1
|
Pekar K, Young RT, Sensale S. Optimizing Binding among Bimolecular Tethered Complexes. J Phys Chem B 2024; 128:5506-5512. [PMID: 38786364 DOI: 10.1021/acs.jpcb.4c01088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Tethered motion is ubiquitous in nature, offering controlled movement and spatial constraints to otherwise chaotic systems. The enhanced functionality and practical utility of tethers has been exploited in biotechnology, catalyzing the design of novel biosensors and molecular assembly techniques. While notable technological advances incorporating tethered motifs have been made, a theoretical gap persists within the paradigm, hindering a comprehensive understanding of tethered-based technologies. In this work, we focus on the characterization of the binding kinetics of two tethered molecules functionalized to a hard surface. Using a mean-field approximation, the binding time of such bimolecular system is determined analytically. Furthermore, estimates of the grafting site separation and polymer lengths which expedite binding are provided. These estimates, along with the analytical theories and frameworks established here, have the potential to improve efficacy in self-assembly methods in DNA nanotechnology and can be extended to more biologically specific endeavors including targeted drug-delivery and molecular sensing.
Collapse
Affiliation(s)
- Kyle Pekar
- Department of Mechanical Engineering, Cleveland State University, Cleveland, Ohio 44115-2214, United States
| | - Robert T Young
- Department of Physics, Cleveland State University, Cleveland, Ohio 44115-2214, United States
| | - Sebastian Sensale
- Department of Physics, Cleveland State University, Cleveland, Ohio 44115-2214, United States
| |
Collapse
|
2
|
Yue C, Zhang C, Zhang R, Yuan J. Tethered particle motion of the adaptation enzyme CheR in bacterial chemotaxis. iScience 2023; 26:107950. [PMID: 37817931 PMCID: PMC10561060 DOI: 10.1016/j.isci.2023.107950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/25/2023] [Accepted: 09/14/2023] [Indexed: 10/12/2023] Open
Abstract
Bacteria perform chemotactic adaptation by sequential modification of multiple modifiable sites on chemoreceptors through stochastic action of tethered adaptation enzymes (CheR and CheB). To study the molecular kinetics of this process, we measured the response to different concentrations of MeAsp for the Tar-only Escherichia coli strain. We found a strong dependence of the methylation rate on the methylation level and established a new mechanism of adaptation kinetics due to tethered particle motion of the methylation enzyme CheR. Experiments with various lengths of the C-terminal flexible chain in the Tar receptor further validated this mechanism. The tethered particle motion resulted in a CheR concentration gradient that ensures encounter-rate matching of the sequential modifiable sites. An analytical model of multisite catalytic reaction showed that this enables robustness of methylation to fluctuations in receptor activity or cell-to-cell variations in the expression of adaptation enzymes and reduces the variation in methylation level among individual receptors.
Collapse
Affiliation(s)
- Caijuan Yue
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chi Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rongjing Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Junhua Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
3
|
Methylation-Independent Chemotaxis Systems Are the Norm for Gastric-Colonizing Helicobacter Species. J Bacteriol 2022; 204:e0023122. [PMID: 35972258 PMCID: PMC9487461 DOI: 10.1128/jb.00231-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many bacteria and archaea rely on chemotaxis signal transduction systems for optimal fitness. These complex, multiprotein signaling systems have core components found in all chemotactic microbes, as well as variable proteins found in only some species. We do not yet understand why these variations exist or whether there are specific niches that favor particular chemotaxis signaling organization. One variation is in the presence/absence of the chemotaxis methylation adaptation enzymes CheB and CheR. Genes for CheB and CheR are missing in the gastric pathogen Helicobacter pylori but present in related Helicobacter that colonize the liver or intestine. In this work, we asked whether there was a general pattern of CheB/CheR across multiple Helicobacter species. Helicobacter spp. all possess chemotactic behavior, based on the presence of genes for core signaling proteins CheA, CheW, and chemoreceptors. Genes for the CheB and CheR proteins, in contrast, were variably present. Niche mapping supported the idea that these genes were present in enterohepatic Helicobacter species and absent in gastric ones. We then analyzed whether there were differences between gastric and enterohepatic species in the CheB/CheR chemoreceptor target methylation sites. Indeed, these sites were less conserved in gastric species that lack CheB/CheR. Lastly, we determined that cheB and cheR could serve as markers to indicate whether an unknown Helicobacter species was of enterohepatic or gastric origin. Overall, these findings suggest the interesting idea that methylation-based adaptation is not required in specific environments, particularly the stomach. IMPORTANCE Chemotaxis signal transduction systems are common in the archaeal and bacterial world, but not all systems contain the same components. The rationale for this system variation remains unknown. In this report, comparative genomics analysis showed that the presence/absence of CheR and CheB is one main variation within the Helicobacter genus, and it is strongly associated with the niche of Helicobacter species: gastric Helicobacter species, which infect animal stomachs, have lost their CheB and CheR, while enterohepatic Helicobacter species, which infect the liver and intestine, retain them. This study not only provides an example that a chemotaxis system variant is associated with particular niches but also proposes that CheB and CheR are new markers distinguishing gastric from enterohepatic Helicobacter species.
Collapse
|
4
|
Imran A, Moyer BS, Wolfe AJ, Cosgrove MS, Makarov DE, Movileanu L. Interplay of Affinity and Surface Tethering in Protein Recognition. J Phys Chem Lett 2022; 13:4021-4028. [PMID: 35485934 PMCID: PMC9106920 DOI: 10.1021/acs.jpclett.2c00621] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/27/2022] [Indexed: 05/10/2023]
Abstract
Surface-tethered ligand-receptor complexes are key components in biological signaling and adhesion. They also find increasing utility in single-molecule assays and biotechnological applications. Here, we study the real-time binding kinetics between various surface-immobilized peptide ligands and their unrestrained receptors. A long peptide tether increases the association of ligand-receptor complexes, experimentally proving the fly casting mechanism where the disorder accelerates protein recognition. On the other hand, a short peptide tether enhances the complex dissociation. Notably, the rate constants measured for the same receptor, but under different spatial constraints, are strongly correlated to one another. Furthermore, this correlation can be used to predict how surface tethering on a ligand-receptor complex alters its binding kinetics. Our results have immediate implications in the broad areas of biomolecular recognition, intrinsically disordered proteins, and biosensor technology.
Collapse
Affiliation(s)
- Ali Imran
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
| | - Brandon S. Moyer
- Ichor
Life Sciences, Inc., 2651 US Route 11, LaFayette, New York 13084, United
States
- Lewis
School of Health Sciences, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Aaron J. Wolfe
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
- Ichor
Life Sciences, Inc., 2651 US Route 11, LaFayette, New York 13084, United
States
- Lewis
School of Health Sciences, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
- Department
of Chemistry, State University of New York
College of Environmental Science and Forestry, 1 Forestry Dr., Syracuse, New York 13210, United States
| | - Michael S. Cosgrove
- Department
of Biochemistry and Molecular Biology, State
University of New York Upstate Medical University, 4249 Weiskotten Hall, 766 Irving
Avenue, Syracuse, New York 13210, United States
| | - Dmitrii E. Makarov
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
- Oden
Institute
for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Liviu Movileanu
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United
States
- The BioInspired
Institute, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
5
|
Jamecna D, Antonny B. Intrinsically disordered protein regions at membrane contact sites. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159020. [PMID: 34352388 DOI: 10.1016/j.bbalip.2021.159020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022]
Abstract
Membrane contact sites (MCS) are regions of close apposition between membrane-bound organelles. Proteins that occupy MCS display various domain organisation. Among them, lipid transfer proteins (LTPs) frequently contain both structured domains as well as regions of intrinsic disorder. In this review, we discuss the various roles of intrinsically disordered protein regions (IDPRs) in LTPs as well as in other proteins that are associated with organelle contact sites. We distinguish the following functions: (i) to act as flexible tethers between two membranes; (ii) to act as entropic barriers to prevent protein crowding and regulate membrane tethering geometry; (iii) to define the action range of catalytic domains. These functions are added to other functions of IDPRs in membrane environments, such as mediating protein-protein and protein-membrane interactions. We suggest that the overall efficiency and fidelity of contact sites might require fine coordination between all these IDPR activities.
Collapse
Affiliation(s)
- Denisa Jamecna
- Université Côte d'Azur et CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France; Biochemistry Center (BZH), Heidelberg, Germany
| | - Bruno Antonny
- Université Côte d'Azur et CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France.
| |
Collapse
|
6
|
Benlian BR, Klier PEZ, Martinez KN, Schwinn MK, Kirkland TA, Miller EW. Small Molecule-Protein Hybrid for Voltage Imaging via Quenching of Bioluminescence. ACS Sens 2021; 6:1857-1863. [PMID: 33723996 DOI: 10.1021/acssensors.1c00058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report a small-molecule enzyme pair for optical voltage sensing via quenching of bioluminescence. This quenching bioluminescent voltage indicator, or Q-BOLT, pairs the dark absorbing, voltage-sensitive dipicrylamine with membrane-localized bioluminescence from the luciferase NanoLuc (NLuc). As a result, bioluminescence is quenched through resonance energy transfer (QRET) as a function of membrane potential. Fusion of HaloTag to NLuc creates a two-acceptor bioluminescence resonance energy transfer (BRET) system when a tetramethylrhodamine (TMR) HaloTag ligand is ligated to HaloTag. In this mode, Q-BOLT is capable of providing direct visualization of changes in membrane potential in live cells via three distinct readouts: change in QRET, BRET, and the ratio between bioluminescence emission and BRET. Q-BOLT can provide up to a 29% change in bioluminescence (ΔBL/BL) and >100% ΔBRET/BRET per 100 mV change in HEK 293T cells, without the need for excitation light. In cardiac monolayers derived from human-induced pluripotent stem cells (hiPSCs), Q-BOLT readily reports on membrane potential oscillations. Q-BOLT is the first example of a hybrid small molecule-protein voltage indicator that does not require excitation light and may be useful in contexts where excitation light is limiting.
Collapse
Affiliation(s)
| | | | | | | | - Thomas A. Kirkland
- Promega Biosciences LLC, San Luis Obispo, California 93401, United States
| | | |
Collapse
|
7
|
Mesoscale computational protocols for the design of highly cooperative bivalent macromolecules. Sci Rep 2020; 10:7992. [PMID: 32409687 PMCID: PMC7224399 DOI: 10.1038/s41598-020-64646-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 04/07/2020] [Indexed: 11/09/2022] Open
Abstract
The last decade has witnessed a swiftly increasing interest in the design and production of novel multivalent molecules as powerful alternatives for conventional antibodies in the fight against cancer and infectious diseases. However, while it is widely accepted that large-scale flexibility (10–100 nm) and free/constrained dynamics (100 ns -μs) control the activity of such novel molecules, computational strategies at the mesoscale still lag behind experiments in optimizing the design of crucial features, such as the binding cooperativity (a.k.a. avidity). In this study, we introduced different coarse-grained models of a polymer-linked, two-nanobody composite molecule, with the aim of laying down the physical bases of a thorough computational drug design protocol at the mesoscale. We show that the calculation of suitable potentials of mean force allows one to apprehend the nature, range and strength of the thermodynamic forces that govern the motion of free and wall-tethered molecules. Furthermore, we develop a simple computational strategy to quantify the encounter/dissociation dynamics between the free end of a wall-tethered molecule and the surface, at the roots of binding cooperativity. This procedure allows one to pinpoint the role of internal flexibility and weak non-specific interactions on the kinetic constants of the nanobody-wall encounter and dissociation. Finally, we quantify the role and weight of rare events, which are expected to play a major role in real-life situations, such as in the immune synapse, where the binding kinetics is likely dominated by fluctuations.
Collapse
|
8
|
Astashkin AV, Li J, Zheng H, Feng C. Positional Distributions of the Tethered Modules in Nitric Oxide Synthase: Monte Carlo Calculations and Pulsed EPR Measurements. J Phys Chem A 2019; 123:7075-7086. [PMID: 31310526 DOI: 10.1021/acs.jpca.9b05388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The nitric oxide synthase (NOS) enzyme consists of multiple domains connected by flexible random coil tethers. In a catalytic cycle, the NOS domains move within the limits determined by the length and flexibility of the interdomain tethers and form docking complexes with each other. This process represents a key component of the electron transport from the flavin adenine dinucleotide/reduced nicotinamide adenine dinucleotide phosphate binding domain to the catalytic heme centers located in the oxygenase domain. Studying the conformational behavior of NOS is therefore imperative for a full understanding of the overall catalytic mechanism. In this work, we have investigated the equilibrium positional distributions of the NOS domains and the bound calmodulin (CaM) by using Monte Carlo calculations of the NOS conformations. As a main experimental reference, we have used the magnetic dipole interaction between a bifunctional spin label attached to T34C/S38C mutant CaM and the NOS heme centers, which was measured by pulsed electron paramagnetic resonance. In general, the calculations of the conformational distributions allow one to determine the range and statistics of positions occupied by the tethered protein domains, assess the crowding effect of the multiple domains on each other, evaluate the accessibility of various potential domain docking sites, and estimate the interaction energies required to achieve target populations of the docked states. In the particular application described here, we have established the specific mechanisms by which the bound CaM facilitates the flavin mononucleotide (FMN)/heme interdomain docking in NOS. We have also shown that the intersubunit FMN/heme domain docking and electron transfer in the homodimeric NOS protein are dictated by the existing structural makeup of the protein. Finally, from comparison of the calculated and experimental docking probabilities, the characteristic stabilization energies for the CaM/heme domain and the FMN domain/heme domain docking complexes have been estimated as -4.5kT and -10.5kT, respectively.
Collapse
Affiliation(s)
- Andrei V Astashkin
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | | | | | | |
Collapse
|
9
|
Antonny B, Bigay J, Mesmin B. The Oxysterol-Binding Protein Cycle: Burning Off PI(4)P to Transport Cholesterol. Annu Rev Biochem 2018; 87:809-837. [PMID: 29596003 DOI: 10.1146/annurev-biochem-061516-044924] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To maintain an asymmetric distribution of ions across membranes, protein pumps displace ions against their concentration gradient by using chemical energy. Here, we describe a functionally analogous but topologically opposite process that applies to the lipid transfer protein (LTP) oxysterol-binding protein (OSBP). This multidomain protein exchanges cholesterol for the phosphoinositide phosphatidylinositol 4-phosphate [PI(4)P] between two apposed membranes. Because of the subsequent hydrolysis of PI(4)P, this counterexchange is irreversible and contributes to the establishment of a cholesterol gradient along organelles of the secretory pathway. The facts that some natural anti-cancer molecules block OSBP and that many viruses hijack the OSBP cycle for the formation of intracellular replication organelles highlight the importance and potency of OSBP-mediated lipid exchange. The architecture of some LTPs is similar to that of OSBP, suggesting that the principles of the OSBP cycle-burning PI(4)P for the vectorial transfer of another lipid-might be general.
Collapse
Affiliation(s)
- Bruno Antonny
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Université Côte d'Azur, 06560 Valbonne, France;
| | - Joëlle Bigay
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Université Côte d'Azur, 06560 Valbonne, France;
| | - Bruno Mesmin
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Université Côte d'Azur, 06560 Valbonne, France;
| |
Collapse
|
10
|
Astashkin AV, Li J, Zheng H, Miao Y, Feng C. A docked state conformational dynamics model to explain the ionic strength dependence of FMN - heme electron transfer in nitric oxide synthase. J Inorg Biochem 2018; 184:146-155. [PMID: 29751215 DOI: 10.1016/j.jinorgbio.2018.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/09/2018] [Accepted: 03/22/2018] [Indexed: 10/17/2022]
Abstract
The FMN-heme interdomain electron transfer (IET) in nitric oxide synthase (NOS) is a key stage of the electron transport chain, which supplies the catalytic heme site(s) with the NADPH-derived electrons. While there is a recognition that this IET depends on both the electron tunneling and the conformational dynamics, the detailed mechanism remains unclear. In this work, the IET kinetics were measured by laser flash photolysis for a bidomain oxygenase/FMN (oxyFMN) construct of human inducible NOS (iNOS) over the ionic strength range from 0.1 to 0.5 M. The forward (heme → FMN, kETf) and backward (FMN → heme, kETb) intrinsic IET rate constants were determined from the analysis of the observed IET rates using the additional information regarding the conformational dynamics obtained from the FMN fluorescence lifetime measurements and theoretical estimates. Both kETf and kETb exhibit a bell-shaped dependence on the ionic strength, I, with the maximum rates corresponding to I ~ 0.2 M. This dependence was explained using a new model, which considers the effect of formation of pairs between the protein surface charged residues and solution ions on the docked state dynamics. The trial simulations of the intrinsic IET rate dependences using this model show that the data can be reproduced using reasonable energetic, structural, and chemical parameters. The suggested model can explain both the monophasic and biphasic ionic strength dependences and can be used to rationalize the interprotein/interdomain electron transfer rates for other types of protein systems where the docked state is sufficiently long-lived.
Collapse
Affiliation(s)
- Andrei V Astashkin
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Jinghui Li
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Huayu Zheng
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA; Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Yubin Miao
- Department of Radiology, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Changjian Feng
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA; Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
11
|
Goyette J, Salas CS, Coker-Gordon N, Bridge M, Isaacson SA, Allard J, Dushek O. Biophysical assay for tethered signaling reactions reveals tether-controlled activity for the phosphatase SHP-1. SCIENCE ADVANCES 2017; 3:e1601692. [PMID: 28378014 PMCID: PMC5365251 DOI: 10.1126/sciadv.1601692] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 02/09/2017] [Indexed: 06/07/2023]
Abstract
Tethered enzymatic reactions are ubiquitous in signaling networks but are poorly understood. A previously unreported mathematical analysis is established for tethered signaling reactions in surface plasmon resonance (SPR). Applying the method to the phosphatase SHP-1 interacting with a phosphorylated tether corresponding to an immune receptor cytoplasmic tail provides five biophysical/biochemical constants from a single SPR experiment: two binding rates, two catalytic rates, and a reach parameter. Tether binding increases the activity of SHP-1 by 900-fold through a binding-induced allosteric activation (20-fold) and a more significant increase in local substrate concentration (45-fold). The reach parameter indicates that this local substrate concentration is exquisitely sensitive to receptor clustering. We further show that truncation of the tether leads not only to a lower reach but also to lower binding and catalysis. This work establishes a new framework for studying tethered signaling processes and highlights the tether as a control parameter in clustered receptor signaling.
Collapse
Affiliation(s)
- Jesse Goyette
- Sir William Dunn School of Pathology, University of Oxford, Oxford, U.K
| | | | | | - Marcus Bridge
- Sir William Dunn School of Pathology, University of Oxford, Oxford, U.K
| | - Samuel A. Isaacson
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215, USA
| | - Jun Allard
- Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, Oxford, U.K
- Wolfson Centre for Mathematical Biology, University of Oxford, Oxford, U.K
| |
Collapse
|
12
|
Sakiyama Y, Mazur A, Kapinos LE, Lim RYH. Spatiotemporal dynamics of the nuclear pore complex transport barrier resolved by high-speed atomic force microscopy. NATURE NANOTECHNOLOGY 2016; 11:719-23. [PMID: 27136131 DOI: 10.1038/nnano.2016.62] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/15/2016] [Indexed: 05/27/2023]
Abstract
Nuclear pore complexes (NPCs) are biological nanomachines that mediate the bidirectional traffic of macromolecules between the cytoplasm and nucleus in eukaryotic cells. This process involves numerous intrinsically disordered, barrier-forming proteins known as phenylalanine-glycine nucleoporins (FG Nups) that are tethered inside each pore. The selective barrier mechanism has so far remained unresolved because the FG Nups have eluded direct structural analysis within NPCs. Here, high-speed atomic force microscopy is used to visualize the nanoscopic spatiotemporal dynamics of FG Nups inside Xenopus laevis oocyte NPCs at timescales of ∼100 ms. Our results show that the cytoplasmic orifice is circumscribed by highly flexible, dynamically fluctuating FG Nups that rapidly elongate and retract, consistent with the diffusive motion of tethered polypeptide chains. On this basis, intermingling FG Nups exhibit transient entanglements in the central channel, but do not cohere into a tightly crosslinked meshwork. Therefore, the basic functional form of the NPC barrier is comprised of highly dynamic FG Nups that manifest as a central plug or transporter when averaged in space and time.
Collapse
Affiliation(s)
- Yusuke Sakiyama
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Adam Mazur
- Research IT, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Larisa E Kapinos
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Roderick Y H Lim
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| |
Collapse
|
13
|
Derganc J, Čopič A. Membrane bending by protein crowding is affected by protein lateral confinement. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1152-9. [PMID: 26969088 DOI: 10.1016/j.bbamem.2016.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 02/24/2016] [Accepted: 03/01/2016] [Indexed: 02/02/2023]
Abstract
Crowding of asymmetrically-distributed membrane proteins has been recently recognized as an important factor in remodeling of biological membranes, for example during transport vesicle formation. In this paper, we theoretically analyze the effect of protein crowding on membrane bending and examine its dependence on protein size, shape, transmembrane asymmetry and lateral confinement. We consider three scenarios of protein lateral organization, which are highly relevant for cellular membranes in general: freely diffusing membrane proteins without lateral confinement, the presence of a diffusion barrier and interactions with a vesicular coat. We show that protein crowding affects vesicle formation even if the proteins are distributed symmetrically across the membrane and that this effect depends significantly on lateral confinement. The largest crowding effect is predicted for the proteins that are confined to the forming vesicle by a diffusion barrier. We calculate the bending properties of a crowded membrane and find that its spontaneous curvature depends primarily on the degree of transmembrane asymmetry, and its effective bending modulus on the type of lateral confinement. Using the example of COPII vesicle formation from the endoplasmic reticulum, we analyze the energetic cost of vesicle formation. The results provide a novel insight into the effects of lateral and transmembrane organization of membrane proteins, and can guide data interpretation and future experimental approaches.
Collapse
Affiliation(s)
- Jure Derganc
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Alenka Čopič
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, F-75013 Paris, France.
| |
Collapse
|
14
|
Storck T, Picioreanu C, Virdis B, Batstone DJ. Variable cell morphology approach for individual-based modeling of microbial communities. Biophys J 2014; 106:2037-48. [PMID: 24806936 DOI: 10.1016/j.bpj.2014.03.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/14/2014] [Accepted: 03/13/2014] [Indexed: 10/25/2022] Open
Abstract
An individual-based, mass-spring modeling framework has been developed to investigate the effect of cell properties on the structure of biofilms and microbial aggregates through Lagrangian modeling. Key features that distinguish this model are variable cell morphology described by a collection of particles connected by springs and a mechanical representation of deformable intracellular, intercellular, and cell-substratum links. A first case study describes the colony formation of a rod-shaped species on a planar substratum. This case shows the importance of mechanical interactions in a community of growing and dividing rod-shaped cells (i.e., bacilli). Cell-substratum links promote formation of mounds as opposed to single-layer biofilms, whereas filial links affect the roundness of the biofilm. A second case study describes the formation of flocs and development of external filaments in a mixed-culture activated sludge community. It is shown by modeling that distinct cell-cell links, microbial morphology, and growth kinetics can lead to excessive filamentous proliferation and interfloc bridging, possible causes for detrimental sludge bulking. This methodology has been extended to more advanced microbial morphologies such as filament branching and proves to be a very powerful tool in determining how fundamental controlling mechanisms determine diverse microbial colony architectures.
Collapse
Affiliation(s)
- Tomas Storck
- Advanced Water Management Centre, The University of Queensland, Brisbane, Australia
| | - Cristian Picioreanu
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Bernardino Virdis
- Advanced Water Management Centre, The University of Queensland, Brisbane, Australia; Centre for Microbial Electrosynthesis, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Damien J Batstone
- Advanced Water Management Centre, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
15
|
King DT, Lameignere E, Strynadka NCJ. Structural insights into the lipoprotein outer membrane regulator of penicillin-binding protein 1B. J Biol Chem 2014; 289:19245-53. [PMID: 24808177 DOI: 10.1074/jbc.m114.565879] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In bacteria, the synthesis of the protective peptidoglycan sacculus is a dynamic process that is tightly regulated at multiple levels. Recently, the lipoprotein co-factor LpoB has been found essential for the in vivo function of the major peptidoglycan synthase PBP1b in Enterobacteriaceae. Here, we reveal the crystal structures of Salmonella enterica and Escherichia coli LpoB. The LpoB protein can be modeled as a ball and tether, consisting of a disordered N-terminal region followed by a compact globular C-terminal domain. Taken together, our structural data allow us to propose new insights into LpoB-mediated regulation of peptidoglycan synthesis.
Collapse
Affiliation(s)
- Dustin T King
- From the Department of Biochemistry and Molecular Biology and Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Emilie Lameignere
- From the Department of Biochemistry and Molecular Biology and Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Natalie C J Strynadka
- From the Department of Biochemistry and Molecular Biology and Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
16
|
García-Fontana C, Corral Lugo A, Krell T. Specificity of the CheR2 methyltransferase in Pseudomonas aeruginosa is directed by a C-terminal pentapeptide in the McpB chemoreceptor. Sci Signal 2014; 7:ra34. [PMID: 24714571 DOI: 10.1126/scisignal.2004849] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Methyltransferases of the CheR family and methylesterases of the CheB family control chemoreceptor methylation, and this dynamic posttranslational modification is necessary for proper chemotaxis of bacteria. Studies with enterobacteria that contain a single CheR or CheB show that, in addition to binding at the methylation site, some chemoreceptors bind CheR or CheB through additional high-affinity sites at distinct pentapeptide sequences in the chemoreceptors. We investigated the recognition of chemoreceptors by CheR proteins in the human pathogen Pseudomonas aeruginosa PAO1. Of the four methyltransferases in PAO1, we detected an interaction only between CheR2 and the chemoreceptor methyl-accepting chemotaxis protein B (McpB), which contains the pentapeptide GWEEF at its carboxyl terminus. Furthermore, CheR2 was also the only paralog that methylated McpB in vitro, and deletion of the pentapeptide sequence abolished both the CheR2-McpB interaction and the methylation of McpB. When clustered according to protein sequence, bacterial CheR proteins form two distinct families-those that bind pentapeptide-containing chemoreceptors and those that do not. These two families are distinguished by an insertion of three amino acids in the β-subdomain of CheR. Deletion of this insertion in CheR2 prevented its interaction with and methylation of McpB. Pentapeptide-containing chemoreceptors are common to many bacteria species; thus, these short, distinct motifs may enable the specific assembly of signaling complexes that mediate different responses.
Collapse
Affiliation(s)
- Cristina García-Fontana
- 1Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Prof. Albareda, 1, 18008 Granada, Spain
| | | | | |
Collapse
|
17
|
Celler K, Hödl I, Simone A, Battin TJ, Picioreanu C. A mass-spring model unveils the morphogenesis of phototrophic Diatoma biofilms. Sci Rep 2014; 4:3649. [PMID: 24413376 PMCID: PMC3888968 DOI: 10.1038/srep03649] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/11/2013] [Indexed: 11/18/2022] Open
Abstract
Diatoms often dominate planktonic communities in the ocean and phototrophic biofilms in streams and rivers, greatly contributing to global biogeochemical fluxes. In pelagic ecosystems, these microscopic algae can form chain-like microcolonies, which seem advantageous for nutrient uptake and protect against grazing, and at the same time reduce sinking. Despite the capability of many diatoms to form chains, their contribution to the architecture of phototrophic biofilms remains elusive. Here we propose a computational model to simulate the growth and behaviour of Diatoma chains in contrasting flow environments. This mass-spring mechanical model captures the natural behaviour of Diatoma chains well, emphasising the relevance of chain growth and entanglement for biofilm morphogenesis. The model qualitatively describes formation of intricate dome-shaped structures and of dreadlock-type streamers as observed in nature in multidirectional and unidirectional flow, respectively. The proposed model is a useful tool to study the effect of fluid dynamics on biofilm morphogenesis.
Collapse
Affiliation(s)
- K. Celler
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2828 BC, Delft, The Netherlands
- Molecular Biotechnology, Institute of Biology Leiden, Sylvius Laboratories, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - I. Hödl
- Department of Limnology and Oceanography, University of Vienna, A-1090 Vienna, Austria
| | - A. Simone
- Delft University of Technology, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA, Delft, The Netherlands
| | - T. J. Battin
- Department of Limnology and Oceanography, University of Vienna, A-1090 Vienna, Austria
| | - C. Picioreanu
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2828 BC, Delft, The Netherlands
| |
Collapse
|
18
|
Pontius W, Sneddon MW, Emonet T. Adaptation dynamics in densely clustered chemoreceptors. PLoS Comput Biol 2013; 9:e1003230. [PMID: 24068908 PMCID: PMC3777915 DOI: 10.1371/journal.pcbi.1003230] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/03/2013] [Indexed: 11/18/2022] Open
Abstract
In many sensory systems, transmembrane receptors are spatially organized in large clusters. Such arrangement may facilitate signal amplification and the integration of multiple stimuli. However, this organization likely also affects the kinetics of signaling since the cytoplasmic enzymes that modulate the activity of the receptors must localize to the cluster prior to receptor modification. Here we examine how these spatial considerations shape signaling dynamics at rest and in response to stimuli. As a model system, we use the chemotaxis pathway of Escherichia coli, a canonical system for the study of how organisms sense, respond, and adapt to environmental stimuli. In bacterial chemotaxis, adaptation is mediated by two enzymes that localize to the clustered receptors and modulate their activity through methylation-demethylation. Using a novel stochastic simulation, we show that distributive receptor methylation is necessary for successful adaptation to stimulus and also leads to large fluctuations in receptor activity in the steady state. These fluctuations arise from noise in the number of localized enzymes combined with saturated modification kinetics between the localized enzymes and the receptor substrate. An analytical model explains how saturated enzyme kinetics and large fluctuations can coexist with an adapted state robust to variation in the expression levels of the pathway constituents, a key requirement to ensure the functionality of individual cells within a population. This contrasts with the well-mixed covalent modification system studied by Goldbeter and Koshland in which mean activity becomes ultrasensitive to protein abundances when the enzymes operate at saturation. Large fluctuations in receptor activity have been quantified experimentally and may benefit the cell by enhancing its ability to explore empty environments and track shallow nutrient gradients. Here we clarify the mechanistic relationship of these large fluctuations to well-studied aspects of the chemotaxis system, precise adaptation and functional robustness.
Collapse
Affiliation(s)
- William Pontius
- Department of Physics, Yale University, New Haven, Connecticut, United States of America
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Michael W. Sneddon
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Thierry Emonet
- Department of Physics, Yale University, New Haven, Connecticut, United States of America
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
19
|
Bartelli NL, Hazelbauer GL. Direct evidence that the carboxyl-terminal sequence of a bacterial chemoreceptor is an unstructured linker and enzyme tether. Protein Sci 2011; 20:1856-66. [PMID: 21858888 PMCID: PMC3267950 DOI: 10.1002/pro.719] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/07/2011] [Accepted: 08/09/2011] [Indexed: 12/21/2022]
Abstract
Sensory adaptation in bacterial chemotaxis involves reversible methylation of specific glutamyl residues on chemoreceptors. The reactions are catalyzed by a dedicated methyltransferase and dedicated methylesterase. In Escherichia coli and related organisms, control of these enzymes includes an evolutionarily recent addition of interaction with a pentapeptide activator located at the carboxyl terminus of the receptor polypeptide chain. Effective enzyme activation requires not only the pentapeptide but also a segment of the receptor polypeptide chain between that sequence and the coiled-coil body of the chemoreceptor. This segment has features consistent with a role as a flexible and presumably unstructured linker and enzyme tether, but there has been no direct information about its structure. We used site-directed spin labeling and electron paramagnetic resonance spectroscopy to characterize structural features of the carboxyl-terminal 40 residues of E. coli chemoreceptor Tar. Beginning ∼ 35 residues from the carboxyl terminus and continuing to the end of the protein, spectra of spin-labeled Tar embedded in native membranes or in reconstituted proteoliposomes, exhibited mobilities characteristic of unstructured, disordered segments. Binding of methyltransferase substantially reduced mobility for positions in or near the pentapeptide but mobility for the linker sequence remained high, being only modestly reduced in a gradient of decreasing effects for 10-15 residues, a pattern consistent with the linker providing a flexible arm that would allow enzyme diffusion within defined limits. Thus, our data identify that the carboxyl-terminal linker between the receptor body and the pentapeptide is an unstructured, disordered segment that can serve as a flexible arm and enzyme tether.
Collapse
Affiliation(s)
| | - Gerald L Hazelbauer
- Department of Biochemistry117 Schweitzer HallUniversity of MissouriColumbia, Missouri 65211
| |
Collapse
|
20
|
Reeves D, Cheveralls K, Kondev J. Regulation of biochemical reaction rates by flexible tethers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:021914. [PMID: 21929027 DOI: 10.1103/physreve.84.021914] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Indexed: 05/25/2023]
Abstract
We explore how ligand-receptor binding kinetics can be controlled by tethering the receptor to the end of a flexible polymer. The tether confines the diffusive motion of the receptor thus influencing the rate at which it captures ligands that are free in solution. We compute steady-state collision rates between ligand and receptor for this "tethered-capture" mechanism using a combination of analytic and numerical techniques. In doing so, we uncover a dimensionless control parameter, the "opacity," that determines under what conditions and to what extent a tether regulates the ligand-receptor collision rate. We compute the opacity for a number of different tethering scenarios that appear in biology and use these results to predict the affect of changing the length and flexibility of the tether on the rate at which ligands are captured from solution.
Collapse
Affiliation(s)
- Daniel Reeves
- Department of Physics, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | |
Collapse
|
21
|
Farago B, Li J, Cornilescu G, Callaway DJE, Bu Z. Activation of nanoscale allosteric protein domain motion revealed by neutron spin echo spectroscopy. Biophys J 2011; 99:3473-82. [PMID: 21081097 DOI: 10.1016/j.bpj.2010.09.058] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 09/09/2010] [Accepted: 09/30/2010] [Indexed: 11/15/2022] Open
Abstract
NHERF1 is a multidomain scaffolding protein that assembles signaling complexes, and regulates the cell surface expression and endocytic recycling of a variety of membrane proteins. The ability of the two PDZ domains in NHERF1 to assemble protein complexes is allosterically modulated by the membrane-cytoskeleton linker protein ezrin, whose binding site is located as far as 110 Ångstroms away from the PDZ domains. Here, using neutron spin echo (NSE) spectroscopy, selective deuterium labeling, and theoretical analyses, we reveal the activation of interdomain motion in NHERF1 on nanometer length-scales and on submicrosecond timescales upon forming a complex with ezrin. We show that a much-simplified coarse-grained model suffices to describe interdomain motion of a multidomain protein or protein complex. We expect that future NSE experiments will benefit by exploiting our approach of selective deuteration to resolve the specific domain motions of interest from a plethora of global translational and rotational motions. Our results demonstrate that the dynamic propagation of allosteric signals to distal sites involves changes in long-range coupled domain motions on submicrosecond timescales, and that these coupled motions can be distinguished and characterized by NSE.
Collapse
|
22
|
Proteins move! Protein dynamics and long-range allostery in cell signaling. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2011; 83:163-221. [PMID: 21570668 DOI: 10.1016/b978-0-12-381262-9.00005-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An emerging point of view in protein chemistry is that proteins are not the static objects that are displayed in textbooks but are instead dynamic actors. Protein dynamics plays a fundamental role in many diseases, and spans a large hierarchy of timescales, from picoseconds to milliseconds or even longer. Nanoscale protein domain motion on length scales comparable to protein dimensions is key to understanding how signals are relayed through multiple protein-protein interactions. A canonical example is how the scaffolding proteins NHERF1 and ezrin work in coordination to assemble crucial membrane complexes. As membrane-cytoskeleton scaffolding proteins, these provide excellent prototypes for understanding how regulatory signals are relayed through protein-protein interactions between the membrane and the cytoskeleton. Here, we review recent progress in understanding the structure and dynamics of the interaction. We describe recent novel applications of neutron spin echo spectroscopy to reveal the dynamic propagation of allosteric signals by nanoscale protein motion, and present a guide to the future study of dynamics and its application to the cure of disease.
Collapse
|
23
|
Kutys ML, Fricks J, Hancock WO. Monte Carlo analysis of neck linker extension in kinesin molecular motors. PLoS Comput Biol 2010; 6:e1000980. [PMID: 21079666 PMCID: PMC2973807 DOI: 10.1371/journal.pcbi.1000980] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 09/28/2010] [Indexed: 11/19/2022] Open
Abstract
Kinesin stepping is thought to involve both concerted conformational changes and diffusive movement, but the relative roles played by these two processes are not clear. The neck linker docking model is widely accepted in the field, but the remainder of the step – diffusion of the tethered head to the next binding site – is often assumed to occur rapidly with little mechanical resistance. Here, we investigate the effect of tethering by the neck linker on the diffusive movement of the kinesin head, and focus on the predicted behavior of motors with naturally or artificially extended neck linker domains. The kinesin chemomechanical cycle was modeled using a discrete-state Markov chain to describe chemical transitions. Brownian dynamics were used to model the tethered diffusion of the free head, incorporating resistive forces from the neck linker and a position-dependent microtubule binding rate. The Brownian dynamics and chemomechanical cycle were coupled to model processive runs consisting of many 8 nm steps. Three mechanical models of the neck linker were investigated: Constant Stiffness (a simple spring), Increasing Stiffness (analogous to a Worm-Like Chain), and Reflecting (negligible stiffness up to a limiting contour length). Motor velocities and run lengths from simulated paths were compared to experimental results from Kinesin-1 and a mutant containing an extended neck linker domain. When tethered by an increasingly stiff spring, the head is predicted to spend an unrealistically short amount of time within the binding zone, and extending the neck is predicted to increase both the velocity and processivity, contrary to experiments. These results suggest that the Worm-Like Chain is not an adequate model for the flexible neck linker domain. The model can be reconciled with experimental data if the neck linker is either much more compliant or much stiffer than generally assumed, or if weak kinesin-microtubule interactions stabilize the diffusing head near its binding site. Kinesin molecular motors provide a valuable model for uncovering the interplay between nanoscale mechanics and biochemistry at the level of single protein molecules. The mechanism by which kinesin motors “walk” along microtubules involves both conformational changes in the motor domains, or “heads”, as well as diffusive movements in which one head searches for its next binding site on the microtubule. This diffusive search is constrained by the 14 amino acid neck linker domain, which must be sufficiently flexible to allow the free head to diffuse forward, yet sufficiently stiff to enable mechanical communication to the rest of the molecule. We have modeled this diffusive search and integrated it into a stochastic model of the kinesin chemomechanical cycle. We find that modeling the neck linker as a Worm-Like Chain, the model most frequently used to describe unstructured polypeptide chains, results in motor behavior that conflicts with published experimental results for kinesins containing naturally or artificially extended neck linker domains. These results suggest that either the mechanical properties of the neck linker domain must be fundamentally reevaluated or that there are motor-microtubule interactions that stabilize the motor domain at its next binding site.
Collapse
Affiliation(s)
- Matthew L. Kutys
- Department of Bioengineering, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - John Fricks
- Department of Statistics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail: (WOH); (JF)
| | - William O. Hancock
- Department of Bioengineering, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail: (WOH); (JF)
| |
Collapse
|
24
|
Muppirala UK, Desensi S, Lybrand TP, Hazelbauer GL, Li Z. Molecular modeling of flexible arm-mediated interactions between bacterial chemoreceptors and their modification enzyme. Protein Sci 2009; 18:1702-14. [PMID: 19606502 DOI: 10.1002/pro.170] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Sensory adaptation in bacterial chemotaxis is mediated by methylation and demethylation of specific glutamyl residues in the cytoplasmic domain of chemoreceptors. Methylation is catalyzed by methyltransferase CheR. In E. coli and related organisms, methylation sufficiently rapid to be physiologically effective requires a carboxyl terminal pentapeptide sequence on the receptor being modified or, via adaptational assistance, on a neighboring homodimer in a receptor cluster. Pentapeptide-enhanced methylation is thought to be mediated by a approximately 30 residue, potentially disordered sequence that serves as a flexible arm connecting the receptor body and pentapeptide-bound methyltransferase, thus allowing diffusionally restricted enzyme to reach methyl-accepting sites. However, it was not known how many or which sites on the same or neighboring receptors were accessible to the tethered enzyme. We investigated using molecular modeling and found that, in a hexagonal array of trimers of receptor dimers, CheR tethered to a dimer of chemoreceptor Tar by its native 30-residue flexible-arm sequence could reach all methyl-accepting sites on the dimer to which it was tethered plus 48 methyl-accepting sites distributed among nine neighboring dimers, equivalent to the total sites carried by six receptors. This modeling-determined methylation neighborhood of one enzyme-binding dimer and six neighbors corresponds precisely with the experimentally identified neighborhood of seven. Thus, the experimentally observed adaptational assistance can occur by docking of pentapeptide-bound, diffusionally restricted enzyme to methyl-accepting sites on neighboring receptors. Our analysis introduces the notion that physiologically relevant adaptational assistance could occur even if only a subset of sites on a particular receptor are within reach.
Collapse
Affiliation(s)
- Usha K Muppirala
- Department of Bioinformatics and Computer Science, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
25
|
Goldman JP, Levin MD, Bray D. Signal amplification in a lattice of coupled protein kinases. MOLECULAR BIOSYSTEMS 2009; 5:1853-9. [PMID: 19768197 DOI: 10.1039/b903397a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The bacterium Escherichia coli detects chemical attractants and repellents by means of a cluster of transmembrane receptors and associated molecules. Experiments have shown that this cluster amplifies the signal about 35-fold and current models attribute this amplification to cooperative interactions between neighbouring receptors. However, when applied to the mixed population of receptors of wild-type E. coli, these models lead to indiscriminate methylation of all receptor types rather than the selective methylation observed experimentally. In this paper, we propose that cooperative interactions occur not between receptors but in the underlying lattice of CheA molecules. In our model, each CheA molecule is stimulated by its neighbours via their flexible P1 domains and modulated by the ligand binding and methylation states of associated receptors. We test this idea with detailed, molecular-based stochastic simulations and show that it gives an accurate reproduction of signalling in this system, including ligand-specific adaptation.
Collapse
Affiliation(s)
- Jacki P Goldman
- Department of Physiology, Development, and Neuroscience, University of Cambridge, UK
| | | | | |
Collapse
|
26
|
Dyer CM, Vartanian AS, Zhou H, Dahlquist FW. A molecular mechanism of bacterial flagellar motor switching. J Mol Biol 2009; 388:71-84. [PMID: 19358329 DOI: 10.1016/j.jmb.2009.02.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The high-resolution structures of nearly all the proteins that comprise the bacterial flagellar motor switch complex have been solved; yet a clear picture of the switching mechanism has not emerged. Here, we used NMR to characterize the interaction modes and solution properties of a number of these proteins, including several soluble fragments of the flagellar motor proteins FliM and FliG, and the response-regulator CheY. We find that activated CheY, the switch signal, binds to a previously unidentified region of FliM, adjacent to the FliM-FliM interface. We also find that activated CheY and FliG bind with mutual exclusivity to this site on FliM, because their respective binding surfaces partially overlap. These data support a model of CheY-driven motor switching wherein the binding of activated CheY to FliM displaces the carboxy-terminal domain of FliG (FliGC) from FliM, modulating the FliGC-MotA interaction, and causing the motor to switch rotational sense as required for chemotaxis.
Collapse
Affiliation(s)
- Collin M Dyer
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | | | | | | |
Collapse
|
27
|
Van Valen D, Haataja M, Phillips R. Biochemistry on a leash: the roles of tether length and geometry in signal integration proteins. Biophys J 2009; 96:1275-92. [PMID: 19217847 DOI: 10.1016/j.bpj.2008.10.052] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 10/31/2008] [Indexed: 01/14/2023] Open
Abstract
We use statistical mechanics and simple ideas from polymer physics to develop a quantitative model of proteins whose activity is controlled by flexibly tethered ligands and receptors. We predict how the properties of tethers influence the function of these proteins and demonstrate how their tether length dependence can be exploited to construct proteins whose integration of multiple signals can be tuned. One case study to which we apply these ideas is that of the Wiskott-Aldrich Syndrome Proteins as activators of actin polymerization. More generally, tethered ligands competing with those free in solution are common phenomena in biology, making this an important specific example of a widespread biological idea.
Collapse
Affiliation(s)
- David Van Valen
- Department of Applied Physics, California Institute of Technology, Pasadena, California, USA
| | | | | |
Collapse
|
28
|
Tindall MJ, Porter SL, Maini PK, Gaglia G, Armitage JP. Overview of Mathematical Approaches Used to Model Bacterial Chemotaxis I: The Single Cell. Bull Math Biol 2008; 70:1525-69. [DOI: 10.1007/s11538-008-9321-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Accepted: 06/13/2007] [Indexed: 10/21/2022]
|
29
|
Rational optimization and imaging in vivo of a genetically encoded optical voltage reporter. J Neurosci 2008; 28:5582-93. [PMID: 18495892 DOI: 10.1523/jneurosci.0055-08.2008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The hybrid voltage sensor (hVOS) combines membrane-targeted green fluorescent protein and the hydrophobic anion dipicrylamine (DPA) to provide a promising tool for optical recording of electrical activity from genetically defined populations of neurons. However, large fluorescence signals are obtained only at high DPA concentrations (>3 mum) that increase membrane capacitance to a level that suppresses neural activity. Here, we develop a quantitative model of the sensor to guide its optimization and achieved an approximate threefold increase in fractional fluorescence change at a lower DPA concentration of 2 mum. Using this optimized voltage reporter, we perform optical recordings of evoked activity in the Drosophila antennal lobe with millisecond temporal resolution but fail to detect action potentials, presumably because spike initiation and/or propagation are inhibited by the capacitive load added even at reduced DPA membrane densities. We evaluate strategies for potential further improvement of hVOS quantitatively and derive theoretical performance limits for optical voltage reporters in general.
Collapse
|
30
|
Abstract
The reconstitution of membrane-associated protein complexes poses significant experimental challenges. The core signaling complex in the bacterial chemotaxis system is an illustrative example: The soluble cytoplasmic signaling proteins CheW and CheA bind to heterogeneous clusters of transmembrane receptor proteins, resulting in an assembly that exhibits cooperative kinase regulation. An understanding of the basis for the cooperativity inherent in the receptor/CheW/CheA interaction, as well as other membrane phenomena, can benefit from functional studies under defined conditions. To meet this need, a simple method was developed to assemble functional complexes on lipid membranes. The method employs a receptor cytoplasmic domain fragment (CF) with a histidine tag and liposomes that contain a Ni(2+) -chelating lipid. Assemblies of CF, CheW, and CheA form spontaneously in the presence of these liposomes, which exhibit the salient biochemical functions of kinase stimulation, cooperative regulation, and CheR-mediated receptor methylation. Although ligand binding phenomena cannot be studied directly with this approach, other factors that influence kinase stimulation and receptor methylation can be explored systematically, including receptor density and competition among stimulating and inhibiting receptor domains. The template-directed assembly of proteins leads to relatively well-defined samples that are amenable to analysis by a number of methods, including light scattering, electron microscopy, and fluorescence resonance energy transfer. The approach promises to be applicable to many systems involving membrane-associated proteins.
Collapse
|
31
|
Hansen CH, Endres RG, Wingreen NS. Chemotaxis in Escherichia coli: a molecular model for robust precise adaptation. PLoS Comput Biol 2007; 4:e1. [PMID: 18179279 PMCID: PMC2174977 DOI: 10.1371/journal.pcbi.0040001] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 11/19/2007] [Indexed: 11/18/2022] Open
Abstract
The chemotaxis system in the bacterium Escherichia coli is remarkably sensitive to small relative changes in the concentrations of multiple chemical signals over a broad range of ambient concentrations. Interactions among receptors are crucial to this sensitivity as is precise adaptation, the return of chemoreceptor activity to prestimulus levels in a constant chemoeffector environment. Precise adaptation relies on methylation and demethylation of chemoreceptors by the enzymes CheR and CheB, respectively. Experiments indicate that when transiently bound to one receptor, these enzymes act on small assistance neighborhoods (AN) of five to seven receptor homodimers. In this paper, we model a strongly coupled complex of receptors including dynamic CheR and CheB acting on ANs. The model yields sensitive response and precise adaptation over several orders of magnitude of attractant concentrations and accounts for different responses to aspartate and serine. Within the model, we explore how the precision of adaptation is limited by small AN size as well as by CheR and CheB kinetics (including dwell times, saturation, and kinetic differences among modification sites) and how these kinetics contribute to noise in complex activity. The robustness of our dynamic model for precise adaptation is demonstrated by randomly varying biochemical parameters. Bacteria swim in relatively straight lines and change directions through tumbling. In the process of chemotaxis, a network of receptors and other proteins controls the tumbling frequency to direct an otherwise random walk toward nutrients and away from repellents. Receptor clustering and adaptation to persistent stimuli through covalent modification allow chemotaxis to be sensitive over a large range of ambient concentrations. The individual components of the chemotaxis network are well characterized, and signaling measurements by fluorescence microscopy quantify the network's response, making the system well suited for modeling and analysis. In this paper, we expand upon a previous model based on experiments indicating that the covalent modifications required for adaptation occur through the action of enzymes on groups of neighboring receptors, referred to as assistance neighborhoods. Simulations show that our proposed molecular model of a strongly coupled complex of receptors produces accurate responses to different stimuli and is robust to parameter variation. Within this model, the correct adaptation response is limited by small assistance-neighborhood size as well as enzyme kinetics. We also explore how these kinetics contribute to noise in the chemotactic response.
Collapse
Affiliation(s)
- Clinton H Hansen
- Department of Physics, Princeton University, Princeton, New Jersey, United States of America
| | - Robert G Endres
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|