1
|
Hervis YP, Valle A, Dunkel S, Klare JP, Canet L, Lanio ME, Alvarez C, Pazos IF, Steinhoff HJ. Architecture of the pore forming toxin sticholysin I in membranes. J Struct Biol 2019; 208:30-42. [PMID: 31330179 DOI: 10.1016/j.jsb.2019.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/02/2019] [Accepted: 07/17/2019] [Indexed: 12/28/2022]
Abstract
Sticholysin I (StI) is a toxin produced by the sea anemone Stichodactyla helianthus and belonging to the actinoporins family. Upon binding to sphingomyelin-containing membranes StI forms oligomeric pores, thereby leading to cell death. According to recent controversial experimental evidences, the pore architecture of actinoporins is a debated topic. Here, we investigated the StI topology in membranes by site-directed spin labeling and electron paramagnetic resonance spectroscopy. The results reveal that StI in membrane exhibits an oligomeric architecture with heterogeneous stoichiometry of predominantly eight or nine protomers, according to the available structural models. The StI topology resembles the conic pore structure reported for the actinoporin fragaceatoxin C. Our data show that StI coexists in two membrane-associated conformations, with the N-terminal segment either attached to the protein core or inserted in the membrane forming the pore. This finding suggests a 'pre-pore' to 'pore' transition determined by a conformational change that detaches the N-terminal segment.
Collapse
Affiliation(s)
- Yadira P Hervis
- Center for Protein Studies/Department of Biochemistry, University of Havana, Calle 25 #455 e/I y J, Vedado, Plaza de la Revolución, ZIP 10400, Havana, Cuba.
| | - Aisel Valle
- Center for Protein Studies/Department of Biochemistry, University of Havana, Calle 25 #455 e/I y J, Vedado, Plaza de la Revolución, ZIP 10400, Havana, Cuba.
| | - Sabrina Dunkel
- Department of Physics, University of Osnabrueck, Barbarastr. 7, 49076 Osnabrueck, Germany.
| | - Johann P Klare
- Department of Physics, University of Osnabrueck, Barbarastr. 7, 49076 Osnabrueck, Germany.
| | - Liem Canet
- Center for Protein Studies/Department of Biochemistry, University of Havana, Calle 25 #455 e/I y J, Vedado, Plaza de la Revolución, ZIP 10400, Havana, Cuba.
| | - Maria E Lanio
- Center for Protein Studies/Department of Biochemistry, University of Havana, Calle 25 #455 e/I y J, Vedado, Plaza de la Revolución, ZIP 10400, Havana, Cuba.
| | - Carlos Alvarez
- Center for Protein Studies/Department of Biochemistry, University of Havana, Calle 25 #455 e/I y J, Vedado, Plaza de la Revolución, ZIP 10400, Havana, Cuba.
| | - Isabel F Pazos
- Center for Protein Studies/Department of Biochemistry, University of Havana, Calle 25 #455 e/I y J, Vedado, Plaza de la Revolución, ZIP 10400, Havana, Cuba.
| | - Heinz-J Steinhoff
- Department of Physics, University of Osnabrueck, Barbarastr. 7, 49076 Osnabrueck, Germany.
| |
Collapse
|
2
|
Mahinthichaichan P, Gennis RB, Tajkhorshid E. Bacterial denitrifying nitric oxide reductases and aerobic respiratory terminal oxidases use similar delivery pathways for their molecular substrates. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:712-724. [PMID: 29883591 DOI: 10.1016/j.bbabio.2018.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/05/2018] [Accepted: 06/04/2018] [Indexed: 10/14/2022]
Abstract
The superfamily of heme‑copper oxidoreductases (HCOs) include both NO and O2 reductases. Nitric oxide reductases (NORs) are bacterial membrane enzymes that catalyze an intermediate step of denitrification by reducing nitric oxide (NO) to nitrous oxide (N2O). They are structurally similar to heme‑copper oxygen reductases (HCOs), which reduce O2 to water. The experimentally observed apparent bimolecular rate constant of NO delivery to the deeply buried catalytic site of NORs was previously reported to approach the diffusion-controlled limit (108-109 M-1 s-1). Using the crystal structure of cytochrome-c dependent NOR (cNOR) from Pseudomonas aeruginosa, we employed several protocols of molecular dynamics (MD) simulation, which include flooding simulations of NO molecules, implicit ligand sampling and umbrella sampling simulations, to elucidate how NO in solution accesses the catalytic site of this cNOR. The results show that NO partitions into the membrane, enters the enzyme from the lipid bilayer and diffuses to the catalytic site via a hydrophobic tunnel that is resolved in the crystal structures. This is similar to what has been found for O2 diffusion through the closely related O2 reductases. The apparent second order rate constant approximated using the simulation data is ~5 × 108 M-1 s-1, which is optimized by the dynamics of the amino acid side chains lining in the tunnel. It is concluded that both NO and O2 reductases utilize well defined hydrophobic tunnels to assure that substrate diffusion to the buried catalytic sites is not rate limiting under physiological conditions.
Collapse
Affiliation(s)
- Paween Mahinthichaichan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Street, Urbana, IL 61801, USA; NIH Center for Macromolecular Modeling and Bioinformatics, 405 North Mathews Avenue, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, 405 N. Mathews Avenue, Urbana, IL 61801, USA
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Street, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, 179 Looomis, MC-704, 1110 Green Street, Urbana, IL 61801, USA.
| | - Emad Tajkhorshid
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Street, Urbana, IL 61801, USA; NIH Center for Macromolecular Modeling and Bioinformatics, 405 North Mathews Avenue, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, 405 N. Mathews Avenue, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, 179 Looomis, MC-704, 1110 Green Street, Urbana, IL 61801, USA.
| |
Collapse
|
3
|
The Synergetic Effects of Combining Structural Biology and EPR Spectroscopy on Membrane Proteins. CRYSTALS 2017. [DOI: 10.3390/cryst7040117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein structures as provided by structural biology such as X-ray crystallography, cryo-electron microscopy and NMR spectroscopy are key elements to understand the function of a protein on the molecular level. Nonetheless, they might be error-prone due to crystallization artifacts or, in particular in case of membrane-imbedded proteins, a mostly artificial environment. In this review, we will introduce different EPR spectroscopy methods as powerful tools to complement and validate structural data gaining insights in the dynamics of proteins and protein complexes such that functional cycles can be derived. We will highlight the use of EPR spectroscopy on membrane-embedded proteins and protein complexes ranging from receptors to secondary active transporters as structural information is still limited in this field and the lipid environment is a particular challenge.
Collapse
|
4
|
Mayne CG, Arcario MJ, Mahinthichaichan P, Baylon JL, Vermaas JV, Navidpour L, Wen PC, Thangapandian S, Tajkhorshid E. The cellular membrane as a mediator for small molecule interaction with membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1858:2290-2304. [PMID: 27163493 PMCID: PMC4983535 DOI: 10.1016/j.bbamem.2016.04.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 01/05/2023]
Abstract
The cellular membrane constitutes the first element that encounters a wide variety of molecular species to which a cell might be exposed. Hosting a large number of structurally and functionally diverse proteins associated with this key metabolic compartment, the membrane not only directly controls the traffic of various molecules in and out of the cell, it also participates in such diverse and important processes as signal transduction and chemical processing of incoming molecular species. In this article, we present a number of cases where details of interaction of small molecular species such as drugs with the membrane, which are often experimentally inaccessible, have been studied using advanced molecular simulation techniques. We have selected systems in which partitioning of the small molecule with the membrane constitutes a key step for its final biological function, often binding to and interacting with a protein associated with the membrane. These examples demonstrate that membrane partitioning is not only important for the overall distribution of drugs and other small molecules into different compartments of the body, it may also play a key role in determining the efficiency and the mode of interaction of the drug with its target protein. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Christopher G Mayne
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, United States.
| | - Mark J Arcario
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, United States; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, United States; College of Medicine, University of Illinois at Urbana-Champaign, United States.
| | - Paween Mahinthichaichan
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, United States; Department of Biochemistry, University of Illinois at Urbana-Champaign, United States.
| | - Javier L Baylon
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, United States; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, United States.
| | - Josh V Vermaas
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, United States; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, United States.
| | - Latifeh Navidpour
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, United States.
| | - Po-Chao Wen
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, United States.
| | - Sundarapandian Thangapandian
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, United States; Department of Biochemistry, University of Illinois at Urbana-Champaign, United States.
| | - Emad Tajkhorshid
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, United States; Department of Biochemistry, University of Illinois at Urbana-Champaign, United States; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, United States; College of Medicine, University of Illinois at Urbana-Champaign, United States.
| |
Collapse
|
5
|
Sokolov VS, Gavrilchik AN, Kulagina AO, Meshkov IN, Pohl P, Gorbunova YG. Voltage-sensitive styryl dyes as singlet oxygen targets on the surface of bilayer lipid membrane. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 161:162-9. [PMID: 27236238 DOI: 10.1016/j.jphotobiol.2016.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/18/2016] [Indexed: 11/30/2022]
Abstract
Photosensitizers are widely used as photodynamic therapeutic agents killing cancer cells by photooxidation of their components. Development of new effective photosensitive molecules requires profound knowledge of possible targets for reactive oxygen species, especially for its singlet form. Here we studied photooxidation of voltage-sensitive styryl dyes (di-4-ANEPPS, di-8-ANEPPS, RH-421 and RH-237) by singlet oxygen on the surface of bilayer lipid membranes commonly used as cell membrane models. Oxidation was induced by irradiation of a photosensitizer (aluminum phthalocyanine tetrasulfonate) and monitored by the change of dipole potential on the surface of the membrane. We studied the drop of the dipole potential both in the case when the dye molecules were adsorbed on the same side of the lipid bilayer as the photosensitizer (cis-configuration) and in the case when they were adsorbed on the opposite side (trans-configuration). Based on a simple model, we determined the rate of oxidation of the dyes from the kinetics of change of the potential during and after irradiation. This rate is proportional to steady-state concentration of singlet oxygen in the membrane under irradiation. Comparison of the oxidation rates of various dyes reveals that compounds of ANEPPS series are more sensitive to singlet oxygen than RH type dyes, indicating that naphthalene group is primarily responsible for their oxidation.
Collapse
Affiliation(s)
- V S Sokolov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Moscow, Russia.
| | - A N Gavrilchik
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Moscow, Russia
| | - A O Kulagina
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Moscow, Russia
| | - I N Meshkov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Moscow, Russia
| | - P Pohl
- Institute of Biophysics, Johannes Kepler University Linz, Austria
| | - Yu G Gorbunova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Moscow, Russia; N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Science, Moscow, Russia
| |
Collapse
|
6
|
Mahinthichaichan P, Gennis RB, Tajkhorshid E. All the O2 Consumed by Thermus thermophilus Cytochrome ba3 Is Delivered to the Active Site through a Long, Open Hydrophobic Tunnel with Entrances within the Lipid Bilayer. Biochemistry 2016; 55:1265-78. [PMID: 26845082 DOI: 10.1021/acs.biochem.5b01255] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cytochrome ba3 is a proton-pumping heme-copper oxygen reductase from the extreme thermophile Thermus thermophilus. Despite the fact that the enzyme's active site is buried deep within the protein, the apparent second order rate constant for the initial binding of O2 to the active-site heme has been experimentally found to be 10(9) M(-1) s(-1) at 298 K, at or near the diffusion limit, and 2 orders of magnitude faster than for O2 binding to myoglobin. To provide quantitative and microscopic descriptions of the O2 delivery pathway and mechanism in cytochrome ba3, extensive molecular dynamics simulations of the enzyme in its membrane-embedded form have been performed, including different protocols of explicit ligand sampling (flooding) simulations with O2, implicit ligand sampling analysis, and in silico mutagenesis. The results show that O2 diffuses to the active site exclusively via a Y-shaped hydrophobic tunnel with two 25-Å long membrane-accessible branches that coincide with the pathway previously suggested by the crystallographically identified xenon binding sites. The two entrances of the bifurcated tunnel of cytochrome ba3 are located within the lipid bilayer, where O2 is preferentially partitioned from the aqueous phase. The largest barrier to O2 migration within the tunnel is estimated to be only 1.5 kcal/mol, allowing O2 to reach the enzyme active site virtually impeded by one-dimensional diffusion once it reaches a tunnel entrance at the protein surface. Unlike other O2-utilizing proteins, the tunnel is "open" with no transient barriers observed due to protein dynamics. This unique low-barrier passage through the protein ensures that O2 transit through the protein is never rate-limiting.
Collapse
Affiliation(s)
- Paween Mahinthichaichan
- Department of Biochemistry, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Robert B Gennis
- Department of Biochemistry, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Emad Tajkhorshid
- Department of Biochemistry, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Bartucci R, Guzzi R, Esmann M, Marsh D. Water penetration profile at the protein-lipid interface in Na,K-ATPase membranes. Biophys J 2015; 107:1375-82. [PMID: 25229145 DOI: 10.1016/j.bpj.2014.07.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/05/2014] [Accepted: 07/30/2014] [Indexed: 11/28/2022] Open
Abstract
The affinity of ionized fatty acids for the Na,K-ATPase is used to determine the transmembrane profile of water penetration at the protein-lipid interface. The standardized intensity of the electron spin echo envelope modulation (ESEEM) from (2)H-hyperfine interaction with D2O is determined for stearic acid, n-SASL, spin-labeled systematically at the C-n atoms throughout the chain. In both native Na,K-ATPase membranes from shark salt gland and bilayers of the extracted membrane lipids, the D2O-ESEEM intensities of fully charged n-SASL decrease progressively with position down the fatty acid chain toward the terminal methyl group. Whereas the D2O intensities decrease sharply at the n = 9 position in the lipid bilayers, a much broader transition region in the range n = 6 to 10 is found with Na,K-ATPase membranes. Correction for the bilayer population in the membranes yields the intrinsic D2O-intensity profile at the protein-lipid interface. For positions at either end of the chains, the D2O concentrations at the protein interface are greater than in the lipid bilayer, and the positional profile is much broader. This reveals the higher polarity, and consequently higher intramembrane water concentration, at the protein-lipid interface. In particular, there is a significant water concentration adjacent to the protein at the membrane midplane, unlike the situation in the bilayer regions of this cholesterol-rich membrane. Experiments with protonated fatty acid and phosphatidylcholine spin labels, both of which have a considerably lower affinity for the Na,K-ATPase, confirm these results.
Collapse
Affiliation(s)
- Rosa Bartucci
- Department of Physics, Molecular Biophysics Laboratory and CNISM Unit, University of Calabria, Ponte P. Bucci, Cubo 31C, 87036 Rende (CS), Italy
| | - Rita Guzzi
- Department of Physics, Molecular Biophysics Laboratory and CNISM Unit, University of Calabria, Ponte P. Bucci, Cubo 31C, 87036 Rende (CS), Italy
| | - Mikael Esmann
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Derek Marsh
- Max-Planck-Institut für biophysikalische Chemie, 37070 Göttingen, Germany.
| |
Collapse
|
8
|
Klare JP, Steinhoff HJ. Spin Labeling Studies of Transmembrane Signaling and Transport. Methods Enzymol 2015; 564:315-47. [DOI: 10.1016/bs.mie.2015.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
9
|
Ausili A, Berglin M, Elwing H, Egea-Jiménez AL, Corbalán-García S, Gómez-Fernández JC. Membrane docking mode of the C2 domain of PKCε: An infrared spectroscopy and FRET study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:552-60. [DOI: 10.1016/j.bbamem.2012.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/14/2012] [Accepted: 10/15/2012] [Indexed: 01/31/2023]
|
10
|
Klare JP, Steinhoff HJ. Structural Information from Spin-Labelled Membrane-Bound Proteins. STRUCTURAL INFORMATION FROM SPIN-LABELS AND INTRINSIC PARAMAGNETIC CENTRES IN THE BIOSCIENCES 2013. [DOI: 10.1007/430_2012_88] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Al-Abdul-Wahid MS, Evanics F, Prosser RS. Dioxygen transmembrane distributions and partitioning thermodynamics in lipid bilayers and micelles. Biochemistry 2011; 50:3975-83. [PMID: 21510612 DOI: 10.1021/bi200168n] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cellular respiration, mediated by the passive diffusion of oxygen across lipid membranes, is key to many basic cellular processes. In this work, we report the detailed distribution of oxygen across lipid bilayers and examine the thermodynamics of oxygen partitioning via NMR studies of lipids in a small unilamellar vesicle (SUV) morphology. Dissolved oxygen gives rise to paramagnetic chemical shift perturbations and relaxation rate enhancements, both of which report on local oxygen concentration. From SUVs containing the phospholipid sn-2-perdeuterio-1-myristelaidoyl, 2-myristoyl-sn-glycero-3-phosphocholine (MLMPC), an analogue of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), we deduced the complete trans-bilayer oxygen distribution by measuring (13)C paramagnetic chemical shifts perturbations for 18 different sites on MLMPC arising from oxygen at a partial pressure of 30 bar. The overall oxygen solubility at 45 °C spans a factor of 7 between the bulk water (23.7 mM) and the bilayer center (170 mM) and is lowest in the vicinity of the phosphocholine headgroup, suggesting that oxygen diffusion across the glycerol backbone should be the rate-limiting step in diffusion-mediated passive transport of oxygen across the lipid bilayer. Lowering of the temperature from 45 to 25 °C gave rise to a slight decrease of the oxygen solubility within the hydrocarbon interior of the membrane. An analysis of the temperature dependence of the oxygen solubility profile, as measured by (1)H paramagnetic relaxation rate enhancements, reveals that oxygen partitioning into the bilayer is entropically favored (ΔS° = 54 ± 3 J K(-1) mol(-1)) and must overcome an enthalpic barrier (ΔH° = 12.0 ± 0.9 kJ mol(-1)).
Collapse
Affiliation(s)
- M Sameer Al-Abdul-Wahid
- Department of Chemistry, University of Toronto, UTM, North Mississauga, Ontario, Canada L5L 1C6
| | | | | |
Collapse
|
12
|
Ausili A, Corbalán-García S, Gómez-Fernández JC, Marsh D. Membrane docking of the C2 domain from protein kinase Cα as seen by polarized ATR-IR. The role of PIP₂. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:684-95. [PMID: 21144818 DOI: 10.1016/j.bbamem.2010.11.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 11/03/2010] [Accepted: 11/29/2010] [Indexed: 10/18/2022]
Abstract
We have used attenuated total internal reflection infrared spectroscopy (ATR-IR) spectroscopy to study the association of the C2 domain from protein kinase Cα (PKCα) with different phospholipid membranes, so as to characterise the mode of membrane docking and its modulation by the second-messenger lipid PIP₂. In parallel, we have also examined the membrane interaction of the C2 domain from cytosolic phospholipase A₂. PIP₂ did not induce significant changes in secondary structure of the membrane-bound PKCα-C2 domain, nor did binding of the PKCα-C2 domain change the dichroic ratios of the lipid chains, whereas the C2 domain from phospholipase A₂ did perturb the lipid chain orientation. Measurements of the dichroic ratios for the amide I and amide II protein bands were combined so as to distinguish the tilt of the β-sheets from that of the β-strands within the sheet. When associated with POPC/POPS membranes, the β-sandwich of the PKCα-C2 domain is inclined at an angle α=35° to the membrane normal, i.e., is oriented more nearly perpendicular than parallel to the membrane. In the process of membrane docking, the tilt angle increases to α=44° in the presence of PIP₂, indicating that the β-sandwich comes closer to the membrane surface, so confirming the importance of this lipid in determining docking of the C2 domain and consequent activation of PKCα.
Collapse
Affiliation(s)
- Alessio Ausili
- Departamento de Bioquímica y Biología Molecular A, Universidad de Murcia, Apartado 4021, 30080-Murcia, Spain
| | | | | | | |
Collapse
|
13
|
Guskov A, Gabdulkhakov A, Broser M, Glöckner C, Hellmich J, Kern J, Frank J, Müh F, Saenger W, Zouni A. Recent Progress in the Crystallographic Studies of Photosystem II. Chemphyschem 2010; 11:1160-71. [DOI: 10.1002/cphc.200900901] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
14
|
Marsh D. Spin-Label EPR for Determining Polarity and Proticity in Biomolecular Assemblies: Transmembrane Profiles. APPLIED MAGNETIC RESONANCE 2010; 37:435-454. [PMID: 19960064 PMCID: PMC2784069 DOI: 10.1007/s00723-009-0078-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 06/05/2009] [Indexed: 05/28/2023]
Abstract
Hyperfine couplings and g-values of nitroxyl spin labels are sensitive to polarity and hydrogen bonding in the environment probed. The dependences of these electronic paramagnetic resonance (EPR) properties on environmental dielectric permittivity and proticity are reviewed. Calibrations are given, in terms of the Block-Walker reaction field and local proton donor concentration, for the nitroxides that are commonly used in spin labeling of lipids and proteins. Applications to studies of the transverse polarity profiles in lipid bilayers, which constitute the permeability barrier of biological membranes, are reviewed. Emphasis is given to parallels with the permeation profiles of oxygen and nitric oxide that are determined from spin-label relaxation enhancements by using nonlinear continuous-wave EPR and saturation recovery EPR, and with permeation profiles of D(2)O that are determined by using (2)H electron spin echo envelope modulation spectroscopy.
Collapse
Affiliation(s)
- Derek Marsh
- Abteilung Spektroskopie, Max-Planck-Institut für biophysikalische Chemie, 37070 Göttingen, Germany
| |
Collapse
|
15
|
Klare JP, Steinhoff HJ. Spin labeling EPR. PHOTOSYNTHESIS RESEARCH 2009; 102:377-390. [PMID: 19728138 DOI: 10.1007/s11120-009-9490-7] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Accepted: 08/14/2009] [Indexed: 05/28/2023]
Abstract
Site-directed spin labeling in combination with electron paramagnetic resonance spectroscopy has emerged as an efficient tool to elucidate the structure and conformational dynamics of biomolecules under native-like conditions. This article summarizes the basics as well as recent progress of site-directed spin labeling. Continuous wave EPR spectra analyses and pulse EPR techniques are reviewed with special emphasis on applications to the sensory rhodopsin-transducer complex mediating the photophobic response of the halophilic archaeum Natronomonas pharaonis and the photosynthetic reaction center from Rhodobacter sphaeroides R26.
Collapse
Affiliation(s)
- Johann P Klare
- Physics Department, University of Osnabrück, Barbarastr. 7, 49076, Osnabrück, Germany
| | | |
Collapse
|
16
|
Gabdulkhakov A, Guskov A, Broser M, Kern J, Müh F, Saenger W, Zouni A. Probing the Accessibility of the Mn4Ca Cluster in Photosystem II: Channels Calculation, Noble Gas Derivatization, and Cocrystallization with DMSO. Structure 2009; 17:1223-34. [DOI: 10.1016/j.str.2009.07.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 07/16/2009] [Accepted: 07/21/2009] [Indexed: 01/05/2023]
|
17
|
Reaction fields in the environment of fluorescent probes: polarity profiles in membranes. Biophys J 2009; 96:2549-58. [PMID: 19348740 DOI: 10.1016/j.bpj.2009.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 01/05/2009] [Accepted: 01/05/2009] [Indexed: 11/21/2022] Open
Abstract
Fluorescent probes in biological systems are sensitive to environmental polarity by virtue of their response to the reaction field created by polarization of the dielectric medium. Classically, fluorophore solvatochromism is analyzed in terms of the Lippert equation and later variants, all of which rely upon the original reaction field of Onsager. A recent survey of the solvent dependence of EPR spin-label probes, which are responsive solely to the reaction field in the ground state without the complication of excited states, shows that the reaction field of Block and Walker performs best in describing the polarity dependence. In this model, the step-function transition to the bulk dielectric medium used by Onsager is replaced by a graded transition. Analysis of the Stokes shifts for representative fluorescent membrane probes, such as PRODAN, DANSYL, and anthroyl fatty acid, reveals that, of several different reaction fields (including that of Onsager), the Block-Walker model best describes the dependence on solvent dielectric constant and refractive index for the different probes simultaneously. This is after full allowance is made for all contributions involving polarizability of the fluorophore, a point that is frequently neglected or treated incorrectly in studies using biological fluorescent probes. By using the full range of polar and apolar solvents, it is then possible to establish a common reference for the polarity dependence of different fluorophores and to relate this also to the polarity dependence of biologically relevant spin-label EPR probes. An important application is calibration of the transmembrane polarity profile recorded by fluorescent probes in terms of the high-resolution profile obtained from site-specifically spin-labeled lipid chains.
Collapse
|
18
|
Bartucci R, Guzzi R, Sportelli L, Marsh D. Intramembrane water associated with TOAC spin-labeled alamethicin: electron spin-echo envelope modulation by D2O. Biophys J 2009; 96:997-1007. [PMID: 19186137 DOI: 10.1016/j.bpj.2008.10.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 10/21/2008] [Indexed: 11/30/2022] Open
Abstract
Alamethicin is a 20-residue, hydrophobic, helical peptide, which forms voltage-sensitive ion channels in lipid membranes. The helicogenic, nitroxyl amino acid TOAC was substituted isosterically for Aib at residue positions 1, 8, or 16 in a F50/5 alamethicin analog to enable EPR studies. Electron spin-echo envelope modulation (ESEEM) spectroscopy was used to investigate the water exposure of TOAC-alamethicin introduced into membranes of saturated or unsaturated diacyl phosphatidylcholines that were dispersed in D2O. Echo-detected EPR spectra were used to assess the degree of assembly of the peptide in the membrane, via the instantaneous diffusion from intermolecular spin-spin interactions. The profile of residue exposure to water differs between membranes of saturated and unsaturated lipids. In monounsaturated dioleoyl phosphatidylcholine, D2O-ESEEM intensities decrease from TOAC(1) to TOAC(8) and TOAC(16) but not uniformly. This is consistent with a transmembrane orientation for the protoassembled state, in which TOAC(16) is located in the bilayer leaflet opposite to that of TOAC(1) and TOAC(8). Relative to the monomer in fluid bilayers, assembled alamethicin is disposed asymmetrically about the bilayer midplane. In saturated dimyristoyl phosphatidylcholine, the D2O-ESEEM intensity is greatest for TOAC(8), indicating a more superficial location for alamethicin, which correlates with the difference in orientation between gel- and fluid-phase membranes found by conventional EPR of TOAC-alamethicin in aligned phosphatidylcholine bilayers. Increasing alamethicin/lipid ratio in saturated phosphatidylcholine shifts the profile of water exposure toward that with unsaturated lipid, consistent with proposals of a critical concentration for switching between the two different membrane-associated states.
Collapse
Affiliation(s)
- R Bartucci
- Dipartimento di Fisica and Unità di Recerca Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia, Università della Calabria, Arcavacata di Rende, Italy
| | | | | | | |
Collapse
|
19
|
Bleicken S, Zeth K. Conformational changes and protein stability of the pro-apoptotic protein Bax. J Bioenerg Biomembr 2009; 41:29-40. [PMID: 19255832 PMCID: PMC2778690 DOI: 10.1007/s10863-009-9202-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 01/24/2009] [Indexed: 11/03/2022]
Abstract
Pro-apoptotic Bax is a soluble and monomeric protein under normal physiological conditions. Upon its activation substantial structural rearrangements occur: The protein inserts into the mitochondrial outer membrane and forms higher molecular weight oligomers. Subsequently, the cells can undergo apoptosis. In our studies, we focused on the structural rearrangements of Bax during oligomerization and on the protein stability. Both protein conformations exhibit high stability against thermal denaturation, chemically induced unfolding and proteolytic processing. The oligomeric protein is stable up to 90 degrees C as well as in solutions of 8 M urea or 6 M guanidinium hydrochloride. Helix 9 appears accessible in the monomer but hidden in the oligomer assessed by proteolysis. Tryptophan fluorescence indicates that the environment of the C-terminal protein half becomes more apolar upon oligomerization, whereas the loop region between helices 1 and 2 gets solvent exposed.
Collapse
Affiliation(s)
- Stephanie Bleicken
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | |
Collapse
|
20
|
Kern J, Zouni A, Guskov A, Krauß N. Lipids in the Structure of Photosystem I, Photosystem II and the Cytochrome b 6 f Complex. LIPIDS IN PHOTOSYNTHESIS 2009. [DOI: 10.1007/978-90-481-2863-1_10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Bhowmik A, Ellena JF, Bryant RG, Cafiso DS. Spin-diffusion couples proton relaxation rates for proteins in exchange with a membrane interface. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2008; 194:283-288. [PMID: 18723378 PMCID: PMC2581927 DOI: 10.1016/j.jmr.2008.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 07/17/2008] [Accepted: 07/18/2008] [Indexed: 05/26/2023]
Abstract
Changes in nuclear spin-lattice relaxation rates that are induced by a freely diffusing paramagnetic relaxation agent are examined for a protein in solution and compared to the case where the protein binds to a membrane. In the solution case, the intramolecular cross-relaxation rates are modest and large differences are observed in the oxygen induced protein-proton relaxation rates. In the case where a dynamic equilibrium between solution and membrane-bound environments is established, the intramolecular (1)H cross-relaxation rates for the protein protons increase dramatically because of the slow reorientational motion in the membrane-bound environment. As a consequence, all protein protons relax with nearly the same spin-lattice relaxation rate constants when bound to the membrane, and site specific relaxation effects of the diffusing paramagnet are suppressed. Slowly reorienting sites or rotationally immobilized sites sampled by observable molecules in vivo will demonstrate similar relaxation leveling effects.
Collapse
Affiliation(s)
| | | | - Robert G. Bryant
- Authors to whom correspondence should be addressed. FAX: 434-924-3567. E-mail addresses: (DSC); (RGB)
| | - David S. Cafiso
- Authors to whom correspondence should be addressed. FAX: 434-924-3567. E-mail addresses: (DSC); (RGB)
| |
Collapse
|
22
|
Luna VM, Chen Y, Fee JA, Stout CD. Crystallographic studies of Xe and Kr binding within the large internal cavity of cytochrome ba3 from Thermus thermophilus: structural analysis and role of oxygen transport channels in the heme-Cu oxidases. Biochemistry 2008; 47:4657-65. [PMID: 18376849 DOI: 10.1021/bi800045y] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome ba3 is a cytochrome c oxidase from the plasma membrane of Thermus thermophilus and is the preferred terminal enzyme of cellular respiration at low dioxygen tensions. Using cytochrome ba 3 crystals pressurized at varying conditions under Xe or Kr gas, and X-ray data for six crystals, we identify the relative affinities of Xe and Kr atoms for as many as seven distinct binding sites. These sites track a continuous, Y-shaped channel, 18-20 A in length, lined by hydrophobic residues, which leads from the surface of the protein where two entrance holes, representing the top of the Y, connect the bilayer to the a3-CuB center at the base of the Y. Considering the increased affinity of O2 for hydrophobic environments, the hydrophobic nature of the channel, its orientation within the bilayer, its connection to the active site, its uniform diameter, its virtually complete occupation by Xe, and its isomorphous presence in the native enzyme, we infer that the channel is a diffusion pathway for O2 into the dinuclear center of cytochrome ba3. These observations provide a basis for analyzing similar channels in other oxidases of known structure, and these structures are discussed in terms of mechanisms of O2 transport in biological systems, details of CO binding to and egress from the dinuclear center, the bifurcation of the oxygen-in and water-out pathways, and the possible role of the oxygen channel in aerobic thermophily.
Collapse
Affiliation(s)
- V Mitch Luna
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
23
|
|
24
|
Marsh D, Jost M, Peggion C, Toniolo C. Solvent dependence of the rotational diffusion of TOAC-spin-labeled alamethicin. Chem Biodivers 2007; 4:1269-74. [PMID: 17589865 DOI: 10.1002/cbdv.200790109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Three derivatives of the hydrophobic, channel-forming peptaibiotic alamethicin (F50/5) have been synthesized, the original Aib residue at position 1, 8, or 16 being replaced with the spin-labeled amino acid TOAC (=2,2,6,6-tetramethylpiperidin-1-oxyl-4-amino-4-carboxylic acid). Electron-paramagnetic-resonance (EPR) spectroscopy was used to characterize the rotational diffusion of these compounds in five isotropic solvents of differing viscosity and polarity, including MeOH, EtOH, PrOH, i-PrOH, and hexanol (HxOH). In MeOH, the labeled alamethicins were found to rotate anisotropically as a monomer (axial ratio a/b=3). In aliphatic alcohols of increasing viscosity (and hydrophobicity), the rotational correlation times progressively increased. Even in HxOH, the (fivefold) increase in correlation time was no greater than the increase in viscosity. We conclude that TOAC-labeled alamethicins remain monomeric in these solvents of relatively high polarity.
Collapse
Affiliation(s)
- Derek Marsh
- Max-Planck-Institut für biophysikalische Chemie, Abteilung Spektroskopie, Göttingen, Germany
| | | | | | | |
Collapse
|
25
|
Noethig-Laslo V, Šentjurc M. Chapter 13 Transmembrane Polarity Profile of Lipid Membranes. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1554-4516(06)05013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|