1
|
Kacher J, Sokolova OS, Tarek M. A Deep Learning Approach to Uncover Voltage-Gated Ion Channels' Intermediate States. J Phys Chem B 2024; 128:8724-8736. [PMID: 39213618 DOI: 10.1021/acs.jpcb.4c03182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Owing to recent advancements in cryo-electron microscopy, voltage-gated ion channels have gained a greater comprehension of their structural characteristics. However, a significant enigma remains unsolved for a large majority of these channels: their gating mechanism. This mechanism, which encompasses the conformational changes between open and closed states, is pivotal to their proper functioning. Beyond the binary states of open and closed, an ensemble of intermediate states defines the transition path in-between. Due to the lack of experimental data, one might resort to molecular dynamics simulations as an alternative to decipher these states and the transitions between them. However, the high-energy barriers and the colossal time scales involved hinder access to the latter. We present here an application of deep learning as a reliable pipeline for a comprehensive exploration of voltage-gated ion channel conformational rearrangements during gating. We showcase the pipeline performance specifically on the Kv1.2 voltage sensor domain and confront the results with existing data. We demonstrate how our physics-based deep learning approach contributes to the theoretical understanding of these channels and how it might provide further insights into the exploration of channelopathies.
Collapse
Affiliation(s)
- Julia Kacher
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France
| | - Olga S Sokolova
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia
- Shenzhen MSU-BIT University, 1 International University Park Road, Dayun New Town, Longgang District, Shenzhen 518172, China
| | - Mounir Tarek
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France
| |
Collapse
|
2
|
Exploring the Conformational Changes Induced by Nanosecond Pulsed Electric Fields on the Voltage Sensing Domain of a Ca 2+ Channel. MEMBRANES 2021; 11:membranes11070473. [PMID: 34206827 PMCID: PMC8303878 DOI: 10.3390/membranes11070473] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 12/21/2022]
Abstract
Nanosecond Pulsed Electric Field (nsPEF or Nano Pulsed Stimulation, NPS) is a technology that delivers a series of pulses of high-voltage electric fields during a short period of time, in the order of nanoseconds. The main consequence of nsPEF upon cells is the formation of nanopores, which is followed by the gating of ionic channels. Literature is conclusive in that the physiological mechanisms governing ion channel gating occur in the order of milliseconds. Hence, understanding how these channels can be activated by a nsPEF would be an important step in order to conciliate fundamental biophysical knowledge with improved nsPEF applications. To get insights on both the kinetics and thermodynamics of ion channel gating induced by nsPEF, in this work, we simulated the Voltage Sensing Domain (VSD) of a voltage-gated Ca2+ channel, inserted in phospholipidic membranes with different concentrations of cholesterol. We studied the conformational changes of the VSD under a nsPEF mimicked by the application of a continuous electric field lasting 50 ns with different intensities as an approach to reveal novel mechanisms leading to ion channel gating in such short timescales. Our results show that using a membrane with high cholesterol content, under an nsPEF of 50 ns and E→ = 0.2 V/nm, the VSD undergoes major conformational changes. As a whole, our work supports the notion that membrane composition may act as an allosteric regulator, specifically cholesterol content, which is fundamental for the response of the VSD to an external electric field. Moreover, changes on the VSD structure suggest that the gating of voltage-gated Ca2+ channels by a nsPEF may be due to major conformational changes elicited in response to the external electric field. Finally, the VSD/cholesterol-bilayer under an nsPEF of 50 ns and E→ = 0.2 V/nm elicits a pore formation across the VSD suggesting a new non-reported effect of nsPEF into cells, which can be called a “protein mediated electroporation”.
Collapse
|
3
|
Groome JR, Bayless-Edwards L. Roles for Countercharge in the Voltage Sensor Domain of Ion Channels. Front Pharmacol 2020; 11:160. [PMID: 32180723 PMCID: PMC7059764 DOI: 10.3389/fphar.2020.00160] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated ion channels share a common structure typified by peripheral, voltage sensor domains. Their S4 segments respond to alteration in membrane potential with translocation coupled to ion permeation through a central pore domain. The mechanisms of gating in these channels have been intensely studied using pioneering methods such as measurement of charge displacement across a membrane, sequencing of genes coding for voltage-gated ion channels, and the development of all-atom molecular dynamics simulations using structural information from prokaryotic and eukaryotic channel proteins. One aspect of this work has been the description of the role of conserved negative countercharges in S1, S2, and S3 transmembrane segments to promote sequential salt-bridge formation with positively charged residues in S4 segments. These interactions facilitate S4 translocation through the lipid bilayer. In this review, we describe functional and computational work investigating the role of these countercharges in S4 translocation, voltage sensor domain hydration, and in diseases resulting from countercharge mutations.
Collapse
Affiliation(s)
- James R. Groome
- Department of Biological Sciences, Idaho State University, Pocatello, ID, United States
| | - Landon Bayless-Edwards
- Department of Biological Sciences, Idaho State University, Pocatello, ID, United States
- Oregon Health and Sciences University School of Medicine, Portland, OR, United States
| |
Collapse
|
4
|
Fleetwood O, Kasimova MA, Westerlund AM, Delemotte L. Molecular Insights from Conformational Ensembles via Machine Learning. Biophys J 2020; 118:765-780. [PMID: 31952811 PMCID: PMC7002924 DOI: 10.1016/j.bpj.2019.12.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/21/2019] [Accepted: 12/16/2019] [Indexed: 01/04/2023] Open
Abstract
Biomolecular simulations are intrinsically high dimensional and generate noisy data sets of ever-increasing size. Extracting important features from the data is crucial for understanding the biophysical properties of molecular processes, but remains a big challenge. Machine learning (ML) provides powerful dimensionality reduction tools. However, such methods are often criticized as resembling black boxes with limited human-interpretable insight. We use methods from supervised and unsupervised ML to efficiently create interpretable maps of important features from molecular simulations. We benchmark the performance of several methods, including neural networks, random forests, and principal component analysis, using a toy model with properties reminiscent of macromolecular behavior. We then analyze three diverse biological processes: conformational changes within the soluble protein calmodulin, ligand binding to a G protein-coupled receptor, and activation of an ion channel voltage-sensor domain, unraveling features critical for signal transduction, ligand binding, and voltage sensing. This work demonstrates the usefulness of ML in understanding biomolecular states and demystifying complex simulations.
Collapse
Affiliation(s)
- Oliver Fleetwood
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Marina A Kasimova
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Annie M Westerlund
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Lucie Delemotte
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden.
| |
Collapse
|
5
|
Two-stage electro-mechanical coupling of a K V channel in voltage-dependent activation. Nat Commun 2020; 11:676. [PMID: 32015334 PMCID: PMC6997178 DOI: 10.1038/s41467-020-14406-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/18/2019] [Indexed: 01/04/2023] Open
Abstract
In voltage-gated potassium (KV) channels, the voltage-sensing domain (VSD) undergoes sequential activation from the resting state to the intermediate state and activated state to trigger pore opening via electro-mechanical (E-M) coupling. However, the spatial and temporal details underlying E-M coupling remain elusive. Here, utilizing KV7.1's unique two open states, we report a two-stage E-M coupling mechanism in voltage-dependent gating of KV7.1 as triggered by VSD activations to the intermediate and then activated state. When the S4 segment transitions to the intermediate state, the hand-like C-terminus of the VSD-pore linker (S4-S5L) interacts with the pore in the same subunit. When S4 then proceeds to the fully-activated state, the elbow-like hinge between S4 and S4-S5L engages with the pore of the neighboring subunit to activate conductance. This two-stage hand-and-elbow gating mechanism elucidates distinct tissue-specific modulations, pharmacology, and disease pathogenesis of KV7.1, and likely applies to numerous domain-swapped KV channels.
Collapse
|
6
|
Chen H, Pan J, Gandhi DM, Dockendorff C, Cui Q, Chanda B, Henzler-Wildman KA. NMR Structural Analysis of Isolated Shaker Voltage-Sensing Domain in LPPG Micelles. Biophys J 2019; 117:388-398. [PMID: 31301804 DOI: 10.1016/j.bpj.2019.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/20/2019] [Indexed: 11/25/2022] Open
Abstract
The voltage-sensing domain (VSD) is a conserved structural module that regulates the gating of voltage-dependent ion channels in response to a change in membrane potential. Although the structures of many VSD-containing ion channels are now available, our understanding of the structural dynamics associated with gating transitions remains limited. To probe dynamics with site-specific resolution, we utilized NMR spectroscopy to characterize the VSD derived from Shaker potassium channel in 1-palmitoyl-2-hydroxy-sn-glycero-3-phospho-(1'-rac-glycerol) (LPPG) micelles. The backbone dihedral angles predicted based on secondary chemical shifts using torsion angle likeliness obtained from shift (TALOS+) showed that the Shaker-VSD shares many structural features with the homologous Kv1.2/2.1 chimera, including a transition from α-helix to 310 helix in the C-terminal portion of the fourth transmembrane helix. Nevertheless, there are clear differences between the Shaker-VSD and Kv1.2/2.1 chimera in the S2-S3 linker and S3 transmembrane region, where the organization of secondary structure elements in Shaker-VSD appears to more closely resemble the KvAP-VSD. Comparison of microsecond-long molecular dynamics simulations of Kv 1.2-VSD in LPPG micelles and a 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) bilayer showed that LPPG micelles do not induce significant structural distortion in the isolated voltage sensor. To assess the integrity of the tertiary fold, we directly probed the binding of BrMT analog 2-[2-({[3-(2-amino-ethyl)-6-bromo-1H-indol-2-yl]methoxy}k7methyl)-6-bromo-1H-indol-3-yl]ethan-1-amine (BrET), a gating modifier toxin, and identified the location of the putative binding site. Our results suggest that the Shaker-VSD in LPPG micelles is in a native-like fold and is likely to provide valuable insights into the dynamics of voltage-gating and its regulation.
Collapse
Affiliation(s)
- Hongbo Chen
- Graduate Program in Biophysics, Madison, Wisconsin; Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Junkun Pan
- Department of Neuroscience, Madison, Wisconsin; Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Disha M Gandhi
- Departments of Chemistry, Marquette University, Milwaukee, Wisconsin
| | - Chris Dockendorff
- Departments of Chemistry, Marquette University, Milwaukee, Wisconsin
| | - Qiang Cui
- Departments of Chemistry, Physics, Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Baron Chanda
- Graduate Program in Biophysics, Madison, Wisconsin; Department of Neuroscience, Madison, Wisconsin; Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin.
| | - Katherine A Henzler-Wildman
- Graduate Program in Biophysics, Madison, Wisconsin; Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
7
|
Stock L, Hosoume J, Cirqueira L, Treptow W. Binding of the general anesthetic sevoflurane to ion channels. PLoS Comput Biol 2018; 14:e1006605. [PMID: 30475796 PMCID: PMC6283617 DOI: 10.1371/journal.pcbi.1006605] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/06/2018] [Accepted: 10/26/2018] [Indexed: 11/21/2022] Open
Abstract
The direct-site hypothesis assumes general anesthetics bind ion channels to impact protein equilibrium and function, inducing anesthesia. Despite advancements in the field, a first principle all-atom demonstration of this structure-function premise is still missing. We focus on the clinically used sevoflurane interaction to anesthetic-sensitive Kv1.2 mammalian channel to resolve if sevoflurane binds protein’s well-characterized open and closed structures in a conformation-dependent manner to shift channel equilibrium. We employ an innovative approach relying on extensive docking calculations and free-energy perturbation of all potential binding sites revealed by the latter, and find sevoflurane binds open and closed structures at multiple sites under complex saturation and concentration effects. Results point to a non-trivial interplay of site and conformation-dependent modes of action involving distinct binding sites that increase channel open-probability at diluted ligand concentrations. Given the challenge in exploring more complex processes potentially impacting channel-anesthetic interaction, the result is revealing as it demonstrates the process of multiple anesthetic binding events alone may account for open-probability shifts recorded in measurements. General anesthetics are central to modern medicine, yet their microscopic mechanism of action is still unknown. Here, we demonstrate that a clinically used anesthetic, sevoflurane, binds the mammalian voltage-gated potassium channel Kv1.2 effecting a shift in its open probability, even at low concentrations. The results, supported by recent experimental measurements, are promising as they demonstrate that the molecular process of direct binding of anesthetic to ion channels play a relevant role in anesthesia.
Collapse
Affiliation(s)
- Letícia Stock
- Laboratório de Biologia Teórica e Computacional (LBTC), Universidade de Brasília DF, Brasil
| | - Juliana Hosoume
- Laboratório de Biologia Teórica e Computacional (LBTC), Universidade de Brasília DF, Brasil
| | - Leonardo Cirqueira
- Laboratório de Biologia Teórica e Computacional (LBTC), Universidade de Brasília DF, Brasil
| | - Werner Treptow
- Laboratório de Biologia Teórica e Computacional (LBTC), Universidade de Brasília DF, Brasil
- * E-mail:
| |
Collapse
|
8
|
Oakes V, Domene C. Capturing the Molecular Mechanism of Anesthetic Action by Simulation Methods. Chem Rev 2018; 119:5998-6014. [DOI: 10.1021/acs.chemrev.8b00366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Victoria Oakes
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Carmen Domene
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
9
|
Abstract
Voltage-gated sodium channels belong to the superfamily of voltage-gated cation channels. Their structure is based on domains comprising a voltage sensor domain (S1-S4 segments) and a pore domain (S5-S6 segments). Mutations in positively charged residues of the S4 segments may allow protons or cations to pass directly through the gating pore constriction of the voltage sensor domain; these anomalous currents are referred to as gating pore or omega (ω) currents. In the skeletal muscle disorder hypokalemic periodic paralysis, and in arrhythmic dilated cardiomyopathy, inherited mutations of S4 arginine residues promote omega currents that have been shown to be a contributing factor in the pathogenesis of these sodium channel disorders. Characterization of gating pore currents in these channelopathies and with artificial mutations has been possible by measuring the voltage-dependence and selectivity of these leak currents. The basis of gating pore currents and the structural basis of S4 movement through the gating pore has also been studied extensively with molecular dynamics. These simulations have provided valuable insight into the nature of S4 translocation and the physical basis for the effects of mutations that promote permeation of protons or cations through the gating pore.
Collapse
Affiliation(s)
- J R Groome
- Department of Biological Sciences, Idaho State University, Pocatello, ID, 83209, USA.
| | - A Moreau
- Institut NeuroMyogene, ENS de Lyon, Site MONOD, Lyon, France
| | - L Delemotte
- Science for Life Laboratory, Department of Physics, KTH Royal Institute of Technology, Box 1031, 171 21, Solna, Sweden
| |
Collapse
|
10
|
Zhekova HR, Ngo V, da Silva MC, Salahub D, Noskov S. Selective ion binding and transport by membrane proteins – A computational perspective. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Jorgensen C, Darré L, Oakes V, Torella R, Pryde D, Domene C. Lateral Fenestrations in K(+)-Channels Explored Using Molecular Dynamics Simulations. Mol Pharm 2016; 13:2263-73. [PMID: 27173896 DOI: 10.1021/acs.molpharmaceut.5b00942] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Potassium channels are of paramount physiological and pathological importance and therefore constitute significant drug targets. One of the keys to rationalize the way drugs modulate ion channels is to understand the ability of such small molecules to access their respective binding sites, from which they can exert an activating or inhibitory effect. Many computational studies have probed the energetics of ion permeation, and the mechanisms of voltage gating, but little is known about the role of fenestrations as possible mediators of drug entry in potassium channels. To explore the existence, structure, and conformational dynamics of transmembrane fenestrations accessible by drugs in potassium channels, molecular dynamics simulation trajectories were analyzed from three potassium channels: the open state voltage-gated channel Kv1.2, the G protein-gated inward rectifying channel GIRK2 (Kir3.2), and the human two-pore domain TWIK-1 (K2P1.1). The main results of this work were the identification of the sequence identity of four main lateral fenestrations of similar length and with bottleneck radius in the range of 0.9-2.4 Å for this set of potassium channels. It was found that the fenestrations in Kv1.2 and Kir3.2 remain closed to the passage of molecules larger than water. In contrast, in the TWIK-1 channel, both open and closed fenestrations are sampled throughout the simulation, with bottleneck radius shown to correlate with the random entry of lipid membrane molecules into the aperture of the fenestrations. Druggability scoring function analysis of the fenestration regions suggests that Kv and Kir channels studied are not druggable in practice due to steric constraining of the fenestration bottleneck. A high (>50%) fenestration sequence identity was found in each potassium channel subfamily studied, Kv1, Kir3, and K2P1. Finally, the reported fenestration sequence of TWIK-1 compared favorably with another channel, K2P channel TREK-2, reported to possess open fenestrations, suggesting that K2P channels could be druggable via fenestrations, for which we reported atomistic detail of the fenestration region, including the flexible residues M260 and L264 that interact with POPC membrane in a concerted fashion with the aperture and closure of the fenestrations.
Collapse
Affiliation(s)
- Christian Jorgensen
- Department of Chemistry, King's College London , Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Leonardo Darré
- Department of Chemistry, King's College London , Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Victoria Oakes
- Department of Chemistry, King's College London , Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Rubben Torella
- Pfizer Neuroscience and Pain Research Unit, Worldwide Medicinal Chemistry , Portway Building, Granta Park, Great Abington, Cambridge CB21 6GS, U.K
| | - David Pryde
- Pfizer Neuroscience and Pain Research Unit, Worldwide Medicinal Chemistry , Portway Building, Granta Park, Great Abington, Cambridge CB21 6GS, U.K
| | - Carmen Domene
- Department of Chemistry, King's College London , Britannia House, 7 Trinity Street, London SE1 1DB, U.K.,Chemistry Research Laboratory, University of Oxford , Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
12
|
Yazdi S, Stein M, Elinder F, Andersson M, Lindahl E. The Molecular Basis of Polyunsaturated Fatty Acid Interactions with the Shaker Voltage-Gated Potassium Channel. PLoS Comput Biol 2016; 12:e1004704. [PMID: 26751683 PMCID: PMC4709198 DOI: 10.1371/journal.pcbi.1004704] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 12/11/2015] [Indexed: 11/19/2022] Open
Abstract
Voltage-gated potassium (KV) channels are membrane proteins that respond to changes in membrane potential by enabling K+ ion flux across the membrane. Polyunsaturated fatty acids (PUFAs) induce channel opening by modulating the voltage-sensitivity, which can provide effective treatment against refractory epilepsy by means of a ketogenic diet. While PUFAs have been reported to influence the gating mechanism by electrostatic interactions to the voltage-sensor domain (VSD), the exact PUFA-protein interactions are still elusive. In this study, we report on the interactions between the Shaker KV channel in open and closed states and a PUFA-enriched lipid bilayer using microsecond molecular dynamics simulations. We determined a putative PUFA binding site in the open state of the channel located at the protein-lipid interface in the vicinity of the extracellular halves of the S3 and S4 helices of the VSD. In particular, the lipophilic PUFA tail covered a wide range of non-specific hydrophobic interactions in the hydrophobic central core of the protein-lipid interface, while the carboxylic head group displayed more specific interactions to polar/charged residues at the extracellular regions of the S3 and S4 helices, encompassing the S3-S4 linker. Moreover, by studying the interactions between saturated fatty acids (SFA) and the Shaker KV channel, our study confirmed an increased conformational flexibility in the polyunsaturated carbon tails compared to saturated carbon chains, which may explain the specificity of PUFA action on channel proteins.
Collapse
Affiliation(s)
- Samira Yazdi
- Max Planck Institute for Dynamics of Complex Technical Systems, Molecular Simulations and Design Group, Magdeburg, Germany
| | - Matthias Stein
- Max Planck Institute for Dynamics of Complex Technical Systems, Molecular Simulations and Design Group, Magdeburg, Germany
| | - Fredrik Elinder
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Magnus Andersson
- Science for Life Laboratory, Stockholm and Uppsala, Stockholm, Sweden
- Theoretical and Computational Biophysics, Department of Theoretical Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Erik Lindahl
- Science for Life Laboratory, Stockholm and Uppsala, Stockholm, Sweden
- Theoretical and Computational Biophysics, Department of Theoretical Physics, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
13
|
Ing C, Pomès R. Simulation Studies of Ion Permeation and Selectivity in Voltage-Gated Sodium Channels. CURRENT TOPICS IN MEMBRANES 2016; 78:215-60. [DOI: 10.1016/bs.ctm.2016.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
14
|
Positive Allosteric Modulation of Kv Channels by Sevoflurane: Insights into the Structural Basis of Inhaled Anesthetic Action. PLoS One 2015; 10:e0143363. [PMID: 26599217 PMCID: PMC4657974 DOI: 10.1371/journal.pone.0143363] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 11/04/2015] [Indexed: 11/19/2022] Open
Abstract
Inhalational general anesthesia results from the poorly understood interactions of haloethers with multiple protein targets, which prominently includes ion channels in the nervous system. Previously, we reported that the commonly used inhaled anesthetic sevoflurane potentiates the activity of voltage-gated K+ (Kv) channels, specifically, several mammalian Kv1 channels and the Drosophila K-Shaw2 channel. Also, previous work suggested that the S4-S5 linker of K-Shaw2 plays a role in the inhibition of this Kv channel by n-alcohols and inhaled anesthetics. Here, we hypothesized that the S4-S5 linker is also a determinant of the potentiation of Kv1.2 and K-Shaw2 by sevoflurane. Following functional expression of these Kv channels in Xenopus oocytes, we found that converse mutations in Kv1.2 (G329T) and K-Shaw2 (T330G) dramatically enhance and inhibit the potentiation of the corresponding conductances by sevoflurane, respectively. Additionally, Kv1.2-G329T impairs voltage-dependent gating, which suggests that Kv1.2 modulation by sevoflurane is tied to gating in a state-dependent manner. Toward creating a minimal Kv1.2 structural model displaying the putative sevoflurane binding sites, we also found that the positive modulations of Kv1.2 and Kv1.2-G329T by sevoflurane and other general anesthetics are T1-independent. In contrast, the positive sevoflurane modulation of K-Shaw2 is T1-dependent. In silico docking and molecular dynamics-based free-energy calculations suggest that sevoflurane occupies distinct sites near the S4-S5 linker, the pore domain and around the external selectivity filter. We conclude that the positive allosteric modulation of the Kv channels by sevoflurane involves separable processes and multiple sites within regions intimately involved in channel gating.
Collapse
|
15
|
Nishizawa M, Nishizawa K. Free energy of helical transmembrane peptide dimerization in OPLS-AA/Berger force field simulations: inaccuracy and implications for partner-specific Lennard-Jones parameters between peptides and lipids. MOLECULAR SIMULATION 2015. [DOI: 10.1080/08927022.2015.1112006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Moreau A, Gosselin-Badaroudine P, Delemotte L, Klein ML, Chahine M. Gating pore currents are defects in common with two Nav1.5 mutations in patients with mixed arrhythmias and dilated cardiomyopathy. ACTA ACUST UNITED AC 2015; 145:93-106. [PMID: 25624448 PMCID: PMC4306709 DOI: 10.1085/jgp.201411304] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nav1.5 channels bearing voltage-sensor domain mutations associated with atypical cardiac arrhythmias and dilated cardiomyopathy generate gating pore currents. The gating pore current, also called omega current, consists of a cation leak through the typically nonconductive voltage-sensor domain (VSD) of voltage-gated ion channels. Although the study of gating pore currents has refined our knowledge of the structure and the function of voltage-gated ion channels, their implication in cardiac disorders has not been established. Two Nav1.5 mutations (R222Q and R225W) located in the VSD are associated with atypical clinical phenotypes involving complex arrhythmias and dilated cardiomyopathy. Using the patch-clamp technique, in silico mutagenesis, and molecular dynamic simulations, we tested the hypothesis that these two mutations may generate gating pore currents, potentially accounting for their clinical phenotypes. Our findings suggest that the gating pore current generated by the R222Q and R225W mutations could constitute the underlying pathological mechanism that links Nav1.5 VSD mutations with human cardiac arrhythmias and dilatation of cardiac chambers.
Collapse
Affiliation(s)
- Adrien Moreau
- Centre de Recherche de L'Institut Universitaire en Santé Mentale de Québec, Québec City, Québec G1J 2G3, Canada
| | - Pascal Gosselin-Badaroudine
- Centre de Recherche de L'Institut Universitaire en Santé Mentale de Québec, Québec City, Québec G1J 2G3, Canada
| | - Lucie Delemotte
- Institute of Computational Molecular Science, Temple University, Philadelphia, PA 19122
| | - Michael L Klein
- Institute of Computational Molecular Science, Temple University, Philadelphia, PA 19122
| | - Mohamed Chahine
- Centre de Recherche de L'Institut Universitaire en Santé Mentale de Québec, Québec City, Québec G1J 2G3, Canada Department of Medicine, Université Laval, Québec City, Québec G1K 7P4, Canada
| |
Collapse
|
17
|
Cournia Z, Allen TW, Andricioaei I, Antonny B, Baum D, Brannigan G, Buchete NV, Deckman JT, Delemotte L, del Val C, Friedman R, Gkeka P, Hege HC, Hénin J, Kasimova MA, Kolocouris A, Klein ML, Khalid S, Lemieux MJ, Lindow N, Roy M, Selent J, Tarek M, Tofoleanu F, Vanni S, Urban S, Wales DJ, Smith JC, Bondar AN. Membrane Protein Structure, Function, and Dynamics: a Perspective from Experiments and Theory. J Membr Biol 2015; 248:611-40. [PMID: 26063070 PMCID: PMC4515176 DOI: 10.1007/s00232-015-9802-0] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/26/2015] [Indexed: 01/05/2023]
Abstract
Membrane proteins mediate processes that are fundamental for the flourishing of biological cells. Membrane-embedded transporters move ions and larger solutes across membranes; receptors mediate communication between the cell and its environment and membrane-embedded enzymes catalyze chemical reactions. Understanding these mechanisms of action requires knowledge of how the proteins couple to their fluid, hydrated lipid membrane environment. We present here current studies in computational and experimental membrane protein biophysics, and show how they address outstanding challenges in understanding the complex environmental effects on the structure, function, and dynamics of membrane proteins.
Collapse
Affiliation(s)
- Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527, Athens, Greece
| | - Toby W. Allen
- School of Applied Sciences & Health Innovations Research Institute, RMIT University, GPO Box 2476, Melbourne, Vic, 3001, Australia; and Department of Chemistry, University of California, Davis. Davis, CA 95616, USA
| | - Ioan Andricioaei
- Department of Chemistry, University of California, Irvine, CA 92697
| | - Bruno Antonny
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis and Centre National de la Recherche Scientifique, UMR 7275, 06560 Valbonne, France
| | - Daniel Baum
- Department of Visualization and Data Analysis, Zuse Institute Berlin, Takustrasse 7, D-14195 Berlin, Germany
| | - Grace Brannigan
- Center for Computational and Integrative Biology and Department of Physics, Rutgers University-Camden, Camden, NJ, USA
| | - Nicolae-Viorel Buchete
- School of Physics and Complex and Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Lucie Delemotte
- Institute of Computational and Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Coral del Val
- Department of Artificial Intelligence, University of Granada, E-18071 Granada, Spain
| | - Ran Friedman
- Linnæus University, Department of Chemistry and Biomedical Sciences & Centre for Biomaterials Chemistry, 391 82 Kalmar, Sweden
| | - Paraskevi Gkeka
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527, Athens, Greece
| | - Hans-Christian Hege
- Department of Visualization and Data Analysis, Zuse Institute Berlin, Takustrasse 7, D-14195 Berlin, Germany
| | - Jérôme Hénin
- Laboratoire de Biochimie Théorique, IBPC and CNRS, Paris, France
| | - Marina A. Kasimova
- Université de Lorraine, SRSMC, UMR 7565, Vandoeuvre-lès-Nancy, F-54500, France
- Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Antonios Kolocouris
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Athens, Panepistimioupolis-Zografou, 15771 Athens, Greece
| | - Michael L. Klein
- Institute of Computational and Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Syma Khalid
- Department of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - M. Joanne Lemieux
- Department of Biochemistry, Faculty of Medicine & Dentistry, Membrane Protein Disease Research Group, and Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7
| | - Norbert Lindow
- Department of Visualization and Data Analysis, Zuse Institute Berlin, Takustrasse 7, D-14195 Berlin, Germany
| | - Mahua Roy
- Department of Chemistry, University of California, Irvine
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, IMIM (Hospital del Mar Medical Research Institute), Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Mounir Tarek
- Université de Lorraine, SRSMC, UMR 7565, Vandoeuvre-lès-Nancy, F-54500, France
- CNRS, SRSMC, UMR 7565, Vandoeuvre-lès-Nancy, F-54500, France
| | - Florentina Tofoleanu
- School of Physics and Complex and Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| | - Stefano Vanni
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis and Centre National de la Recherche Scientifique, UMR 7275, 06560 Valbonne, France
| | - Sinisa Urban
- Johns Hopkins University School of Medicine, Howard Hughes Medical Institute, Department of Molecular Biology & Genetics, 725 N. Wolfe Street, 507 Preclinical Teaching Building, Baltimore, MD 21205, USA
| | - David J. Wales
- University Chemical Laboratories, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Jeremy C. Smith
- Oak Ridge National Laboratory, PO BOX 2008 MS6309, Oak Ridge, TN 37831-6309, USA
| | - Ana-Nicoleta Bondar
- Theoretical Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| |
Collapse
|
18
|
Voltage Sensing in Membranes: From Macroscopic Currents to Molecular Motions. J Membr Biol 2015; 248:419-30. [PMID: 25972106 DOI: 10.1007/s00232-015-9805-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/24/2015] [Indexed: 01/06/2023]
Abstract
Voltage-sensing domains (VSDs) are integral membrane protein units that sense changes in membrane electric potential, and through the resulting conformational changes, regulate a specific function. VSDs confer voltage-sensitivity to a large superfamily of membrane proteins that includes voltage-gated Na[Formula: see text], K[Formula: see text], Ca[Formula: see text] ,and H[Formula: see text] selective channels, hyperpolarization-activated cyclic nucleotide-gated channels, and voltage-sensing phosphatases. VSDs consist of four transmembrane segments (termed S1 through S4). Their most salient structural feature is the highly conserved positions for charged residues in their sequences. S4 exhibits at least three conserved triplet repeats composed of one basic residue (mostly arginine) followed by two hydrophobic residues. These S4 basic side chains participate in a state-dependent internal salt-bridge network with at least four acidic residues in S1-S3. The signature of voltage-dependent activation in electrophysiology experiments is a transient current (termed gating or sensing current) upon a change in applied membrane potential as the basic side chains in S4 move across the membrane electric field. Thus, the unique structural features of the VSD architecture allow for competing requirements: maintaining a series of stable transmembrane conformations, while allowing charge motion, as briefly reviewed here.
Collapse
|
19
|
Li Y, Gong H. Theoretical and simulation studies on voltage-gated sodium channels. Protein Cell 2015; 6:413-22. [PMID: 25894089 PMCID: PMC4444806 DOI: 10.1007/s13238-015-0152-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/05/2015] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium (Nav) channels are indispensable membrane elements for the generation and propagation of electric signals in excitable cells. The successes in the crystallographic studies on prokaryotic Nav channels in recent years greatly promote the mechanistic investigation of these proteins and their eukaryotic counterparts. In this paper, we mainly review the progress in computational studies, especially the simulation studies, on these proteins in the past years.
Collapse
Affiliation(s)
- Yang Li
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Haipeng Gong
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
20
|
Conformational dynamics of shaker-type Kv1.1 ion channel in open, closed, and two mutated states. J Membr Biol 2014; 248:241-55. [PMID: 25451198 DOI: 10.1007/s00232-014-9764-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 11/21/2014] [Indexed: 10/24/2022]
Abstract
The dynamic properties of shaker-type Kv1.1 ion channel in its open, closed, & two mutated (E325D & V408A) states embedded in DPPC membrane have been investigated using all-atom force field-based MD simulation. Here, we represent the detailed channel stability, gating environment of charge-carrying residues, salt bridge interaction among the voltage-sensing domains (VSDs), movement of S4 helix, and ion conduction of pore. At positive potential, the S4 helix undergoes lateral fluctuations in accordance with their gating motions found in every model. During transition from closed to active state conformation, charged residues of S4 move "up" across the membrane with an average tilt angle difference of 24°, which is more consistent with the paddle model of channel gating. The E325D mutation at C-terminal end of S4-S5 helical linker leads the channel to a rapid activated state by pushing the gating charge residues upward beside the VSDs resulting in more prominent tilt of S4. Similarly in V408A mutant model, disruption of hydrophobic gate at S6 C-terminal end takes place, which causes the violation of channel-active conformation by bringing the C-terminal end of S4 to its corresponding resting state. The ion permeation is observed only in open-state conformation.
Collapse
|
21
|
Palovcak E, Delemotte L, Klein ML, Carnevale V. Evolutionary imprint of activation: the design principles of VSDs. ACTA ACUST UNITED AC 2014; 143:145-56. [PMID: 24470486 PMCID: PMC4001776 DOI: 10.1085/jgp.201311103] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Voltage-sensor domains (VSDs) are modular biomolecular machines that transduce electrical signals in cells through a highly conserved activation mechanism. Here, we investigate sequence-function relationships in VSDs with approaches from information theory and probabilistic modeling. Specifically, we collect over 6,600 unique VSD sequences from diverse, long-diverged phylogenetic lineages and relate the statistical properties of this ensemble to functional constraints imposed by evolution. The VSD is a helical bundle with helices labeled S1-S4. Surrounding conserved VSD residues such as the countercharges and the S2 phenylalanine, we discover sparse networks of coevolving residues. Additional networks are found lining the VSD lumen, tuning the local hydrophilicity. Notably, state-dependent contacts and the absence of coevolution between S4 and the rest of the bundle are imprints of the activation mechanism on the VSD sequence ensemble. These design principles rationalize existing experimental results and generate testable hypotheses.
Collapse
Affiliation(s)
- Eugene Palovcak
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA 19122
| | | | | | | |
Collapse
|
22
|
Zaydman MA, Cui J. PIP2 regulation of KCNQ channels: biophysical and molecular mechanisms for lipid modulation of voltage-dependent gating. Front Physiol 2014; 5:195. [PMID: 24904429 PMCID: PMC4034418 DOI: 10.3389/fphys.2014.00195] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 05/08/2014] [Indexed: 12/28/2022] Open
Abstract
Voltage-gated potassium (Kv) channels contain voltage-sensing (VSD) and pore-gate (PGD) structural domains. During voltage-dependent gating, conformational changes in the two domains are coupled giving rise to voltage-dependent opening of the channel. In addition to membrane voltage, KCNQ (Kv7) channel opening requires the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2). Recent studies suggest that PIP2 serves as a cofactor to mediate VSD-PGD coupling in KCNQ1 channels. In this review, we put these findings in the context of the current understanding of voltage-dependent gating, lipid modulation of Kv channel activation, and PIP2-regulation of KCNQ channels. We suggest that lipid-mediated coupling of functional domains is a common mechanism among KCNQ channels that may be applicable to other Kv channels and membrane proteins.
Collapse
Affiliation(s)
- Mark A Zaydman
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis St. Louis, MO, USA
| | - Jianmin Cui
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis St. Louis, MO, USA
| |
Collapse
|
23
|
Lazaridis T, Leveritt JM, PeBenito L. Implicit membrane treatment of buried charged groups: application to peptide translocation across lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2149-59. [PMID: 24525075 DOI: 10.1016/j.bbamem.2014.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/10/2014] [Indexed: 01/06/2023]
Abstract
The energetic cost of burying charged groups in the hydrophobic core of lipid bilayers has been controversial, with simulations giving higher estimates than certain experiments. Implicit membrane approaches are usually deemed too simplistic for this problem. Here we challenge this view. The free energy of transfer of amino acid side chains from water to the membrane center predicted by IMM1 is reasonably close to all-atom free energy calculations. The shape of the free energy profile, however, for the charged side chains needs to be modified to reflect the all-atom simulation findings (IMM1-LF). Membrane thinning is treated by combining simulations at different membrane widths with an estimate of membrane deformation free energy from elasticity theory. This approach is first tested on the voltage sensor and the isolated S4 helix of potassium channels. The voltage sensor is stably inserted in a transmembrane orientation for both the original and the modified model. The transmembrane orientation of the isolated S4 helix is unstable in the original model, but a stable local minimum in IMM1-LF, slightly higher in energy than the interfacial orientation. Peptide translocation is addressed by mapping the effective energy of the peptide as a function of vertical position and tilt angle, which allows identification of minimum energy pathways and transition states. The barriers computed for the S4 helix and other experimentally studied peptides are low enough for an observable rate. Thus, computational results and experimental studies on the membrane burial of peptide charged groups appear to be consistent. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.
Collapse
Affiliation(s)
- Themis Lazaridis
- Department of Chemistry, City College of New York, 160 Convent Avenue, New York, NY 10031, USA.
| | - John M Leveritt
- Department of Chemistry, City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| | - Leo PeBenito
- Department of Chemistry, City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| |
Collapse
|
24
|
Voltage-gated ion channel modulation by lipids: insights from molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1322-31. [PMID: 24513257 DOI: 10.1016/j.bbamem.2014.01.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 01/17/2014] [Accepted: 01/24/2014] [Indexed: 11/20/2022]
Abstract
Cells commonly use lipids to modulate the function of ion channels. The lipid content influences the amplitude of the ionic current and changes the probability of voltage-gated ion channels being in the active or in the resting states. Experimental findings inferred from a variety of techniques and molecular dynamics studies have revealed a direct interaction between the lipid headgroups and the ion channel residues, suggesting an influence on the ion channel function. On the other hand the alteration of the lipids may in principle modify the overall electrostatic environment of the channel, and hence the transmembrane potential, leading to an indirect modulation, i.e. a global effect. Here we have investigated the structural and dynamical properties of the voltage-gated potassium channel Kv1.2 embedded in bilayers with modified upper or lower leaflet compositions corresponding to realistic biological scenarios: the first relates to the effects of sphingomyelinase, an enzyme that modifies the composition of lipids of the outer membrane leaflets, and the second to the effect of the presence of a small fraction of PIP2, a highly negatively charged lipid known to modulate voltage-gated channel function. Our molecular dynamics simulations do not enable to exclude the global effect mechanism in the former case. For the latter, however, it is shown that local interactions between the ion channel and the lipid headgroups are key-elements of the modulation.
Collapse
|
25
|
Tarek M, Delemotte L. Omega currents in voltage-gated ion channels: what can we learn from uncovering the voltage-sensing mechanism using MD simulations? Acc Chem Res 2013; 46:2755-62. [PMID: 23697886 DOI: 10.1021/ar300290u] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ion channels conduct charged species through otherwise impermeable biological membranes. Their activity supports a number of physiological processes, and genetic mutations can disrupt their function dramatically. Among these channels, voltage gated cation channels (VGCCs) are ubiquitous transmembrane proteins involved in electrical signaling. In addition to their selectivity for ions, their function requires membrane-polarization-dependent gating. Triggered by changes in the transmembrane voltage, the activation and deactivation of VGCCs proceed through a sensing mechanism that prompts motion of conserved positively charged (basic) residues within the S4 helix of a four-helix bundle, the voltage sensor domain (VSD). Decades of experimental investigations, using electrophysiology, molecular biology, pharmacology, and spectroscopy, have revealed details about the function of VGCCs. However, in 2005, the resolution of the crystal structure of the activated state of one member of the mammalian voltage gated potassium (Kv) channels family (the Kv1.2) enabled researchers to make significant progress in understanding the structure-function relationship in these proteins on a molecular level. In this Account, we review the use of a complementary technique, molecular dynamics (MD) simulations, that has offered new insights on this timely issue. Starting from the "open-activated state" crystal structure, we have carried out large-scale all atom MD simulations of the Kv1.2 channel embedded in its lipidic environment and submitted to a hyperpolarizing (negative) transmembrane potential. We then used steered MD simulations to complete the full transition to the resting-closed state. Using these procedures, we have followed the operation of the VSDs and uncovered three intermediate states between their activated and deactivated conformations. Each conformational state is characterized by its network of salt bridges and by the occupation of the gating charge transfer center by a specific S4 basic residue. Overall, the global deactivation mechanism that we have uncovered agrees with proposed kinetic models and recent experimental results that point towards the presence of several intermediate states. The understanding of these conformations has allowed us to examine how mutations of the S4 basic residues analogous to those involved in genetic diseases affect the function of VGCCs. In agreement with electrophysiology experiments, mutations perturb the VSD structure and trigger the appearance of state-dependent "leak" currents. The simulation results unveil the key elementary molecular processes involved in these so-called "omega" currents. We generalize these observations to other members of the VGCC family, indicating which type of residues may generate such currents and which conditions might cause leaks that prevent proper function of the channel. Today, the understanding of the intermediate state conformations enables researchers to confidently tackle other key questions such as the mode of action of toxins or modulation of channel function by lipids.
Collapse
Affiliation(s)
- Mounir Tarek
- Université de Lorraine, Equipe Théorie-Modélisation-Simulations, SRSMC, UMR 7565, Vandoeuvre les Nancy, France, and CNRS, Equipe Théorie-Modélisation-Simulations, UMR 7565, Vandoeuvre les Nancy, France
| | - Lucie Delemotte
- Université de Lorraine, Equipe Théorie-Modélisation-Simulations, SRSMC, UMR 7565, Vandoeuvre les Nancy, France, and CNRS, Equipe Théorie-Modélisation-Simulations, UMR 7565, Vandoeuvre les Nancy, France
| |
Collapse
|
26
|
González C, Baez-Nieto D, Valencia I, Oyarzún I, Rojas P, Naranjo D, Latorre R. K(+) channels: function-structural overview. Compr Physiol 2013; 2:2087-149. [PMID: 23723034 DOI: 10.1002/cphy.c110047] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Potassium channels are particularly important in determining the shape and duration of the action potential, controlling the membrane potential, modulating hormone secretion, epithelial function and, in the case of those K(+) channels activated by Ca(2+), damping excitatory signals. The multiplicity of roles played by K(+) channels is only possible to their mammoth diversity that includes at present 70 K(+) channels encoding genes in mammals. Today, thanks to the use of cloning, mutagenesis, and the more recent structural studies using x-ray crystallography, we are in a unique position to understand the origins of the enormous diversity of this superfamily of ion channels, the roles they play in different cell types, and the relations that exist between structure and function. With the exception of two-pore K(+) channels that are dimers, voltage-dependent K(+) channels are tetrameric assemblies and share an extremely well conserved pore region, in which the ion-selectivity filter resides. In the present overview, we discuss in the function, localization, and the relations between function and structure of the five different subfamilies of K(+) channels: (a) inward rectifiers, Kir; (b) four transmembrane segments-2 pores, K2P; (c) voltage-gated, Kv; (d) the Slo family; and (e) Ca(2+)-activated SK family, SKCa.
Collapse
Affiliation(s)
- Carlos González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | | | | | | | | | | | | |
Collapse
|
27
|
Stock L, Souza C, Treptow W. Structural Basis for Activation of Voltage-Gated Cation Channels. Biochemistry 2013; 52:1501-13. [DOI: 10.1021/bi3013017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Letícia Stock
- Laboratório
de Biofísica Teórica
e Computacional, Departamento de Biologia Celular, Universidade de Brasília, DF, Brasília, Brazil
| | - Caio Souza
- Laboratório
de Biofísica Teórica
e Computacional, Departamento de Biologia Celular, Universidade de Brasília, DF, Brasília, Brazil
| | - Werner Treptow
- Laboratório
de Biofísica Teórica
e Computacional, Departamento de Biologia Celular, Universidade de Brasília, DF, Brasília, Brazil
| |
Collapse
|
28
|
Maffeo C, Bhattacharya S, Yoo J, Wells D, Aksimentiev A. Modeling and simulation of ion channels. Chem Rev 2012; 112:6250-84. [PMID: 23035940 PMCID: PMC3633640 DOI: 10.1021/cr3002609] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Christopher Maffeo
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - Swati Bhattacharya
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - Jejoong Yoo
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - David Wells
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| |
Collapse
|
29
|
Exploring conformational states of the bacterial voltage-gated sodium channel NavAb via molecular dynamics simulations. Proc Natl Acad Sci U S A 2012; 109:21336-41. [PMID: 23150565 DOI: 10.1073/pnas.1218087109] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The X-ray structure of the bacterial voltage-gated sodium channel NavAb has been reported in a conformation with a closed conduction pore. Comparison between this structure and the activated-open and resting-closed structures of the voltage-gated Kv1.2 potassium channel suggests that the voltage-sensor domains (VSDs) of the reported structure are not fully activated. Using the aforementioned structures of Kv1.2 as templates, molecular dynamics simulations are used to identify analogous functional conformations of NavAb. Specifically, starting from the NavAb crystal structure, conformations of the membrane-bound channel are sampled along likely pathways for activation of the VSD and opening of the pore domain. Gating charge computations suggest that a structural rearrangement comparable to that occurring between activated-open and resting-closed states is required to explain experimental values of the gating charge, thereby confirming that the reported VSD structure is likely an intermediate along the channel activation pathway. Our observation that the X-ray structure exhibits a low pore domain-opening propensity further supports this notion. The present molecular dynamics study also identifies conformations of NavAb that are seemingly related to the resting-closed and activated-open states. Our findings are consistent with recent structural and functional studies of the orthologous channels NavRh, NaChBac, and NavMs and offer possible structures for the functionally relevant conformations of NavAb.
Collapse
|
30
|
Gating pore currents and the resting state of Nav1.4 voltage sensor domains. Proc Natl Acad Sci U S A 2012; 109:19250-5. [PMID: 23134726 DOI: 10.1073/pnas.1217990109] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mammalian voltage-gated sodium channels are composed of four homologous voltage sensor domains (VSDs; DI, DII, DIII, and DIV) in which their S4 segments contain a variable number of positively charged residues. We used single histidine (H) substitutions of these charged residues in the Na(v)1.4 channel to probe the positions of the S4 segments at hyperpolarized potentials. The substitutions led to the formation of gating pores that were detected as proton leak currents through the VSDs. The leak currents indicated that the mutated residues are accessible from both sides of the membrane. Leak currents of different magnitudes appeared in the DI/R1H, DII/R1H, and DIII/R2H mutants, suggesting that the resting state position of S4 varies depending on the domain. Here, DI/R1H indicates the first arginine R1, in domain DI, has been mutated to histidine. The single R1H, R2H, and R3H mutations in DIV did not produce appreciable proton currents, indicating that the VSDs had different topologies. A structural model of the resting states of the four VSDs of Na(v)1.4 relaxed in their membrane/solution environment using molecular dynamics simulations is proposed based on the recent Na(v)Ab sodium channel X-ray structure. The model shows that the hydrophobic septa that isolate the intracellular and the extracellular media within the DI, DII, and DIII VSDs are ∼2 Å long, similar to those of K(v) channels. However, the septum of DIV is longer, which prevents water molecules from hydrating the center of the VSD, thus breaking the proton conduction pathway. This structural model rationalizes the activation sequence of the different VSDs of the Na(v)1.4 channel.
Collapse
|
31
|
Delemotte L, Klein ML, Tarek M. Molecular dynamics simulations of voltage-gated cation channels: insights on voltage-sensor domain function and modulation. Front Pharmacol 2012; 3:97. [PMID: 22654756 PMCID: PMC3361024 DOI: 10.3389/fphar.2012.00097] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/01/2012] [Indexed: 11/26/2022] Open
Abstract
Since their discovery in the 1950s, the structure and function of voltage-gated cation channels (VGCC) has been largely understood thanks to results stemming from electrophysiology, pharmacology, spectroscopy, and structural biology. Over the past decade, computational methods such as molecular dynamics (MD) simulations have also contributed, providing molecular level information that can be tested against experimental results, thereby allowing the validation of the models and protocols. Importantly, MD can shed light on elements of VGCC function that cannot be easily accessed through “classical” experiments. Here, we review the results of recent MD simulations addressing key questions that pertain to the function and modulation of the VGCC’s voltage-sensor domain (VSD) highlighting: (1) the movement of the S4-helix basic residues during channel activation, articulating how the electrical driving force acts upon them; (2) the nature of the VSD intermediate states on transitioning between open and closed states of the VGCC; and (3) the molecular level effects on the VSD arising from mutations of specific S4 positively charged residues involved in certain genetic diseases.
Collapse
Affiliation(s)
- Lucie Delemotte
- Equipe de Chimie et Biochimie Théoriques, UMR Synthèse et Réactivité de Systèmes Moléculaires Complexes, Centre National de la Recherche Scientifique Université de Lorraine Nancy, France
| | | | | |
Collapse
|
32
|
Hinge-bending motions in the pore domain of a bacterial voltage-gated sodium channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2120-5. [PMID: 22579978 DOI: 10.1016/j.bbamem.2012.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 04/11/2012] [Accepted: 05/02/2012] [Indexed: 12/20/2022]
Abstract
Computational methods and experimental data are used to provide structural models for NaChBac, the homo-tetrameric voltage-gated sodium channel from the bacterium Bacillus halodurans, with a closed and partially open pore domain. Molecular dynamic (MD) simulations on membrane-bound homo-tetrameric NaChBac structures, each comprising six helical transmembrane segments (labeled S1 through S6), reveal that the shape of the lumen, which is defined by the bundle of four alpha-helical S6 segments, is modulated by hinge bending motions around the S6 glycine residues. Mutation of these glycine residues into proline and alanine affects, respectively, the structure and conformational flexibility of the S6 bundle. In the closed channel conformation, a cluster of stacked phenylalanine residues from the four S6 helices hinders diffusion of water molecules and Na(+) ions. Activation of the voltage sensor domains causes destabilization of the aforementioned cluster of phenylalanines, leading to a more open structure. The conformational change involving the phenylalanine cluster promotes a kink in S6, suggesting that channel gating likely results from the combined action of hinge-bending motions of the S6 bundle and concerted reorientation of the aromatic phenylalanine side-chains.
Collapse
|
33
|
Abstract
The relentless growth in computational power has seen increasing applications of molecular dynamics (MD) simulation to the study of membrane proteins in realistic membrane environments, which include explicit membrane lipids, water and ions. The concomitant increasing availability of membrane protein structures for ion channels, and transporters -- to name just two examples -- has stimulated many of these MD studies. In the case of voltage-gated cation channels (VGCCs) recent computational works have focused on ion-conduction and gating mechanisms, along with their regulation by agonist/antagonist ligands. The information garnered from these computational studies is largely inaccessible to experiment and is crucial for understanding the interplay between the structure and function as well as providing new directions for experiments. This article highlights recent advances in probing the structure and function of potassium channels and offers a perspective on the challenges likely to arise in making analogous progress in characterizing sodium channels.
Collapse
Affiliation(s)
- Werner Treptow
- Universidade de Brasília, Laboratório de Biologia Teórica e Computacional, Departamento Biologia Celular, BR-70910-900 Brasilia, DF, Brazil
| | | |
Collapse
|
34
|
Molecular mapping of general anesthetic sites in a voltage-gated ion channel. Biophys J 2012; 101:1613-22. [PMID: 21961587 DOI: 10.1016/j.bpj.2011.08.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/11/2011] [Accepted: 08/15/2011] [Indexed: 12/20/2022] Open
Abstract
Several voltage-gated ion channels are modulated by clinically relevant doses of general anesthetics. However, the structural basis of this modulation is not well understood. Previous work suggested that n-alcohols and inhaled anesthetics stabilize the closed state of the Shaw2 voltage-gated (Kv) channel (K-Shaw2) by directly interacting with a discrete channel site. We hypothesize that the inhibition of K-Shaw2 channels by general anesthetics is governed by interactions between binding and effector sites involving components of the channel's activation gate. To investigate this hypothesis, we applied Ala/Val scanning mutagenesis to the S4-S5 linker and the post-PVP S6 segment, and conducted electrophysiological analysis to evaluate the energetic impact of the mutations on the inhibition of the K-Shaw2 channel by 1-butanol and halothane. These analyses identified residues that determine an apparent binding cooperativity and residue pairs that act in concert to modulate gating upon anesthetic binding. In some instances, due to their critical location, key residues also influence channel gating. Complementing these results, molecular dynamics simulations and in silico docking experiments helped us visualize possible anesthetic sites and interactions. We conclude that the inhibition of K-Shaw2 by general anesthetics results from allosteric interactions between distinct but contiguous binding and effector sites involving inter- and intrasubunit interfaces.
Collapse
|
35
|
Wood ML, Schow EV, Freites JA, White SH, Tombola F, Tobias DJ. Water wires in atomistic models of the Hv1 proton channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:286-93. [PMID: 21843503 DOI: 10.1016/j.bbamem.2011.07.045] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 01/06/2023]
Abstract
The voltage-gated proton channel (Hv1) is homologous to the voltage-sensing domain (VSD) of voltage-gated potassium (Kv) channels but lacks a separate pore domain. The Hv1 monomer has dual functions: it gates the proton current and also serves as the proton conduction pathway. To gain insight into the structure and dynamics of the yet unresolved proton permeation pathway, we performed all-atom molecular dynamics simulations of two different Hv1 homology models in a lipid bilayer in excess water. The structure of the Kv1.2-Kv2.1 paddle-chimera VSD was used as template to generate both models, but they differ in the sequence alignment of the S4 segment. In both models, we observe a water wire that extends through the membrane, whereas the corresponding region is dry in simulations of the Kv1.2-Kv2.1 paddle-chimera. We find that the kinetic stability of the water wire is dependent upon the identity and location of the residues lining the permeation pathway, in particular, the S4 arginines. A measurement of water transport kinetics indicates that the water wire is a relatively static feature of the permeation pathway. Taken together, our results suggest that proton conduction in Hv1 may occur via Grotthuss hopping along a robust water wire, with exchange of water molecules between inner and outer ends of the permeation pathway minimized by specific water-protein interactions. This article is part of a Special Issue entitled: Membrane protein structure and function.
Collapse
Affiliation(s)
- Mona L Wood
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | | | | | | | | | | |
Collapse
|
36
|
Andersson M, Freites JA, Tobias DJ, White SH. Structural dynamics of the S4 voltage-sensor helix in lipid bilayers lacking phosphate groups. J Phys Chem B 2011; 115:8732-8. [PMID: 21692541 PMCID: PMC3140535 DOI: 10.1021/jp2001964] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Voltage-dependent K(+) (Kv) channels require lipid phosphates for functioning. The S4 helix, which carries the gating charges in the voltage-sensing domain (VSD), inserts into membranes while being stabilized by a protein-lipid interface in which lipid phosphates play an essential role. To examine the physical basis of the protein-lipid interface in the absence of lipid phosphates, we performed molecular dynamics (MD) simulations of a KvAP S4 variant (S4mut) in bilayers with and without lipid phosphates. We find that, in dioleoyltrimethylammoniumpropane (DOTAP) bilayers lacking lipid phosphates, the gating charges are solvated by anionic counterions and, hence, lack the bilayer support provided by phosphate-containing palmitoyloleoylglycerophosphocholine (POPC) bilayers. The result is a water-permeable bilayer with significantly smaller deformations around the peptide. Together, these results provide an explanation for the nonfunctionality of VSDs in terms of a destabilizing protein-lipid interface.
Collapse
Affiliation(s)
- Magnus Andersson
- Department of Physiology and Biophysics and the Center for Biomembrane Systems, University of California, Irvine, California, 92697
| | - J. Alfredo Freites
- Department of Chemistry and Institute for Surface and Interface Science, University of California, Irvine, California, 92697
| | - Douglas J. Tobias
- Department of Chemistry and Institute for Surface and Interface Science, University of California, Irvine, California, 92697
| | - Stephen H. White
- Department of Physiology and Biophysics and the Center for Biomembrane Systems, University of California, Irvine, California, 92697
| |
Collapse
|
37
|
Wee CL, Chetwynd A, Sansom MSP. Membrane insertion of a voltage sensor helix. Biophys J 2011; 100:410-9. [PMID: 21244837 DOI: 10.1016/j.bpj.2010.12.3682] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 11/30/2010] [Accepted: 12/02/2010] [Indexed: 10/18/2022] Open
Abstract
Most membrane proteins contain a transmembrane (TM) domain made up of a bundle of lipid-bilayer-spanning α-helices. TM α-helices are generally composed of a core of largely hydrophobic amino acids, with basic and aromatic amino acids at each end of the helix forming interactions with the lipid headgroups and water. In contrast, the S4 helix of ion channel voltage sensor (VS) domains contains four or five basic (largely arginine) side chains along its length and yet adopts a TM orientation as part of an independently stable VS domain. Multiscale molecular dynamics simulations are used to explore how a charged TM S4 α-helix may be stabilized in a lipid bilayer, which is of relevance in the context of mechanisms of translocon-mediated insertion of S4. Free-energy profiles for insertion of the S4 helix into a phospholipid bilayer suggest that it is thermodynamically favorable for S4 to insert from water to the center of the membrane, where the helix adopts a TM orientation. This is consistent with crystal structures of Kv channels, biophysical studies of isolated VS domains in lipid bilayers, and studies of translocon-mediated S4 helix insertion. Decomposition of the free-energy profiles reveals the underlying physical basis for TM stability, whereby the preference of the hydrophobic residues of S4 to enter the bilayer dominates over the free-energy penalty for inserting charged residues, accompanied by local distortion of the bilayer and penetration of waters. We show that the unique combination of charged and hydrophobic residues in S4 allows it to insert stably into the membrane.
Collapse
Affiliation(s)
- Chze Ling Wee
- Department of Biochemistry, University of Oxford, United Kingdom
| | | | | |
Collapse
|
38
|
Wang A, Zocchi G. Artificial modulation of the gating behavior of a K+ channel in a KvAP-DNA chimera. PLoS One 2011; 6:e18598. [PMID: 21526187 PMCID: PMC3079724 DOI: 10.1371/journal.pone.0018598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 03/06/2011] [Indexed: 11/19/2022] Open
Abstract
We present experiments where the gating behavior of a voltage-gated ion channel is modulated by artificial ligand binding. We construct a channel-DNA chimera with the KvAP potassium channel reconstituted in an artificial membrane. The channel is functional and the single channel ion conductivity unperturbed by the presence of the DNA. However, the channel opening probability vs. bias voltage, i.e., the gating, can be shifted considerably by the electrostatic force between the charges on the DNA and the voltage sensing domain of the protein. Different hybridization states of the chimera DNA thus lead to different response curves of the channel.
Collapse
Affiliation(s)
- Andrew Wang
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California, United States of America
| | - Giovanni Zocchi
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
39
|
Mokrab Y, Sansom MSP. Interaction of diverse voltage sensor homologs with lipid bilayers revealed by self-assembly simulations. Biophys J 2011; 100:875-84. [PMID: 21320431 DOI: 10.1016/j.bpj.2010.11.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/17/2010] [Accepted: 11/18/2010] [Indexed: 12/31/2022] Open
Abstract
Voltage sensors (VS) domains couple the activation of ion channels/enzymes to changes in membrane voltage. We used molecular dynamics simulations to examine interactions with lipids of several VS homologs. VSs in intact channels in the activated state are exposed to phospholipids, leading to a characteristic local distortion of the lipid bilayer which decreases its thickness by ∼10 Å. This effect is mediated by a conserved hydrophilic stretch in the S4-S5 segment linking the VS and the pore domains, and may favor gating charges crossing the membrane. In cationic lipid bilayers lacking phosphate groups, VSs form fewer contacts with lipid headgroups. The S3-S4 paddle motifs show persistent interactions of individual lipid molecules, influenced by the hairpin loop. In conclusion, our results suggest common interactions with phospholipids for various VS homologs, providing insights into the molecular basis of their stabilization in the membrane and how they are altered by lipid modification.
Collapse
Affiliation(s)
- Younes Mokrab
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
40
|
Intermediate states of the Kv1.2 voltage sensor from atomistic molecular dynamics simulations. Proc Natl Acad Sci U S A 2011; 108:6109-14. [PMID: 21444776 DOI: 10.1073/pnas.1102724108] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The response of a membrane-bound Kv1.2 ion channel to an applied transmembrane potential has been studied using molecular dynamics simulations. Channel deactivation is shown to involve three intermediate states of the voltage sensor domain (VSD), and concomitant movement of helix S4 charges 10-15 Å along the bilayer normal; the latter being enabled by zipper-like sequential pairing of S4 basic residues with neighboring VSD acidic residues and membrane-lipid head groups. During the observed sequential transitions S4 basic residues pass through the recently discovered charge transfer center with its conserved phenylalanine residue, F(233). Analysis indicates that the local electric field within the VSD is focused near the F(233) residue and that it remains essentially unaltered during the entire process. Overall, the present computations provide an atomistic description of VSD response to hyperpolarization, add support to the sliding helix model, and capture essential features inferred from a variety of recent experiments.
Collapse
|
41
|
Delemotte L, Treptow W, Klein ML, Tarek M. Effect of sensor domain mutations on the properties of voltage-gated ion channels: molecular dynamics studies of the potassium channel Kv1.2. Biophys J 2011; 99:L72-4. [PMID: 21044565 DOI: 10.1016/j.bpj.2010.08.069] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 08/31/2010] [Accepted: 08/31/2010] [Indexed: 11/29/2022] Open
Abstract
The effects on the structural and functional properties of the Kv1.2 voltage-gated ion channel, caused by selective mutation of voltage sensor domain residues, have been investigated using classical molecular dynamics simulations. Following experiments that have identified mutations of voltage-gated ion channels involved in state-dependent omega currents, we observe for both the open and closed conformations of the Kv1.2 that specific mutations of S4 gating-charge residues destabilize the electrostatic network between helices of the voltage sensor domain, resulting in the formation of hydrophilic pathways linking the intra- and extracellular media. When such mutant channels are subject to transmembrane potentials, they conduct cations via these so-called "omega pores." This study provides therefore further insight into the molecular mechanisms that lead to omega currents, which have been linked to certain channelopathies.
Collapse
Affiliation(s)
- Lucie Delemotte
- UMR 7565, Structure et Réactivité des Systèmes Moléculaires Complexes, Centre National de Recherche Scientifique-Nancy University, Nancy cedex, France
| | | | | | | |
Collapse
|
42
|
Sapay N, Tieleman DP. Combination of the CHARMM27 force field with united-atom lipid force fields. J Comput Chem 2010; 32:1400-10. [PMID: 21425293 DOI: 10.1002/jcc.21726] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 10/27/2010] [Accepted: 11/06/2010] [Indexed: 11/05/2022]
Abstract
Computer simulations offer a valuable way to study membrane systems, from simple lipid bilayers to large transmembrane protein complexes and lipid-nucleic acid complexes for drug delivery. Their accuracy depends on the quality of the force field parameters used to describe the components of a particular system. We have implemented the widely used CHARMM22 and CHARMM27 force fields in the GROMACS simulation package to (i) combine the CHARMM22 protein force field with two sets of united-atom lipids parameters; (ii) allow comparisons of the lipid CHARMM27 force field with other lipid force fields or lipid-protein force field combinations. Our tests do not show any particular issue with the combination of the all-atom CHARMM22 force field with united-atoms lipid parameters, although pertinent experimental data are lacking to assess the quality of the lipid-protein interactions. The conversion utilities allow automatic generation of GROMACS simulation files with CHARMM nucleic acids and protein parameters and topologies, starting from pdb files using the standard GROMACS pdb2gmx method. CMAP is currently not implemented.
Collapse
Affiliation(s)
- Nicolas Sapay
- Centre de Recherches sur les Macromolécules Végétales, CNRS, BP 53, Grenoble, France.
| | | |
Collapse
|
43
|
Schow EV, Freites JA, Gogna K, White SH, Tobias DJ. Down-state model of the voltage-sensing domain of a potassium channel. Biophys J 2010; 98:2857-66. [PMID: 20550898 DOI: 10.1016/j.bpj.2010.03.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 02/14/2010] [Accepted: 03/02/2010] [Indexed: 11/30/2022] Open
Abstract
Voltage-sensing domains (VSDs) of voltage-gated potassium (Kv) channels undergo a series of conformational changes upon membrane depolarization, from a down state when the channel is at rest to an up state, all of which lead to the opening of the channel pore. The crystal structures reported to date reveal the pore in an open state and the VSDs in an up state. To gain insights into the structure of the down state, we used a set of experiment-based restraints to generate a model of the down state of the KvAP VSD using molecular-dynamics simulations of the VSD in a lipid bilayer in excess water. The equilibrated VSD configuration is consistent with the biotin-avidin accessibility and internal salt-bridge data used to generate it, and with additional biotin-avidin accessibility data. In the model, both the S3b and S4 segments are displaced approximately 10 A toward the intracellular side with respect to the up-state configuration, but they do not move as a rigid body. Arginine side chains that carry the majority of the gating charge also make large excursions between the up and down states. In both states, arginines interact with water and participate in salt bridges with acidic residues and lipid phosphate groups. An important feature that emerges from the down-state model is that the N-terminal half of the S4 segment adopts a 3(10)-helical conformation, which appears to be necessary to satisfy a complex salt-bridge network.
Collapse
Affiliation(s)
- Eric V Schow
- Department of Physics and Astronomy, University of California, Irvine, California, USA
| | | | | | | | | |
Collapse
|
44
|
Kraszewski S, Tarek M, Treptow W, Ramseyer C. Affinity of C60 neat fullerenes with membrane proteins: a computational study on potassium channels. ACS NANO 2010; 4:4158-4164. [PMID: 20568711 DOI: 10.1021/nn100723r] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Most studies of the interactions of neat and functionalized fullerenes with cells have focused so far on their ability to cross the cell membrane envelopes. Membranes are, however, also host to a large number of proteins responsible for various cellular functions. Among these, ion channels are prominent components of the nervous system. Recently, it was shown that fullerenes may act as blockers or modulators of a variety of K+ channels. Here we use computer simulations to investigate the propensity of such nanocompounds to bind to K+ channels. Our results based on extensive atomistic molecular dynamics simulations reveal a variety of specific binding sites depending on the structure and properties of the channel. The corresponding binding free energies and putative mechanisms suggest that C60 may indeed effectively hinder the function of K+ channels and hence induce toxicity.
Collapse
|
45
|
Treptow W, Klein ML. The Membrane-Bound State of K2P Potassium Channels. J Am Chem Soc 2010; 132:8145-51. [DOI: 10.1021/ja102191s] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Werner Treptow
- Laboratório de Biofísica, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brasil, and Institute for Computational Molecular Science, College of Science & Technology, Temple University, Philadelphia, Pennsylvania 19122
| | - Michael L. Klein
- Laboratório de Biofísica, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brasil, and Institute for Computational Molecular Science, College of Science & Technology, Temple University, Philadelphia, Pennsylvania 19122
| |
Collapse
|
46
|
The activated state of a sodium channel voltage sensor in a membrane environment. Proc Natl Acad Sci U S A 2010; 107:5435-40. [PMID: 20207950 DOI: 10.1073/pnas.0914109107] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Direct structural insights on the fundamental mechanisms of permeation, selectivity, and gating remain unavailable for the Na(+) and Ca(2+) channel families. Here, we report the spectroscopic structural characterization of the isolated Voltage-Sensor Domain (VSD) of the prokaryotic Na(+) channel NaChBac in a lipid bilayer. Site-directed spin-labeling and EPR spectroscopy were carried out for 118 mutants covering all of the VSD. EPR environmental data were used to unambiguously assign the secondary structure elements, define membrane insertion limits, and evaluate the activated conformation of the isolated-VSD in the membrane using restrain-driven molecular dynamics simulations. The overall three-dimensional fold of the NaChBac-VSD closely mirrors those seen in KvAP, Kv1.2, Kv1.2-2.1 chimera, and MlotiK1. However, in comparison to the membrane-embedded KvAP-VSD, the structural dynamics of the NaChBac-VSD reveals a much tighter helix packing, with subtle differences in the local environment of the gating charges and their interaction with the rest of the protein. Using cell complementation assays we show that the NaChBac-VSD can provide a conduit to the transport of ions in the resting or "down" conformation, a feature consistent with our EPR water accessibility measurements in the activated or "up" conformation. These results suggest that the overall architecture of VSD's is remarkably conserved among K(+) and Na(+) channels and that pathways for gating-pore currents may be intrinsic to most voltage-sensors. Cell complementation assays also provide information about the putative location of the gating charges in the "down/resting" state and hence a glimpse of the extent of conformational changes during activation.
Collapse
|
47
|
Reduced voltage sensitivity in a K+-channel voltage sensor by electric field remodeling. Proc Natl Acad Sci U S A 2010; 107:5178-83. [PMID: 20194763 DOI: 10.1073/pnas.1000963107] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Propagation of the nerve impulse relies on the extreme voltage sensitivity of Na(+) and K(+) channels. The transmembrane movement of four arginine residues, located at the fourth transmembrane segment (S4), in each of their four voltage-sensing domains is mostly responsible for the translocation of 12 to 13 e(o) across the transmembrane electric field. Inserting additional positively charged residues between the voltage-sensing arginines in S4 would, in principle, increase voltage sensitivity. Here we show that either positively or negatively charged residues added between the two most external sensing arginines of S4 decreased voltage sensitivity of a Shaker voltage-gated K(+)-channel by up to approximately 50%. The replacement of Val363 with a charged residue displaced inwardly the external boundaries of the electric field by at least 6 A, leaving the most external arginine of S4 constitutively exposed to the extracellular space and permanently excluded from the electric field. Both the physical trajectory of S4 and its electromechanical coupling to open the pore gate seemed unchanged. We propose that the separation between the first two sensing charges at resting is comparable to the thickness of the low dielectric transmembrane barrier they must cross. Thus, at most a single sensing arginine side chain could be found within the field. The conserved hydrophobic nature of the residues located between the voltage-sensing arginines in S4 may shape the electric field geometry for optimal voltage sensitivity in voltage-gated ion channels.
Collapse
|
48
|
Structure and hydration of membranes embedded with voltage-sensing domains. Nature 2010; 462:473-9. [PMID: 19940918 PMCID: PMC2784928 DOI: 10.1038/nature08542] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 09/24/2009] [Indexed: 12/17/2022]
Abstract
Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly charged S1-S4 voltage-sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-activated ion channels. Here we use neutron diffraction, solid-state nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics simulations to investigate the structure and hydration of bilayer membranes containing S1-S4 voltage-sensing domains. Our results show that voltage sensors adopt transmembrane orientations and cause a modest reshaping of the surrounding lipid bilayer, and that water molecules intimately interact with the protein within the membrane. These structural findings indicate that voltage sensors have evolved to interact with the lipid membrane while keeping energetic and structural perturbations to a minimum, and that water penetrates the membrane, to hydrate charged residues and shape the transmembrane electric field.
Collapse
|
49
|
Denning EJ, Crozier PS, Sachs JN, Woolf TB. From the gating charge response to pore domain movement: initial motions of Kv1.2 dynamics under physiological voltage changes. Mol Membr Biol 2010; 26:397-421. [PMID: 19883299 DOI: 10.3109/09687680903278539] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recent structures of the potassium channel provide an essential beginning point for explaining how the pore is gated between open and closed conformations by changes in membrane voltage. Yet, the molecular details of this process and the connections to transmembrane gradients are not understood. To begin addressing how changes within a membrane environment lead to the channel's ability to sense shifts in membrane voltage and to gate, we performed double-bilayer simulations of the Kv1.2 channel. These double-bilayer simulations enable us to simulate realistic voltage drops from resting potential conditions to depolarized conditions by changes in the bath conditions on each side of the bilayer. Our results show how the voltage sensor domain movement responds to differences in transmembrane potential. The initial voltage sensor domain movement, S4 in particular, is modulated by the gating charge response to changes in voltage and is initially stabilized by the lipid headgroups. We show this response is directly coupled to the initial stages of pore domain motion. Results presented here provide a molecular model for how the pre-gating process occurs in sequential steps: Gating charge response, movement and stabilization of the S4 voltage sensor domain, and movement near the base of the S5 region to close the pore domain.
Collapse
Affiliation(s)
- Elizabeth J Denning
- Department of Biophysics, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
50
|
Hénin J, Fiorin G, Chipot C, Klein ML. Exploring Multidimensional Free Energy Landscapes Using Time-Dependent Biases on Collective Variables. J Chem Theory Comput 2009; 6:35-47. [PMID: 26614317 DOI: 10.1021/ct9004432] [Citation(s) in RCA: 304] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A new implementation of the adaptive biasing force (ABF) method is described. This implementation supports a wide range of collective variables and can be applied to the computation of multidimensional energy profiles. It is provided to the community as part of a code that implements several analogous methods, including metadynamics. ABF and metadynamics have not previously been tested side by side on identical systems. Here, numerical tests are carried out on processes including conformational changes in model peptides and translocation of a halide ion across a lipid membrane through a peptide nanotube. On the basis of these examples, we discuss similarities and differences between the ABF and metadynamics schemes. Both approaches provide enhanced sampling and free energy profiles in quantitative agreement with each other in different applications. The method of choice depends on the dimension of the reaction coordinate space, the height of the barriers, and the relaxation times of degrees of freedom in the orthogonal space, which are not explicitly described by the chosen collective variables.
Collapse
Affiliation(s)
- Jérome Hénin
- Center for Molecular Modeling, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, Institute for Computational Molecular Science and Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, and Department of Physics and Beckman Institute for Advanced Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820
| | - Giacomo Fiorin
- Center for Molecular Modeling, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, Institute for Computational Molecular Science and Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, and Department of Physics and Beckman Institute for Advanced Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820
| | - Christophe Chipot
- Center for Molecular Modeling, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, Institute for Computational Molecular Science and Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, and Department of Physics and Beckman Institute for Advanced Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820
| | - Michael L Klein
- Center for Molecular Modeling, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, Institute for Computational Molecular Science and Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, and Department of Physics and Beckman Institute for Advanced Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820
| |
Collapse
|