1
|
Chen C, Pettitt BM. DNA Shape versus Sequence Variations in the Protein Binding Process. Biophys J 2017; 110:534-544. [PMID: 26840719 DOI: 10.1016/j.bpj.2015.11.3527] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/15/2015] [Accepted: 11/02/2015] [Indexed: 01/02/2023] Open
Abstract
The binding process of a protein with a DNA involves three stages: approach, encounter, and association. It has been known that the complexation of protein and DNA involves mutual conformational changes, especially for a specific sequence association. However, it is still unclear how the conformation and the information in the DNA sequences affects the binding process. What is the extent to which the DNA structure adopted in the complex is induced by protein binding, or is instead intrinsic to the DNA sequence? In this study, we used the multiscale simulation method to explore the binding process of a protein with DNA in terms of DNA sequence, conformation, and interactions. We found that in the approach stage the protein can bind both the major and minor groove of the DNA, but uses different features to locate the binding site. The intrinsic conformational properties of the DNA play a significant role in this binding stage. By comparing the specific DNA with the nonspecific in unbound, intermediate, and associated states, we found that for a specific DNA sequence, ∼40% of the bending in the association forms is intrinsic and that ∼60% is induced by the protein. The protein does not induce appreciable bending of nonspecific DNA. In addition, we proposed that the DNA shape variations induced by protein binding are required in the early stage of the binding process, so that the protein is able to approach, encounter, and form an intermediate at the correct site on DNA.
Collapse
Affiliation(s)
- Chuanying Chen
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas
| | - B Montgomery Pettitt
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas.
| |
Collapse
|
2
|
Ishida H, Matsumoto A. Mechanism for verification of mismatched and homoduplex DNAs by nucleotides-bound MutS analyzed by molecular dynamics simulations. Proteins 2016; 84:1287-303. [PMID: 27238299 DOI: 10.1002/prot.25077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/13/2016] [Accepted: 05/24/2016] [Indexed: 11/10/2022]
Abstract
In order to understand how MutS recognizes mismatched DNA and induces the reaction of DNA repair using ATP, the dynamics of the complexes of MutS (bound to the ADP and ATP nucleotides, or not) and DNA (with mismatched and matched base-pairs) were investigated using molecular dynamics simulations. As for DNA, the structure of the base-pairs of the homoduplex DNA which interacted with the DNA recognition site of MutS was intermittently disturbed, indicating that the homoduplex DNA was unstable. As for MutS, the disordered loops in the ATPase domains, which are considered to be necessary for the induction of DNA repair, were close to (away from) the nucleotide-binding sites in the ATPase domains when the nucleotides were (not) bound to MutS. This indicates that the ATPase domains changed their structural stability upon ATP binding using the disordered loop. Conformational analysis by principal component analysis showed that the nucleotide binding changed modes which have structurally solid ATPase domains and the large bending motion of the DNA from higher to lower frequencies. In the MutS-mismatched DNA complex bound to two nucleotides, the bending motion of the DNA at low frequency modes may play a role in triggering the formation of the sliding clamp for the following DNA-repair reaction step. Moreover, MM-PBSA/GBSA showed that the MutS-homoduplex DNA complex bound to two nucleotides was unstable because of the unfavorable interactions between MutS and DNA. This would trigger the ATP hydrolysis or separation of MutS and DNA to continue searching for mismatch base-pairs. Proteins 2016; 84:1287-1303. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hisashi Ishida
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 8-1-7 Umemidai Kizugawa-Shi, Kyoto, 619-0215, Japan
| | - Atsushi Matsumoto
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 8-1-7 Umemidai Kizugawa-Shi, Kyoto, 619-0215, Japan
| |
Collapse
|
3
|
Chen L, Zheng QC, Yu LY, Chu WT, Zhang JL, Xue Q, Zhang HX, Sun CC. Insights into the thermal stabilization and conformational transitions of DNA by hyperthermophile protein Sso7d: molecular dynamics simulations and MM-PBSA analysis. J Biomol Struct Dyn 2012; 30:716-27. [PMID: 22731116 DOI: 10.1080/07391102.2012.689702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the assembly of DNA-protein complex, the DNA kinking plays an important role in nucleoprotein structures and gene regulation. Molecular dynamics (MD) simulations were performed on specific protein-DNA complexes in this study to investigate the stability and structural transitions of DNA depending on temperature. Furthermore, we introduced the molecular mechanics/Poisson-Boltzmann surface area (MM-PBSA) approach to analyze the interactions between DNA and protein in hyperthermophile. Focused on two specific Sso7d-DNA complexes (PDB codes: 1BNZ and 1BF4), we performed MD simulations at four temperatures (300, 360, 420, and 480 K) and MM-PBSA at 300 and 360 K to illustrate detailed information on the changes of DNA. Our results show that Sso7d stabilizes DNA duplex over a certain temperature range and DNA molecules undergo B-like to A-like form transitions in the binary complex with the temperature increasing, which are consistent with the experimental data. Our work will contribute to a better understanding of protein-DNA interaction.
Collapse
Affiliation(s)
- Lin Chen
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Seio K, Kurohagi S, Kodama E, Masaki Y, Tsunoda H, Ohkubo A, Sekine M. Short-RNA selective binding of oligonucleotides modified using adenosine and guanosine derivatives that possess cyclohexyl phosphates as substituents. Org Biomol Chem 2011; 10:994-1006. [PMID: 22143376 DOI: 10.1039/c1ob06580g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed new artificial oligonucleotides which distinguish short RNA targets from long ones. The modification of the 5' termini of oligonucleotides by using adenosine derivatives that possess a bulky cyclohexyl phosphate moiety at their base moiety and a phosphate group at the position of their 5'-hydroxyl group maximized their short RNA selectivity. The 2'-O-methyl-RNA (5'-XC(m)A(m)A(m)C(m)C(m)U(m)A(m)C(m)U(m)) having these modifications exhibits ca. 10 °C higher T(m) in the duplexes with the complementary short RNA (3'-GUUGGAUGA-5') than with the long RNA (3'-AUUAUAUGUUGGAUGAUGGUUA-5'). The oligodeoxynucleotides having the same modification exhibited similar selectivity. Such short-RNA selective binding of terminally modified oligonucleotides can be employed to distinguish between mature microRNAs and pre-microRNAs.
Collapse
Affiliation(s)
- Kohji Seio
- Department of Life Science, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Japan.
| | | | | | | | | | | | | |
Collapse
|
5
|
Politi A, Leonis G, Tzoupis H, Ntountaniotis D, Papadopoulos MG, Grdadolnik SG, Mavromoustakos T. Conformational Properties and Energetic Analysis of Aliskiren in Solution and Receptor Site. Mol Inform 2011; 30:973-85. [DOI: 10.1002/minf.201100077] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 10/18/2011] [Indexed: 11/06/2022]
|
6
|
Yang B, Zhu Y, Wang Y, Chen G. Interaction identification of Zif268 and TATA(ZF) proteins with GC-/AT-rich DNA sequence: A theoretical study. J Comput Chem 2011; 32:416-28. [PMID: 20658568 DOI: 10.1002/jcc.21630] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Molecular dynamics (MD) simulations for Zif268 (a zinc-finger-protein binding specifically to the GC-rich DNA)-d(A(1) G(2) C(3) G(4) T(5) G(6) G(7) G(8) C(9) A(10) C(11) )(2) and TATA(ZF) (a zinc-finger-protein recognizing the AT-rich DNA)-d(A(1) C(2) G(3) C(4) T(5) A(6) T(7) A(8) A(9) A(10) A(11) G(12) G(13) )(2) complexes have been performed for investigating the DNA binding affinities and specific recognitions of zinc fingers to GC-rich and AT-rich DNA sequences. The binding free energies for the two systems have been further analyzed by using the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method. The calculations of the binding free energies reveal that the affinity energy of Zif268-DNA complex is larger than that of TATA(ZF) -DNA one. The affinity between the zinc-finger-protein and DNA is mainly driven by more favorable van-der-Waals and nonpolar/solvation interactions in both complexes. However, the affinity energy difference of the two binding systems is mainly caused by the difference of van-der-Waals interactions and entropy components. The decomposition analysis of MM-PBSA free energies on each residue of the proteins predicts that the interactions between the residues with the positive charges and DNA favor the binding process; while the interactions between the residues with the negative charges and DNA behave in the opposite way. The interhydrogen-bonds at the protein-DNA interface and the induced intrafinger hydrogen bonds between the residues of protein for the Zif268-DNA complex have been identified at some key contact sites. However, only the interhydrogen-bonds between the residues of protein and DNA for TATA(ZF) -DNA complex have been found. The interactions of hydrogen-bonds, electrostatistics and van-der-Waals type at some new contact sites have been identified. Moreover, the recognition characteristics of the two studied zinc-finger-proteins have also been discussed.
Collapse
Affiliation(s)
- Bo Yang
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | | | | | | |
Collapse
|
7
|
Lee J, Kim JS, Seok C. Cooperativity and specificity of Cys2His2 zinc finger protein-DNA interactions: a molecular dynamics simulation study. J Phys Chem B 2010; 114:7662-71. [PMID: 20469897 DOI: 10.1021/jp1017289] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cys(2)His(2) zinc finger proteins are one of the most frequently observed DNA-binding motifs in eukaryotes. They have been widely used as a framework for designing new DNA-binding proteins. In this work, the binding affinity and conformational change of the Zif268-DNA complex were successfully reproduced with MD simulations and MM-PBSA analysis. The following new discoveries on the zinc finger protein-DNA interactions were obtained by careful energy decomposition analysis. First, a dramatic increase in the binding affinity was observed when the third zinc finger is added, indicating a cooperative nature. This cooperativity is shown to be a consequence of the small but distinctive conformational change of DNA, which enables a tight fit of the protein into the major groove of DNA. Second, specificity of the amino acid-nucleotide recognitions observed in the crystal structure is explained as originating from the ability of specific side chains and bases to take the optimal geometries for favorable interactions between polar groups. The success of the current approach implies that similar methods could be further applied to the study of protein-DNA interactions involving longer polyfingers or different linkers between fingers to provide insights for design of novel zinc finger proteins.
Collapse
Affiliation(s)
- Juyong Lee
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | | | | |
Collapse
|
8
|
Masaki Y, Miyasaka R, Ohkubo A, Seio K, Sekine M. Linear relationship between deformability and thermal stability of 2'-O-modified RNA hetero duplexes. J Phys Chem B 2010; 114:2517-24. [PMID: 20108976 PMCID: PMC2825091 DOI: 10.1021/jp909851j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We describe the relationship between the experimentally determined melting temperatures of 2′-O-modified-RNA/RNA duplexes and their deformability estimated from molecular dynamics simulations. To clarify this relationship, we synthesized several fully modified oligoribonucleotides such as 2′-O-cyanoethyl RNAs and 2′-O-methoxyethyl RNAs and compared the actual melting temperatures of the duplexes with their calculated deformabilities. An increase of the melting temperatures by 2′-O-modifications was found to correlate strongly with an increase of the helical elastic constants in U14/A14, (CU)7/(AG)7, and (GACU)3/(AGUC)3 sequences. Linear regression analyses could be used to estimate the melting temperature with an accuracy of ±2.0 °C in our model case. Although the strong correlation was observed in the same base sequence, the linear regression functions were different from each base sequence. Our results indicated the possibility of predicting the thermal stability of 2′-O-modified duplexes at the computer-aided molecular design stage.
Collapse
Affiliation(s)
- Yoshiaki Masaki
- Department of Life Science, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Japan
| | | | | | | | | |
Collapse
|
9
|
Millán-Pacheco C, Capistrán VM, Pastor N. On the consequences of placing amino groups at the TBP-DNA interface. Does TATA really matter? J Mol Recognit 2009; 22:453-64. [DOI: 10.1002/jmr.963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
10
|
Tjong H, Zhou HX. On the Dielectric Boundary in Poisson-Boltzmann Calculations. J Chem Theory Comput 2008; 4:507-514. [PMID: 23304097 DOI: 10.1021/ct700319x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In applying the Poisson-Boltzmann (PB) equation for calculating the electrostatic free energies of solute molecules, an open question is how to specify the boundary between the low-dielectric solute and the high-dielectric solvent. Two common specifications of the dielectric boundary, as the molecular surface (MS) or the van der Waals (vdW) surface of the solute, give very different results for the electrostatic free energy of the solute. With the same atomic radii, the solute is more solvent-exposed in the vdW specification. One way to resolve the difference is to use different sets of atomic radii for the two surfaces. The radii for the vdW surface would be larger in order to compensate for the higher solvent exposure. Here we show that radius re-parameterization required for bringing MS-based and vdW-based PB results to agreement is solute-size dependent. The difference in atomic radii for individual amino acids as solutes is only 2-5% but increases to over 20% for proteins with ~200 residues. Therefore two sets of radii that yield identical MS-based and vdW-based PB results for small solutes will give very different PB results for large solutes. This finding raises issues about two common practices. The first is the use of atomic radii, which are parameterized against either experimental solvation data or data obtained from explicit-solvent simulations on small compounds, for PB calculations on proteins. The second is the parameterization of vdW-based generalized Born models against MS-based PB results.
Collapse
Affiliation(s)
- Harianto Tjong
- Department of Physics and Institute of Molecular Biophysics and School of Computational Science Florida State University Tallahassee, FL 32306
| | | |
Collapse
|
11
|
Mackerell AD, Nilsson L. Molecular dynamics simulations of nucleic acid-protein complexes. Curr Opin Struct Biol 2008; 18:194-9. [PMID: 18281210 DOI: 10.1016/j.sbi.2007.12.012] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 12/17/2007] [Accepted: 12/21/2007] [Indexed: 10/22/2022]
Abstract
Molecular dynamics simulation studies of protein-nucleic acid complexes are more complicated than studies of either component alone-the force field has to be properly balanced, the systems tend to become very large, and a careful treatment of solvent and of electrostatic interactions is necessary. Recent investigations into several protein-DNA and protein-RNA systems have shown the feasibility of the simulation approach, yielding results of biological interest not readily accessible to experimental methods.
Collapse
Affiliation(s)
- Alexander D Mackerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA.
| | | |
Collapse
|
12
|
Olufsen M, Smalås AO, Brandsdal BO. Electrostatic interactions play an essential role in DNA repair and cold-adaptation of uracil DNA glycosylase. J Mol Model 2008; 14:201-13. [PMID: 18196298 DOI: 10.1007/s00894-007-0261-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Accepted: 12/03/2007] [Indexed: 01/01/2023]
Abstract
Life has adapted to most environments on earth, including low and high temperature niches. The increased catalytic efficiency and thermoliability observed for enzymes from organisms living in constantly cold regions when compared to their mesophilic and thermophilic cousins are poorly understood at the molecular level. Uracil DNA glycosylase (UNG) from cod (cUNG) catalyzes removal of uracil from DNA with an increased k(cat) and reduced K(m) relative to its warm-active human (hUNG) counterpart. Specific issues related to DNA repair and substrate binding/recognition (K(m)) are here investigated by continuum electrostatics calculations, MD simulations and free energy calculations. Continuum electrostatic calculations reveal that cUNG has surface potentials that are more complementary to the DNA potential at and around the catalytic site when compared to hUNG, indicating improved substrate binding. Comparative MD simulations combined with free energy calculations using the molecular mechanics-Poisson Boltzmann surface area (MM-PBSA) method show that large opposing energies are involved when forming the enzyme-substrate complexes. Furthermore, the binding free energies obtained reveal that the Michaelis-Menten complex is more stable for cUNG, primarily due to enhanced electrostatic properties, suggesting that energetic fine-tuning of electrostatics can be utilized for enzymatic temperature adaptation. Energy decomposition pinpoints the residual determinants responsible for this adaptation.
Collapse
Affiliation(s)
- Magne Olufsen
- The Norwegian Structural Biology Centre, Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | | | | |
Collapse
|
13
|
Abstract
In the context of molecular dynamics simulations of proteins, the term "force field" refers to the combination of a mathematical formula and associated parameters that are used to describe the energy of the protein as a function of its atomic coordinates. In this review, we describe the functional forms and parameterization protocols of the widely used biomolecular force fields Amber, CHARMM, GROMOS, and OPLS-AA. We also summarize the ability of various readily available noncommercial molecular dynamics packages to perform simulations using these force fields, as well as to use modern methods for the generation of constant-temperature, constant-pressure ensembles and to treat long-range interactions. Finally, we finish with a discussion of the ability of these force fields to support the modeling of proteins in conjunction with nucleic acids, lipids, carbohydrates, and/or small molecules.
Collapse
|
14
|
Tjong H, Zhou HX. GBr6NL: a generalized Born method for accurately reproducing solvation energy of the nonlinear Poisson-Boltzmann equation. J Chem Phys 2007; 126:195102. [PMID: 17523838 DOI: 10.1063/1.2735322] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The nonlinear Poisson-Boltzmann (NLPB) equation can provide accurate modeling of electrostatic effects for nucleic acids and highly charged proteins. Generalized Born methods have been developed to mimic the linearized Poisson-Boltzmann (LPB) equation at substantially reduced cost. The computer time for solving the NLPB equation is approximately fivefold longer than for the LPB equation, thus presenting an even greater obstacle. Here we present the first generalized Born method, GBr(6)NL, for mimicking the NLPB equation. GBr(6)NL is adapted from GBr(6), a generalized Born method recently developed to reproduce the solvation energy of the LPB equation [Tjong and Zhou, J. Phys. Chem. B 111, 3055 (2007)]. Salt effects predicted by GBr(6)NL on 55 proteins overall deviate from NLPB counterparts by 0.5 kcal/mol from ionic strengths from 10 to 1000 mM, which is approximately 10% of the average magnitudes of the salt effects. GBr(6)NL predictions for the salts effects on the electrostatic interaction energies of two protein:RNA complexes are very promising.
Collapse
Affiliation(s)
- Harianto Tjong
- Department of Physics and Institute of Molecular Biophysics, and School of Computational Science, Florida State University, Tallahassee, Florida 32306, USA
| | | |
Collapse
|
15
|
Abstract
The negatively charged phosphates of nucleic acids are often paired with positively charged residues upon binding proteins. It was thus counter-intuitive when previous Poisson-Boltzmann (PB) calculations gave positive energies from electrostatic interactions, meaning that they destabilize protein-nucleic acid binding. Our own PB calculations on protein-protein binding have shown that the sign and the magnitude of the electrostatic component are sensitive to the specification of the dielectric boundary in PB calculations. A popular choice for the boundary between the solute low dielectric and the solvent high dielectric is the molecular surface; an alternative is the van der Waals (vdW) surface. In line with results for protein-protein binding, in this article, we found that PB calculations with the molecular surface gave positive electrostatic interaction energies for two protein-RNA complexes, but the signs are reversed when the vdW surface was used. Therefore, whether destabilizing or stabilizing effects are predicted depends on the choice of the dielectric boundary. The two calculation protocols, however, yielded similar salt effects on the binding affinity. Effects of charge mutations differentiated the two calculation protocols; PB calculations with the vdW surface had smaller deviations overall from experimental data.
Collapse
Affiliation(s)
- Sanbo Qin
- Institute of Molecular Biophysics, School of Computational Science, Florida State University, Tallahassee, FL 32306, USA
| | | |
Collapse
|