In this context, the evolutionary optimization of the signal-to-noise ratio in the retina has proven critical in allowing visual sensitivity to approach the limits set by the quantal nature of light. Here, we discuss how noise in the mammalian retina is mitigated to allow for highly sensitive night vision.
Collapse
Affiliation(s)
- Johan Pahlberg
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, USA.
| | | |
Collapse
|
13
|
Cone synapses in macaque fovea: II. Dendrites of OFF midget bipolar cells exhibit Inner Densities similar to their Outer synaptic Densities in basal contacts with cone terminals. Vis Neurosci 2011; 28:17-28. [DOI: 10.1017/s0952523810000465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractAs described in the companion paper, the synaptic terminal of a cone photoreceptor in macaque monkey makes an average of 35 or 46 basal contacts with the tips of the dendrites of its OFF midget bipolar cell. Each basal contact has one or more symmetrically thickened dense regions. These “Outer Densities,” averaging 48 or 67 in number, harbor clusters of ionotropic glutamate receptors and are ~0.8μm (and ~1-ms diffusion time) from active zones associated with synaptic ribbons. Here, we show similarly appearing “Inner Densities,” averaging 53 or 74 in number, located more proximally on the dendrites of these OFF midget bipolar cells, ~0.4μm inward from the tips of the dendrites and out of contact with the basal surface of the cone terminal. Compared to desmosome-like junctions, Inner Densities are closer to the terminal and are less dense and less thick. Each Inner Density is shared with another cell, the partners including diffuse bipolar cells, ON midget bipolar cells, and horizontal cells. Given the diversity of the partners, the OFF midget bipolar cells are unlikely to be in a synaptic relationship with the partners. Instead, Inner Densities are near enough to the active zones associated with synaptic ribbons to receive pulses of glutamate at concentrations effective for glutamate receptors. The role of Inner Densities is not known, but they might represent additional clusters of glutamate receptors.
Collapse
|
14
|
Abstract
The function of the retina is crucial, for it must encode visual signals so the brain can detect objects in the visual world. However, the biological mechanisms of the retina add noise to the visual signal and therefore reduce its quality and capacity to inform about the world. Because an organism's survival depends on its ability to unambiguously detect visual stimuli in the presence of noise, its retinal circuits must have evolved to maximize signal quality, suggesting that each retinal circuit has a specific functional role. Here we explain how an ideal observer can measure signal quality to determine the functional roles of retinal circuits. In a visual discrimination task the ideal observer can measure from a neural response the increment threshold, the number of distinguishable response levels, and the neural code, which are fundamental measures of signal quality relevant to behavior. It can compare the signal quality in stimulus and response to determine the optimal stimulus, and can measure the specific loss of signal quality by a neuron's receptive field for non-optimal stimuli. Taking into account noise correlations, the ideal observer can track the signal-to-noise ratio available from one stage to the next, allowing one to determine each stage's role in preserving signal quality. A comparison between the ideal performance of the photon flux absorbed from the stimulus and actual performance of a retinal ganglion cell shows that in daylight a ganglion cell and its presynaptic circuit loses a factor of approximately 10-fold in contrast sensitivity, suggesting specific signal-processing roles for synaptic connections and other neural circuit elements. The ideal observer is a powerful tool for characterizing signal processing in single neurons and arrays along a neural pathway.
Collapse
Affiliation(s)
- Robert G Smith
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104-6058, USA.
| | | |
Collapse
|
15
|
Role of the synaptic ribbon in transmitting the cone light response. Nat Neurosci 2009; 12:303-10. [PMID: 19219039 DOI: 10.1038/nn.2267] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 12/30/2008] [Indexed: 11/08/2022]
Abstract
Cone photoreceptors distinguish small changes in light intensity while operating over a wide dynamic range. The cone synapse encodes intensity by modulating tonic neurotransmitter release, but precise encoding is limited by the quantal nature of synaptic vesicle exocytosis. Cones possess synaptic ribbons, structures that are thought to accelerate the delivery of vesicles for tonic release. Here we show that the synaptic ribbon actually constrains vesicle delivery, resulting in a maintained state of synaptic depression in darkness. Electron microscopy of cones from the lizard Anolis segrei revealed that depression is caused by the depletion of vesicles on the ribbon, indicating that resupply, not fusion, is the rate-limiting step that controls release. Responses from postsynaptic retinal neurons from the salamander Ambystoma tigrinum showed that the ribbon behaves like a capacitor, charging with vesicles in light and discharging in a phasic burst at light offset. Phasic release extends the operating range of the cone synapse to more accurately encode changes in light intensity, accentuating features that are salient to photopic vision.
Collapse
|
16
|
Thoreson WB. Kinetics of synaptic transmission at ribbon synapses of rods and cones. Mol Neurobiol 2007; 36:205-23. [PMID: 17955196 PMCID: PMC2474471 DOI: 10.1007/s12035-007-0019-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 05/18/2007] [Indexed: 11/24/2022]
Abstract
The ribbon synapse is a specialized structure that allows photoreceptors to sustain the continuous release of vesicles for hours upon hours and years upon years but also respond rapidly to momentary changes in illumination. Light responses of cones are faster than those of rods and, mirroring this difference, synaptic transmission from cones is also faster than transmission from rods. This review evaluates the various factors that regulate synaptic kinetics and contribute to kinetic differences between rod and cone synapses. Presynaptically, the release of glutamate-laden synaptic vesicles is regulated by properties of the synaptic proteins involved in exocytosis, influx of calcium through calcium channels, calcium release from intracellular stores, diffusion of calcium to the release site, calcium buffering, and extrusion of calcium from the cytoplasm. The rate of vesicle replenishment also limits the ability of the synapse to follow changes in release. Post-synaptic factors include properties of glutamate receptors, dynamics of glutamate diffusion through the cleft, and glutamate uptake by glutamate transporters. Thus, multiple synaptic mechanisms help to shape the responses of second-order horizontal and bipolar cells.
Collapse
Affiliation(s)
- Wallace B Thoreson
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, 4th floor, Durham Research Center, 985840 Nebraska Medical Center, Omaha, NE 68198-5840, USA.
| |
Collapse
|
17
|
Okawa H, Sampath AP. Optimization of single-photon response transmission at the rod-to-rod bipolar synapse. Physiology (Bethesda) 2007; 22:279-86. [PMID: 17699881 DOI: 10.1152/physiol.00007.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our ability to see in dim light is limited by the statistics of light absorption in rod photoreceptors and the faithful transmission of the light-evoked signals through the retina. This article reviews the physiological mechanisms at the synapse between rods and rod bipolar cells, the first relay in a pathway that mediates vision near absolute threshold.
Collapse
Affiliation(s)
- Haruhisa Okawa
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
18
|
Sheng Z, Choi SY, Dharia A, Li J, Sterling P, Kramer RH. Synaptic Ca2+ in darkness is lower in rods than cones, causing slower tonic release of vesicles. J Neurosci 2007; 27:5033-42. [PMID: 17494689 PMCID: PMC6672389 DOI: 10.1523/jneurosci.5386-06.2007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rod and cone photoreceptors use specialized biochemistry to generate light responses that differ in their sensitivity and kinetics. However, it is unclear whether there are also synaptic differences that affect the transmission of visual information. Here, we report that in the dark, rods tonically release synaptic vesicles at a much slower rate than cones, as measured by the release of the fluorescent vesicle indicator FM1-43. To determine whether slower release results from a lower Ca2+ sensitivity or a lower dark concentration of Ca2+, we imaged fluorescent indicators of synaptic vesicle cycling and intraterminal Ca2+. We report that the Ca2+ sensitivity of release is indistinguishable in rods and cones, consistent with their possessing similar release machinery. However, the dark intraterminal Ca2+ concentration is lower in rods than in cones, as determined by two-photon Ca2+ imaging. The lower level of dark Ca2+ ensures that rods encode intensity with a slower vesicle release rate that is better matched to the lower information content of dim light.
Collapse
Affiliation(s)
- Zejuan Sheng
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, and
| | - Sue-Yeon Choi
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, and
| | - Ajay Dharia
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, and
| | - Jian Li
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Peter Sterling
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Richard H. Kramer
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, and
| |
Collapse
|
19
|
Schein S, Ahmad KM. Efficiency of synaptic transmission of single-photon events from rod photoreceptor to rod bipolar dendrite. Biophys J 2006; 91:3257-67. [PMID: 16920838 PMCID: PMC1614493 DOI: 10.1529/biophysj.106.091744] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A rod transmits absorption of a single photon by what appears to be a small reduction in the small number of quanta of neurotransmitter (Q(count)) that it releases within the integration period ( approximately 0.1 s) of a rod bipolar dendrite. Due to the quantal and stochastic nature of release, discrete distributions of Q(count) for darkness versus one isomerization of rhodopsin (R*) overlap. We suggested that release must be regular to narrow these distributions, reduce overlap, reduce the rate of false positives, and increase transmission efficiency (the fraction of R* events that are identified as light). Unsurprisingly, higher quantal release rates (Q(rates)) yield higher efficiencies. Focusing here on the effect of small changes in Q(rate), we find that a slightly higher Q(rate) yields greatly reduced efficiency, due to a necessarily fixed quantal-count threshold. To stabilize efficiency in the face of drift in Q(rate), the dendrite needs to regulate the biochemical realization of its quantal-count threshold with respect to its Q(count). These considerations reveal the mathematical role of calcium-based negative feedback and suggest a helpful role for spontaneous R*. In addition, to stabilize efficiency in the face of drift in degree of regularity, efficiency should be approximately 50%, similar to measurements.
Collapse
Affiliation(s)
- Stan Schein
- Department of Psychology and Brain Research Institute, University of California, Los Angeles, 90095-1563, USA.
| | | |
Collapse
|