1
|
Kimble A, Hauschild J, McDonnell G. Affinity and Inactivation of Bacterial Endotoxins for Medical Device Materials. Biomed Instrum Technol 2024; 57:153-162. [PMID: 38170935 PMCID: PMC10764065 DOI: 10.2345/0899-8205-57.4.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Endotoxins are high-molecular-weight complexes that contain lipopolysaccharide, protein, and phospholipid originating from the outer membrane of gram-negative bacteria. As gram-negative bacteria are naturally present in a variety of sources, endotoxins are commonly identified as contaminants in manufacturing environments. In industrial applications, endotoxin often is considered difficult to inactivate and to have a strong affinity with surfaces resulting from its hydrophobic chemical structure. This article describes the investigation of the true affinity of endotoxin, from various microbial sources in solution, for medical device material surfaces. In addition, endotoxin reduction was investigated with commonly used sterilization methods such as those based on ionizing radiation, dry and moist heat, and ethylene oxide sterilization. Endotoxin activity was found to be reduced following exposure to a range of sterilization modalities with the degree of activity reduction related to the source of endotoxin and the substrate material upon which it was present.
Collapse
|
2
|
Nanev CN, Saridakis E, Govada L, Kassen SC, Solomon HV, Chayen NE. Hydrophobic Interface-Assisted Protein Crystallization: Theory and Experiment. ACS APPLIED MATERIALS & INTERFACES 2019; 11:12931-12940. [PMID: 30860355 DOI: 10.1021/acsami.8b20995] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Macromolecular crystallization is crucial to a large number of scientific fields, including structural biology; drug design, formulation, and delivery; manufacture of biomaterials; and preparation of foodstuffs. The purpose of this study is to facilitate control of crystallization, by investigating hydrophobic interface-assisted protein crystallization both theoretically and experimentally. The application of hydrophobic liquids as nucleation promoters or suppressors has rarely been investigated, and provides an underused avenue to explore in protein crystallization. Theoretically, crystal nucleation is regarded as a two-step process, the first step being a local increase in protein concentration due to its adsorption on the hydrophobic surface. Subsequently, the protein is ordered in a crystal lattice. The energetic aspect of crystal nucleation on water/hydrophobic substance interfaces is approached by calculating the balance between the cohesive energy maintaining integrity of the two-dimensional crystal nucleus and the sum of destructive energies tending to tear up the crystal. This is achieved by comparing the number of bonds shared by the units forming the crystal and the number of unshared (dangling) bonds on the crystal surface pointing toward the solution. The same approach is extended to three-dimensional protein crystal nucleation at water/hydrophobic liquid interfaces. Experimentally, we studied protein crystallization over oils and other hydrophobic liquids (paraffin oil, FC-70 Fluorinert fluorinated oil, and three chlorinated hydrocarbons). Crystallizations of α-lactalbumin and lysozyme are compared, and additional information is acquired by studying α-crustacyanin, trypsin, an insulin analogue, and protein Lpg2936. Depending on the protein type, concentration, and the interface aging time, the proteins exhibit different crystallization propensities depending on the hydrophobic liquid used. Some hydrophobic liquids provoke an increase in the effective supersaturation, which translates to enhancement of crystal nucleation at their interface with the crystallization solution, leading to the formation of crystals.
Collapse
Affiliation(s)
- Christo N Nanev
- Rostislaw Kaischew Institute of Physical Chemistry , Bulgarian Academy of Sciences , Acad. G. Bonchev Str. Bl. 11 , Sofia 1113 , Bulgaria
| | - Emmanuel Saridakis
- Structural and Supramolecular Chemistry Laboratory, Institute of Nanoscience and Nanotechnology , National Centre for Scientific Research "Demokritos" , Athens 15310 , Greece
| | - Lata Govada
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine , Imperial College London , London SW7 2AZ , U.K
| | - Sean C Kassen
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine , Imperial College London , London SW7 2AZ , U.K
| | - Hodaya V Solomon
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine , Imperial College London , London SW7 2AZ , U.K
| | - Naomi E Chayen
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine , Imperial College London , London SW7 2AZ , U.K
| |
Collapse
|
3
|
Cui X, Liu J, Xie L, Huang J, Liu Q, Israelachvili JN, Zeng H. Modulation of Hydrophobic Interaction by Mediating Surface Nanoscale Structure and Chemistry, not Monotonically by Hydrophobicity. Angew Chem Int Ed Engl 2018; 57:11903-11908. [PMID: 30043553 DOI: 10.1002/anie.201805137] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Indexed: 11/08/2022]
Abstract
The hydrophobic (HB) interaction plays a critical role in many colloidal and interfacial phenomena, biophysical and industrial processes. Surface hydrophobicity, characterized by the water contact angle, is generally considered the most dominant parameter determining the HB interaction. Herein, we quantified the HB interactions between air bubbles and a series of hydrophobic surfaces with different nanoscale structures and surface chemistry in aqueous media using a bubble probe atomic force microscopy (AFM). Surprisingly, it is discovered that surfaces of similar hydrophobicity can show different ranges of HB interactions, while surfaces of different hydrophobicity can have similar ranges of HB interaction. The increased heterogeneity of the surface nanoscale structure and chemistry can effectively decrease the decay length of HB interaction from 1.60 nm to 0.35 nm. Our work provides insights into the physical mechanism of HB interaction.
Collapse
Affiliation(s)
- Xin Cui
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Jing Liu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Lei Xie
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Jun Huang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Qi Liu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Jacob N Israelachvili
- Department of Chemical Engineering, Materials Department, University of California Santa Barbara, CA, 93106, USA
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| |
Collapse
|
4
|
Cui X, Liu J, Xie L, Huang J, Liu Q, Israelachvili JN, Zeng H. Modulation of Hydrophobic Interaction by Mediating Surface Nanoscale Structure and Chemistry, not Monotonically by Hydrophobicity. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xin Cui
- Department of Chemical and Materials Engineering; University of Alberta; Edmonton Alberta T6G 1H9 Canada
| | - Jing Liu
- Department of Chemical and Materials Engineering; University of Alberta; Edmonton Alberta T6G 1H9 Canada
| | - Lei Xie
- Department of Chemical and Materials Engineering; University of Alberta; Edmonton Alberta T6G 1H9 Canada
| | - Jun Huang
- Department of Chemical and Materials Engineering; University of Alberta; Edmonton Alberta T6G 1H9 Canada
| | - Qi Liu
- Department of Chemical and Materials Engineering; University of Alberta; Edmonton Alberta T6G 1H9 Canada
| | - Jacob N. Israelachvili
- Department of Chemical Engineering; Materials Department; University of California Santa Barbara; CA 93106 USA
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering; University of Alberta; Edmonton Alberta T6G 1H9 Canada
| |
Collapse
|
5
|
Samanta T, Biswas R, Banerjee S, Bagchi B. Study of distance dependence of hydrophobic force between two graphene-like walls and a signature of pressure induced structure formation in the confined water. J Chem Phys 2018; 149:044502. [PMID: 30068196 DOI: 10.1063/1.5025823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We examine the separation distance dependence of the hydrophobic force by systematically varying the distance (d) between two walls. The hydrophobic force exhibits a distance mediated crossover from a liquid-like to a gas-like behavior at around d ∼ 12 Å for 1 atm pressure. The distance dependence can be fitted to a bi-exponential form, with the longer distance part displaying a correlation length of 20 Å. In addition, the crossover is found to be accompanied by a divergent-like growth of the local relative number fluctuation of the water molecules confined between the two surfaces. Furthermore, at a fixed separation (d = 20 Å), we observe a pressure induced structural modification of confined water at high pressure. The confined water is found to form an ordered structure at high pressure (10 000 atm) and room temperature, in agreement with the experimental study [G. Algara-Siller et al. Nature 519(7544), 443 (2015)].
Collapse
Affiliation(s)
- Tuhin Samanta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Rajib Biswas
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati 517506, India
| | - Saikat Banerjee
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
6
|
Samanta T, Bagchi B. Temperature effects on the hydrophobic force between two graphene-like surfaces in liquid water. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1433-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Biswas R, Bagchi B. Anomalous water dynamics at surfaces and interfaces: synergistic effects of confinement and surface interactions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:013001. [PMID: 29205175 DOI: 10.1088/1361-648x/aa9b1d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In nature, water is often found in contact with surfaces that are extended on the scale of molecule size but small on a macroscopic scale. Examples include lipid bilayers and reverse micelles as well as biomolecules like proteins, DNA and zeolites, to name a few. While the presence of surfaces and interfaces interrupts the continuous hydrogen bond network of liquid water, confinement on a mesoscopic scale introduces new features. Even when extended on a molecular scale, natural and biological surfaces often have features (like charge, hydrophobicity) that vary on the scale of the molecular diameter of water. As a result, many new and exotic features, which are not seen in the bulk, appear in the dynamics of water close to the surface. These different behaviors bear the signature of both water-surface interactions and of confinement. In other words, the altered properties are the result of the synergistic effects of surface-water interactions and confinement. Ultrafast spectroscopy, theoretical modeling and computer simulations together form powerful synergistic approaches towards an understanding of the properties of confined water in such systems as nanocavities, reverse micelles (RMs), water inside and outside biomolecules like proteins and DNA, and also between two hydrophobic walls. We shall review the experimental results and place them in the context of theory and simulations. For water confined within RMs, we discuss the possible interference effects propagating from opposite surfaces. Similar interference is found to give rise to an effective attractive force between two hydrophobic surfaces immersed and kept fixed at a separation of d, with the force showing an exponential dependence on this distance. For protein and DNA hydration, we shall examine a multitude of timescales that arise from frustration effects due to the inherent heterogeneity of these surfaces. We pay particular attention to the role of orientational correlations and modification of the same due to interaction with the surfaces.
Collapse
|
8
|
Giraud L, Viricel W, Leblond J, Giasson S. Single stranded siRNA complexation through non-electrostatic interactions. Biomaterials 2017; 113:230-242. [DOI: 10.1016/j.biomaterials.2016.10.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/19/2016] [Accepted: 10/23/2016] [Indexed: 11/24/2022]
|
9
|
Hande VR, Chakrabarty S. Exploration of the presence of bulk-like water in AOT reverse micelles and water-in-oil nanodroplets: the role of charged interfaces, confinement size and properties of water. Phys Chem Chem Phys 2016; 18:21767-79. [DOI: 10.1039/c6cp04378j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We show that the distance from the interface at which bulk-like properties are recovered strongly depends on the choice of order parameter being probed: translational < tetrahedral ≪ dipolar orientation.
Collapse
Affiliation(s)
- Vrushali R. Hande
- Physical and Materials Chemistry Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| | - Suman Chakrabarty
- Physical and Materials Chemistry Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| |
Collapse
|
10
|
Banerjee S, Singh RS, Bagchi B. Orientational order as the origin of the long-range hydrophobic effect. J Chem Phys 2015; 142:134505. [PMID: 25854251 DOI: 10.1063/1.4916744] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The long range attractive force between two hydrophobic surfaces immersed in water is observed to decrease exponentially with their separation-this distance-dependence of effective force is known as the hydrophobic force law (HFL). We explore the microscopic origin of HFL by studying distance-dependent attraction between two parallel rods immersed in 2D Mercedes Benz model of water. This model is found to exhibit a well-defined HFL. Although the phenomenon is conventionally explained by density-dependent theories, we identify orientation, rather than density, as the relevant order parameter. The range of density variation is noticeably shorter than that of orientational heterogeneity. The latter is comparable to the observed distances of hydrophobic force. At large separation, attraction between the rods arises primarily from a destructive interference among the inwardly propagating oppositely oriented heterogeneity generated in water by the two rods. As the rods are brought closer, the interference increases leading to a decrease in heterogeneity and concomitant decrease in free energy of the system, giving rise to the effective attraction. We notice formation of hexagonal ice-like structures at the onset of attractive region which suggests that metastable free energy minimum may play a role in the origin of HFL.
Collapse
Affiliation(s)
- Saikat Banerjee
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Rakesh S Singh
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
11
|
Donaldson SH, Røyne A, Kristiansen K, Rapp MV, Das S, Gebbie MA, Lee DW, Stock P, Valtiner M, Israelachvili J. Developing a general interaction potential for hydrophobic and hydrophilic interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:2051-64. [PMID: 25072835 DOI: 10.1021/la502115g] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We review direct force measurements on a broad class of hydrophobic and hydrophilic surfaces. These measurements have enabled the development of a general interaction potential per unit area, W(D) = -2γ(i)Hy exp(-D/D(H)) in terms of a nondimensional Hydra parameter, Hy, that applies to both hydrophobic and hydrophilic interactions between extended surfaces. This potential allows one to quantitatively account for additional attractions and repulsions not included in the well-known combination of electrostatic double layer and van der Waals theories, the so-called Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The interaction energy is exponentially decaying with decay length D(H) ≈ 0.3-2 nm for both hydrophobic and hydrophilic interactions, with the exact value of D(H) depending on the precise system and conditions. The pre-exponential factor depends on the interfacial tension, γ(i), of the interacting surfaces and Hy. For Hy > 0, the interaction potential describes interactions between partially hydrophobic surfaces, with the maximum hydrophobic interaction (i.e., two fully hydrophobic surfaces) corresponding to Hy = 1. Hydrophobic interactions between hydrophobic monolayer surfaces measured with the surface forces apparatus (SFA) are shown to be well described by the proposed interaction potential. The potential becomes repulsive for Hy < 0, corresponding to partially hydrophilic (hydrated) interfaces. Hydrated surfaces such as mica, silica, and lipid bilayers are discussed and reviewed in the context of the values of Hy appropriate for each system.
Collapse
Affiliation(s)
- Stephen H Donaldson
- Department of Chemical Engineering, University of California , Santa Barbara, California 93106-5080, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lin SR, Tang PH, Wu TM. Local structural effects on orientational relaxation of OH-bond in liquid water over short to intermediate timescales. J Chem Phys 2014; 141:214505. [PMID: 25481150 DOI: 10.1063/1.4902372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
By simulating the rigid simple point charge extended model at temperature T = 300 K, the orientational relaxation of the OH-bond in water was investigated over short to intermediate timescales, within which molecules undergo inertial rotation and libration and then enter the rotational diffusion regime. According to the second-cumulant approximation, the orientational time correlation function (TCF) of each axis that is parallel or perpendicular to an OH-bond is related to an effective rotational density of states (DOS), which is determined using the power spectra of angular velocity autocorrelation functions (AVAFs) of the other two axes. In addition, the AVAF power spectrum of an axis was approximated as the rotational stable instantaneous normal mode (INM) spectrum of the axis. As described in a previous study [S. L. Chang, T. M. Wu, and C. Y. Mou, J. Chem. Phys. 121, 3605 (2004)], simulated molecules were classified into subensembles, according to either the local structures or the H-bond configurations of the molecules. For global molecules and the classified subensembles, the simulation results for the first- and second-rank orientational TCFs were compared with the second-cumulant predictions obtained using the effective rotational DOSs and the rotational stable-INM spectra. On short timescales, the OH-bond in water behaves similar to an inertial rotor and its anisotropy is lower than that of a water molecule. For molecules with three or more H-bonds, the OH-bond orientational TCFs are characterized by a recurrence, which is an indication for libration of the OH-bond. The recurrence can generally be described by the second-cumulant prediction obtained using the rotational stable-INM spectra; however, the orientational TCFs after the recurrence switch to a behavior similar to that predicted using the AVAF power spectra. By contrast, the OH-bond orientational TCFs of molecules initially connected with one or two H-bonds decay monotonically or exhibit a weak recurrence, indicating rapid relaxation into the rotational diffusion regime after the initial Gaussian decay. In addition to accurately describing the Gaussian decay, the second-cumulant predictions formulated using the rotational stable-INM spectra and the AVAF power spectra serve as the upper and lower limits, respectively, for the OH-bond orientational TCFs of these molecules after the Gaussian decay.
Collapse
Affiliation(s)
- S R Lin
- Institute of Physics, National Chiao-Tung University, Hsinchu 300, Taiwan
| | - Ping-Han Tang
- Institute of Physics, National Chiao-Tung University, Hsinchu 300, Taiwan
| | - Ten-Ming Wu
- Institute of Physics, National Chiao-Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
13
|
Fan X, Zhao K. Aggregation behavior and electrical properties of amphiphilic pyrrole-tailed ionic liquids in water, from the viewpoint of dielectric relaxation spectroscopy. SOFT MATTER 2014; 10:3259-3270. [PMID: 24626335 DOI: 10.1039/c3sm53143k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The self-aggregation behavior of amphiphilic pyrrole-tailed imidazolium ionic liquids (Py(CH₂)₁₂mim⁺Br⁻: Py = pyrrole, mim = methylimidazolium) in water is investigated by dielectric spectroscopy from 40 Hz to 110 MHz. Dielectric determination shows that the critical micelle concentration (CMC) is 8.5 mM, which is lower than that for traditional ionic surfactants. The thermodynamic parameter of the micellization, the Gibbs free energy ΔG, was calculated for Py(CH₂)₁₂mim⁺Br⁻ and compared to those of the corresponding C(n)mim⁺Br⁻ (n = 12, 14). It was found that the main driven forces of the Py(CH₂)₁₂mim⁺Br⁻ aggregation were hydrophobic interaction and π-π interactions among the adjacent Py groups. Further, the structure of aggregation was speculated theoretically that Py groups partially insert into the alkyl chains and the staggered arrangement in micelles is formed. When the concentration of Py(CH₂)₁₂mim⁺Br⁻ is higher than CMC, two remarkable relaxations which originated from diffusion of counterions and interfacial polarization between the micelles and solution, were observed at about 1.3 MHz and 55 MHz. The relaxation parameters representing the real properties of the whole system were obtained by fitting the experimental data with Cole-Cole equation. A dielectric model characterizing the structure and electrical properties of spherical micelles was proposed by which the conductivity, permittivity and the volume fraction of micelles as well as electrical properties of solution were calculated from the relaxation parameters. An intriguingly high permittivity of about 150 for the micelle was found to be a direct consequence of the strong orientational order of water molecules inside the core of micelle, and essentially is attributed to the special structure of the micelle. Furthermore, the calculation of the interfacial electrokinetic parameters of the micelles, i.e., the surface conductivity, surface charge density and zeta potential, were also achieved based on the relaxation parameters and phase parameters from higher frequency relaxation. On the basis of the results obtained, the aggregation behaviours and interfacial electrokinetic properties of the special micelles are discussed.
Collapse
Affiliation(s)
- Xiaoqing Fan
- College of Chemistry, Beijing Normal University, Beijing, China.
| | | |
Collapse
|
14
|
Enami S, Colussi AJ. Ion-Specific Long-Range Correlations on Interfacial Water Driven by Hydrogen Bond Fluctuations. J Phys Chem B 2014; 118:1861-6. [DOI: 10.1021/jp411385u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shinichi Enami
- The Hakubi
Center for Advanced Research, Kyoto University, Kyoto 606-8302, Japan
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | - Agustín J. Colussi
- Linde Center for Global Environmental
Science, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
15
|
Weber JK, Pande VS. Functional understanding of solvent structure in GroEL cavity through dipole field analysis. J Chem Phys 2013; 138:165101. [PMID: 23635172 DOI: 10.1063/1.4801942] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Solvent plays a ubiquitous role in all biophysical phenomena. Yet, just how the molecular nature of water impacts processes in biology remains an important question. While one can simulate the behavior of water near biomolecules such as proteins, it is challenging to gauge the potential structural role solvent plays in mediating both kinetic and equilibrium processes. Here, we propose an analysis scheme for understanding the nature of solvent structure at a local level. We first calculate coarse-grained dipole vector fields for an explicitly solvated system simulated through molecular dynamics. We then analyze correlations between these vector fields to characterize water structure under biologically relevant conditions. In applying our method to the interior of the wild type chaperonin complex GroEL+ES, along with nine additional mutant GroEL complexes, we find that dipole field correlations are strongly related to chaperonin function.
Collapse
Affiliation(s)
- Jeffrey K Weber
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA
| | | |
Collapse
|
16
|
Sharifi R, Abanulo DC, Papadimitrakopoulos F. Isotopically induced variation in the stability of FMN-wrapped carbon nanotubes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:7209-7215. [PMID: 23402431 PMCID: PMC3683083 DOI: 10.1021/la304615g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Isotopic, hydrogen-to-deuterium substitution has been an invaluable tool in the characterization of small molecules and biological nanostructures. The natural variability of most inorganic nanomaterials has hindered the use of isotopic substitution in gaining meaningful insights into their structure. The ideal helical wrapping of a flavin mononucleotide (FMN) around (8,6)-SWNTs (single-walled carbon nanotubes) is presently utilized to probe isotopically dependent intermolecular interactions. The facile proton-to-deuterium exchange of the imide group of FMN enabled us to alter the intermolecular stability of the helix depending on the surrounding solvent (i.e., H2O vs D2O). Our studies show that FMN-dispersed (8,6)-SWNTs exhibit greater stability in D2O than in H2O. The higher complex stability in D2O was verified on the basis of (i) FMN helix replacement with SDBS (sodium dodecylbenzenesulfate) and (ii) thermal- and (iii) pH-induced helix dissociation. This is in agreement with the previously observed stronger amide H-bonding of proteins in D2O, and to the best of our knowledge, it demonstrates the architectural fidelity of FMN-wrapped SWNTs, which is expected to enhance the assembly repertoire of carbon nanotubes further.
Collapse
Affiliation(s)
- R. Sharifi
- Department of Chemistry, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136, USA
| | - D. C. Abanulo
- Nanomaterials Optoelectronics Laboratory (NOEL), Polymer Program, University of Connecticut, Storrs, Connecticut 06269-3136, USA
| | - F. Papadimitrakopoulos
- Department of Chemistry, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136, USA
- Nanomaterials Optoelectronics Laboratory (NOEL), Polymer Program, University of Connecticut, Storrs, Connecticut 06269-3136, USA
| |
Collapse
|
17
|
Enami S, Colussi AJ. Long-range specific ion-ion interactions in hydrogen-bonded liquid films. J Chem Phys 2013; 138:184706. [DOI: 10.1063/1.4803652] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Aouf C, Galy N, Santelli M. Evidence for concerted processes in the course of the homoallenylic transposition. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.02.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Baldwin RL. The new view of hydrophobic free energy. FEBS Lett 2013; 587:1062-6. [DOI: 10.1016/j.febslet.2013.01.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 11/29/2022]
|
20
|
McGee MP, Morykwas M, Shelton J, Argenta L. Collagen unfolding accelerates water influx, determining hydration in the interstitial matrix. Biophys J 2012. [PMID: 23200049 DOI: 10.1016/j.bpj.2012.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
In the interstitial matrix, collagen unfolding at physiologic temperatures is thought to facilitate interactions with enzymes and scaffold molecules during inflammation, tissue remodeling, and wound healing. We tested the hypothesis that it also plays a role in modulating flows and matrix hydration potential. After progressively unfolding dermal collagen in situ, we measured the hydration parameters by osmotic stress techniques and modeled them as linear functions of unfolded collagen, quantified by differential scanning calorimetry after timed heat treatment. Consistent with the hypothetical model, the thermodynamic and flow parameters obtained experimentally were related linearly to the unfolded collagen fraction. The increases in relative humidity and intensity of T(2) maps were also consistent with interfacial energy contributions to the hydration potential and the hydrophobic character of the newly formed protein/water interfaces. As a plausible explanation, we propose that increased tension at interfaces formed during collagen unfolding generate local gradients in the matrix that accelerate water transfer in the dermis. This mechanism adds a convective component to interstitial transfer of biological fluids that, unlike diffusion, can speed the dispersion of water and large solutes within the matrix.
Collapse
Affiliation(s)
- Maria P McGee
- Plastic and Reconstructive Surgery Research, Wake-Forest University School of Medicine, Winston-Salem, NC, USA.
| | | | | | | |
Collapse
|
21
|
Leite FL, Bueno CC, Da Róz AL, Ziemath EC, Oliveira ON. Theoretical models for surface forces and adhesion and their measurement using atomic force microscopy. Int J Mol Sci 2012. [PMID: 23202925 PMCID: PMC3497299 DOI: 10.3390/ijms131012773] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS), it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. This review provides the theoretical and experimental background of afs, adhesion forces, intermolecular interactions and surface forces in air, vacuum and in solution.
Collapse
Affiliation(s)
- Fabio L. Leite
- Nanoneurobiophysics Research Group, Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (UFSCar), P.O. Box 3031, CEP 18052-780, Sorocaba, São Paulo, Brazil; E-Mails: (C.C.B.); (A.L.D.R.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +55-015-3229-6014; Fax: +55-015-3229-5902
| | - Carolina C. Bueno
- Nanoneurobiophysics Research Group, Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (UFSCar), P.O. Box 3031, CEP 18052-780, Sorocaba, São Paulo, Brazil; E-Mails: (C.C.B.); (A.L.D.R.)
| | - Alessandra L. Da Róz
- Nanoneurobiophysics Research Group, Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (UFSCar), P.O. Box 3031, CEP 18052-780, Sorocaba, São Paulo, Brazil; E-Mails: (C.C.B.); (A.L.D.R.)
| | - Ervino C. Ziemath
- Institute of Geosciences and Exact Sciences, São Paulo State University (UNESP), P.O. Box 178, CEP 13550-970, Rio Claro, São Paulo, Brazil; E-Mail:
| | - Osvaldo N. Oliveira
- Institute of Physics of São Carlos, University of São Paulo (USP), P.O. Box 369, CEP 13560-970, São Carlos, São Paulo, Brazil; E-Mail:
| |
Collapse
|
22
|
Role of hydration in collagen recognition by bacterial adhesins. Biophys J 2011; 100:2253-61. [PMID: 21539794 DOI: 10.1016/j.bpj.2011.03.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 02/22/2011] [Accepted: 03/09/2011] [Indexed: 11/23/2022] Open
Abstract
Protein-protein recognition regulates the vast majority of physiological or pathological processes. We investigated the role of hydration in collagen recognition by bacterial adhesin CNA by means of first principle molecular-dynamics samplings. Our characterization of the hydration properties of the isolated partners highlights dewetting-prone areas on the surface of CNA that closely match the key regions involved in hydrophobic intermolecular interactions upon complex formation, suggesting that the hydration state of the ligand-free CNA predisposes the protein to the collagen recognition. Moreover, hydration maps of the CNA-collagen complex reveal the presence of a number of structured water molecules that mediate intermolecular interactions at the interface between the two proteins. These hydration sites feature long residence times, significant binding free energies, and a geometrical distribution that closely resembles the hydration pattern of the isolated collagen triple helix. These findings are striking evidence that CNA recognizes the collagen triple helix as a hydrated molecule. For this structural motif, the exposure of several unsatisfied backbone carbonyl groups results in a strong interplay with the solvent, which is shown to also play a role in collagen recognition.
Collapse
|
23
|
Walton JH, Berry RS, Despa F. Amyloid oligomer formation probed by water proton magnetic resonance spectroscopy. Biophys J 2011; 100:2302-8. [PMID: 21539800 DOI: 10.1016/j.bpj.2011.03.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/17/2011] [Accepted: 03/25/2011] [Indexed: 10/18/2022] Open
Abstract
Formation of amyloid oligomers, the most toxic species of amyloids in degenerative diseases, is critically coupled to the interplay with surrounding water. The hydrophobic force driving the oligomerization causes water removal from interfaces, changing the surface-hydration properties. Here, we show that such effects alter the magnetic relaxation response of local water in ways that may enable oligomer detection. By using water proton magnetic resonance spectroscopy, we measured significantly longer transverse magnetic relaxation (T(2)) times in mixtures of serum and amyloidogenic Aβ(1-42) peptides versus similar concentration solutions of serum and nonamyloidogenic scrambled Aβ(42-1) peptides. Immunochemistry with oligomer-specific antibodies, electron microscopy and computer simulations demonstrated that the hyperintense magnetic signal correlates with Aβ(1-42) oligomerization. Finding early biophysical markers of the oligomerization process is crucial for guiding the development of new noninvasive imaging techniques, enabling timely diagnosis of amyloid-related diseases and pharmacological intervention.
Collapse
Affiliation(s)
- J H Walton
- NMR Facility and Biomedical Engineering Graduate Group, University of California, Davis, California, USA
| | | | | |
Collapse
|
24
|
Remarkable patterns of surface water ordering around polarized buckminsterfullerene. Proc Natl Acad Sci U S A 2011; 108:14455-60. [PMID: 21844369 DOI: 10.1073/pnas.1110626108] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Accurate description of water structure affects simulation of protein folding, substrate binding, macromolecular recognition, and complex formation. We study the hydration of buckminsterfullerene, the smallest hydrophobic nanosphere, by molecular dynamics simulations using a state-of-the-art quantum mechanical polarizable force field (QMPFF3), derived from quantum mechanical data at the MP2/aug-cc-pVTZ(-hp) level augmented by CCSD(T). QMPFF3 calculation of the hydrophobic effect is compared to that obtained with empirical force fields. Using a novel and highly sensitive method, we see polarization increases ordered water structure so that the imprint of the hydrophobic surface atoms on the surrounding waters is stronger and extends to long-range. We see less water order for empirical force fields. The greater order seen with QMPFF3 will affect biological processes through a stronger hydrophobic effect.
Collapse
|
25
|
Ravikumar KM, Hwang W. Role of hydration force in the self-assembly of collagens and amyloid steric zipper filaments. J Am Chem Soc 2011; 133:11766-73. [PMID: 21692533 DOI: 10.1021/ja204377y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In protein self-assembly, types of surfaces determine the force between them. Yet the extent to which the surrounding water contributes to this force remains as a fundamental question. Here we study three self-assembling filament systems that respectively have hydrated (collagen), dry nonpolar, and dry polar (amyloid) interfaces. Using molecular dynamics simulations, we calculate and compare local hydration maps and hydration forces. We find that the primary hydration shells are formed all over the surface, regardless of the types of the underlying amino acids. The weakly oscillating hydration force arises from coalescence and depletion of hydration shells as two filaments approach, whereas local water diffusion, orientation, or hydrogen-bonding events have no direct effect. Hydration forces between hydrated, polar, and nonpolar interfaces differ in the amplitude and phase of the oscillation relative to the equilibrium surface separation. Therefore, water-mediated interactions between these protein surfaces, ranging in character from "hydrophobic" to "hydrophilic", have a common molecular origin based on the robustly formed hydration shells, which is likely applicable to a broad range of biomolecular assemblies whose interfacial geometry is similar in length scale to those of the present study.
Collapse
|
26
|
McGee MP, Morykwas MJ, Argenta LC. The local pathology of interstitial edema: Surface tension increases hydration potential in heat-damaged skin. Wound Repair Regen 2011; 19:358-67. [DOI: 10.1111/j.1524-475x.2011.00689.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Ionescu-Tirgoviste C, Despa F. Biophysical alteration of the secretory track in β-cells due to molecular overcrowding: the relevance for diabetes. Integr Biol (Camb) 2010; 3:173-9. [PMID: 21180710 DOI: 10.1039/c0ib00029a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recent data demonstrate that accumulation of misfolded proteins within the early part of the secretory track of β-cells causes impaired insulin synthesis and development of diabetes. The molecular mechanism of this cellular dysfunction remains largely unknown. Using basic molecular principles and computer simulations, we suggested recently that hyperglycemic conditions can generate substantial molecular crowding effects in the secretory track of β-cells leading to significant alterations of the insulin biosynthesis capabilities. Here, we review the major molecular mechanisms that may be implicated in the alteration of insulin synthesis in susceptible β-cells. Steric repulsions and volume exclusion in the endoplasmic reticulum (ER) increase the propensity of misfolding of proinsulin (the precursor molecule of insulin). In addition, similar forces might act in the next secretory compartments (Golgi and vesicles) leading to (i) altered packaging of proinsulin in vesicles (ii) entrapment of proinsulin convertases and/or restricted accessibility for these convertases to the cleavage sites on the surface of the proinsulin and (iii) depressed kinetic rate of the transformation of the native proinsulin in active insulin and C-peptide. These concepts are expressed in simple mathematical terms relating the kinetic coefficient of proinsulin to insulin conversion to the levels of proinsulin misfolding and hyperglycemic stress. The present approach is useful for understanding molecular phenomena associated with the pathogenesis of diabetes. It also offers practical means for predicting the state of pancreatic β-cells from measurements of the insulin to proinsulin ratio in the blood. This is of immediate clinical relevance and may improve the diagnosis of diabetes.
Collapse
|
28
|
Kanth JMP, Vemparala S, Anishetty R. Long-distance correlations in molecular orientations of liquid water and shape-dependent hydrophobic force. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:021201. [PMID: 20365555 DOI: 10.1103/physreve.81.021201] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/20/2009] [Indexed: 05/29/2023]
Abstract
Liquid water, at ambient conditions, has short-range density correlations which are well known in literature. Surprisingly, large scale molecular-dynamics simulations reveal an unusually long-distance correlation in "longitudinal" part of dipole-dipole orientational correlations. It is nonvanishing even at 75 A and falls off exponentially with a correlation length of about 24 A beyond solvation region. Numerical evidence suggests that the long-range nature of dipole-dipole correlation is due to underlying fluctuating network of hydrogen bonds in the liquid phase. This correlation is shown to give a shape dependant attraction between two hydrophobic surfaces at large distances of separation and the range of this attractive force is in agreement with experiments. In addition it is seen that quadrupolar fluctuations vanish within the first solvation peak (3 A) .
Collapse
|
29
|
Despa F, Luo JT, Li J, Duan Y, Lam KS. Cholic acid micelles--controlling the size of the aqueous cavity by PEGylation. Phys Chem Chem Phys 2010; 12:1589-94. [PMID: 20126774 DOI: 10.1039/b914440d] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Data show that cholic acid (CA) micelles are less densely packed and much smaller than micelles formed by typical surfactants, suggesting that CA derivatives can be used to synthesize drug nanocarriers. Presumably, the formation of internal cavities is favored by the facial characteristics of the CA molecule, i.e. the convex molecular structure that is hydrophobic on one side and hydrophilic on the other. Here, we present a thermodynamical approach to quantify the effect of facial characteristics on forces governing the self-assembling process of CA molecules. We show that facial characteristics favor the entrapment of water molecules at interfaces upon CA aggregation, which weakens the attraction between CA hydrophobic moieties. Our computer simulations suggest that these effects contribute significantly to the tendency of CA molecules to form small "hollow-core" micelles. The attachment of polyethylene glycol (PEG) molecular chains to CA increases the repulsive forces in the system, reducing even further the micelle size. We use the present molecular model and experimental critical micelle concentration (cmc) data for CA-PEG systems to predict the change of the micelle size and cavity volume with the increase of the PEG chain length (x). Our computations indicate that the CA-PEG micelles are good candidates for drug delivery. The structural stability of CA-PEG micelles was further assessed by molecular dynamics simulations. We also tested the drug loading efficiency of this system and found an average of 0.5 mg paclitaxel load per 20 mg of CA-PEG polymer. The present study helps to identify critical parameters that control structural properties of the CA based nanocarriers and suggests practical means to optimize the ratio between micelle size and volume of the internal cavity.
Collapse
Affiliation(s)
- F Despa
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
30
|
Evidence of α fluctuations in myoglobin's denaturation in the high temperature region: Average relaxation time from an Adam–Gibbs perspective. Biophys Chem 2009; 144:123-9. [DOI: 10.1016/j.bpc.2009.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 07/23/2009] [Accepted: 07/28/2009] [Indexed: 01/14/2023]
|
31
|
Liu P, Yang H, Geng X. Mixed retention mechanism of proteins in weak anion-exchange chromatography. J Chromatogr A 2009; 1216:7497-504. [DOI: 10.1016/j.chroma.2009.06.080] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Revised: 05/23/2009] [Accepted: 06/30/2009] [Indexed: 11/30/2022]
|
32
|
Tychinsky V. The metabolic component of cellular refractivity and its importance for optical cytometry. JOURNAL OF BIOPHOTONICS 2009; 2:494-504. [PMID: 19644930 DOI: 10.1002/jbio.200910042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Initially, it has been shown that the phase thickness and refractivity (the latter interpreted as the difference of the refractivity indices of an object and surrounding medium) depend on the functional state of mitochondria. The refractivity of various objects decreased in response to energy depletion. This dependence was then demonstrated for other biological objects such as cyanobacteria, chloroplasts and human cells. This general response brought about the hypothesis of a certain "universal" factor that links the variable (or metabolic) component of refractivity with the object's functional state. However, the origin of this phenomenon remains unknown. Our hypothesis is founded on the dependence of polarization of bound water molecules and the activity of metabolic processes. Here, we show the results of measurements of metabolic component of refractivity different bio-objects (mitochondria, chloroplasts, spores, cancer cells) obtained using the Coherent Phase Microscope "Airyscan". Estimations indicated high (up to n approximately = 1.41-1.45) values for the equivalent refractive index of structured water in cells.
Collapse
Affiliation(s)
- V Tychinsky
- Moscow State Institute for Radioengineering, Electronics and Automation, prosp. Vernadskogo 78, 119454 Moscow, Russia.
| |
Collapse
|
33
|
Tresset G. The multiple faces of self-assembled lipidic systems. PMC BIOPHYSICS 2009; 2:3. [PMID: 19374753 PMCID: PMC2695813 DOI: 10.1186/1757-5036-2-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 04/17/2009] [Indexed: 11/10/2022]
Abstract
Lipids, the building blocks of cells, common to every living organisms, have the propensity to self-assemble into well-defined structures over short and long-range spatial scales. The driving forces have their roots mainly in the hydrophobic effect and electrostatic interactions. Membranes in lamellar phase are ubiquitous in cellular compartments and can phase-separate upon mixing lipids in different liquid-crystalline states. Hexagonal phases and especially cubic phases can be synthesized and observed in vivo as well. Membrane often closes up into a vesicle whose shape is determined by the interplay of curvature, area difference elasticity and line tension energies, and can adopt the form of a sphere, a tube, a prolate, a starfish and many more. Complexes made of lipids and polyelectrolytes or inorganic materials exhibit a rich diversity of structural morphologies due to additional interactions which become increasingly hard to track without the aid of suitable computer models. From the plasma membrane of archaebacteria to gene delivery, self-assembled lipidic systems have left their mark in cell biology and nanobiotechnology; however, the underlying physics is yet to be fully unraveled.PACS Codes: 87.14.Cc, 82.70.Uv.
Collapse
Affiliation(s)
- Guillaume Tresset
- Laboratoire de Physique des Solides, Université Paris-Sud, CNRS, UMR 8502, F-91405 Orsay Cedex, France.
| |
Collapse
|
34
|
Geng X, Ke C, Chen G, Liu P, Wang F, Zhang H, Sun X. On-line separation of native proteins by two-dimensional liquid chromatography using a single column. J Chromatogr A 2009; 1216:3553-62. [DOI: 10.1016/j.chroma.2009.01.085] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 01/21/2009] [Accepted: 01/26/2009] [Indexed: 11/16/2022]
|
35
|
A new approach for characterizing the intermediate feature of α-chymotrypsin refolding by hydrophobic interaction chromatography. Int J Mol Sci 2009; 10:616-628. [PMID: 19333424 PMCID: PMC2660661 DOI: 10.3390/ijms10020616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 02/15/2009] [Accepted: 02/17/2009] [Indexed: 11/24/2022] Open
Abstract
A new approach for characterizing the intermediate of urea-denatured α-chymotrypsin (α-Chy) by hydrophobic interaction chromatography (HIC) is presented. The contact surface region (Z, S), affinity (logI), and the character of interaction force (j) of the α-Chy to the stationary phase of HIC (STHIC) between the intermediate (M) and native (N) states were found to be quite different as urea concentration (Curea) changes. With the changes in Curea, a linear relationship between logI and Z was found to exist only for its N state, not for M state, indicating the interaction force between α-Chy in N state to the STHIC to be non-selective, but selective one for its M state. Also, the measured magnitude of both logI and Z in M state is only a fifth of that in N state. All three parameters were employed to distinguish protein in the N state from that in the M state. It would be expected that this result could be employed to distinguish any kind of non-functional protein having correct three-, or four-dimensional molecular structure from their stable M state of any kinds of proteins, and/or other proteins in proteome investigation, separation process of protein, and intensively understanding the intrinsic rule of protein folding in molecular biology.
Collapse
|
36
|
Hydration profiles of amyloidogenic molecular structures. J Biol Phys 2008; 34:577-90. [PMID: 19669515 DOI: 10.1007/s10867-008-9122-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 10/20/2008] [Indexed: 10/21/2022] Open
Abstract
Hydration shells of normal proteins display regions of highly structured water as well as patches of less structured bulk-like water. Recent studies suggest that isomers with larger surface densities of patches of bulk-like water have an increased propensity to aggregate. These aggregates are toxic to the cellular environment. Hence, the early detection of these toxic deposits is of paramount medical importance. We show that various morphological states of association of such isomers can be differentiated from the normal protein background based on the characteristic partition between bulk, caged, and surface hydration water and the magnetic resonance (MR) signals of this water. We derive simple mathematical equations relating the compartmentalization of water to the local hydration fraction and the packing density of the newly formed molecular assemblies. Then, we employ these equations to predict the MR response of water constrained by protein aggregation. Our results indicate that single units and compact aggregates that contain no water between constituents induce a shift of the MR signal from normal protein background to values in the hyperintensity domain (bright spots), corresponding to bulk water. In contrast, large plaques that cage significant amounts of water between constituents are likely to generate MR responses in the hypointensity domain (dark spots), typical for strongly correlated water. The implication of these results is that amyloids can display both dark and bright spots when compared to the normal gray background tissue on MR images. In addition, our findings predict that the bright spots are more likely to correspond to amyloids in their early stage of development. The results help explain the MR contrast patterns of amyloids and suggest a new approach for identifying unusual protein aggregation related to disease.
Collapse
|
37
|
Howard JJ, Perkyns JS, Choudhury N, Pettitt BM. An Integral Equation Study of the Hydrophobic Interaction between Graphene Plates. J Chem Theory Comput 2008; 4:1928-1939. [PMID: 19262740 DOI: 10.1021/ct8002817] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hydrophobic association of two parallel graphene sheets is studied using the 3D-RISM HNC integral equations with several theoretical methods for the solvent distribution functions. The potential of mean force is calculated to study the effects of the aqueous solvent models and methods on the plates as a function of distance. The results of several integral equations (IE) are compared to MD simulations for the same model. The 3D-IEs are able to qualitatively reproduce the nature of the solvent effects on the potential of mean force but not quantitatively. The local minima in the potential of mean force occur at distances allowing well defined layers of solvent between the plates but are not coincident with those found in simulation of the same potential regardless of the theoretical methods tested here. The dewetting or drying transition between the plates is generally incorrectly dependent on steric effects with these methods even for very hydrophobic systems without solute-solvent attractions, in contradiction with simulation.
Collapse
Affiliation(s)
- Jesse J Howard
- Department of Chemistry, University of Houston Houston, Texas 77204-5003
| | | | | | | |
Collapse
|
38
|
Sheppard AR, Swicord ML, Balzano Q. Quantitative evaluations of mechanisms of radiofrequency interactions with biological molecules and processes. HEALTH PHYSICS 2008; 95:365-396. [PMID: 18784511 DOI: 10.1097/01.hp.0000319903.20660.37] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The complexity of interactions of electromagnetic fields up to 10(12) Hz with the ions, atoms, and molecules of biological systems has given rise to a large number of established and proposed biophysical mechanisms applicable over a wide range of time and distance scales, field amplitudes, frequencies, and waveforms. This review focuses on the physical principles that guide quantitative assessment of mechanisms applicable for exposures at or below the level of endogenous electric fields associated with development, wound healing, and excitation of muscles and the nervous system (generally, 1 to 10(2) V m(-1)), with emphasis on conditions where temperature increases are insignificant (<<1 K). Experiment and theory demonstrate possible demodulation at membrane barriers for frequencies < or =10 MHz, but not at higher frequencies. Although signal levels somewhat below system noise can be detected, signal-to-noise ratios substantially less than 0.1 cannot be overcome by cooperativity, signal averaging, coherent detection, or by nonlinear dynamical systems. Sensory systems and possible effects on biological magnetite suggest paradigms for extreme sensitivity at lower frequencies, but there are no known radiofrequency (RF) analogues. At the molecular level, vibrational modes are so overdamped by water molecules that excitation of molecular modes below the far infrared cannot occur. Two RF mechanisms plausibly may affect biological matter under common exposure conditions. For frequencies below approximately 150 MHz, shifts in the rate of chemical reactions can be mediated by radical pairs and, at all frequencies, dielectric and resistive heating can raise temperature and increase the entropy of the affected biological system.
Collapse
|
39
|
Abstract
Recent molecular-dynamics simulations have demonstrated that the use of an empirical hydrophobic potential displaying two minima, i.e., one for hydrophobes in close contact and one for hydrophobes separated by a hydration layer, leads to a marked improvement in protein structure prediction. This potential is supported by experimental data and simulations, but its physical origin and mathematical formulation have not been derived as yet. Here we show that water-mediated attraction (the "wetting regime") between two hydrophobic molecules originates in the interaction between the dipoles induced at the surface of the hydrophobes by the surrounding structured water. As an example, we derive the effective hydrophobic potential that describes the interaction between two methane molecules, a classical model of a double-well energy function. We found an excellent agreement with published results from all-atom, explicit solvent molecular-dynamics simulations of this interaction. The approach presented here provides the theoretical basis for implementing an adequate representation of the wetting regime of the hydrophobic interactions in force fields used for structure prediction. The results are useful for modeling both protein folding and binding.
Collapse
|
40
|
Weiss DR, Raschke TM, Levitt M. How hydrophobic buckminsterfullerene affects surrounding water structure. J Phys Chem B 2008; 112:2981-90. [PMID: 18275178 PMCID: PMC2692030 DOI: 10.1021/jp076416h] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hydrophobic hydration of fullerenes in water is of significant interest as the most common Buckminsterfullerene (C60) is a mesoscale sphere; C60 also has potential in pharmaceutical and nanomaterial applications. We use an all-atom molecular dynamics simulation lasting hundreds of nanoseconds to determine the behavior of a single molecule of C60 in a periodic box of water, and compare this to methane. A C60 molecule does not induce drying at the surface; however, unlike a hard sphere methane, a hard sphere C60 solute does. This is due to a larger number of attractive Lennard-Jones interactions between the carbon atom centers in C60 and the surrounding waters. In these simulations, water is not uniformly arranged but rather adopts a range of orientations in the first hydration shell despite the spherical symmetry of both solutes. There is a clear effect of solute size on the orientation of the first hydration shell waters. There is a large increase in hydrogen-bonding contacts between waters in the C60 first hydration shell. There is also a disruption of hydrogen bonds between waters in the first and second hydration shells. Water molecules in the first hydration shell preferentially create triangular structures that minimize the net water dipole near the surface near both the methane and C60 surface, reducing the total energy of the system. Additionally, in the first and second hydration shells, the water dipoles are ordered to a distance of 8 A from the solute surface. We conclude that, with a diameter of approximately 1 nm, C60 behaves as a large hydrophobic solute.
Collapse
Affiliation(s)
- Dahlia R Weiss
- Department of Structural Biology, Stanford Medical School, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
41
|
Despa F. Water confined in reverse micelles–probe tool in biomedical informatics. Phys Chem Chem Phys 2008; 10:4740-7. [DOI: 10.1039/b805699b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Affiliation(s)
- Philip Ball
- Nature, 4-6 Crinan Street, London N1 9XW, U.K
| |
Collapse
|
43
|
Kimura M, Takemori S. CH2-Units on (Poly-)ethylene Glycol Radially Dehydrate Cytoplasm of Resting Skinned Skeletal Muscle. J Biochem 2007; 143:841-7. [DOI: 10.1093/jb/mvn048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
44
|
Daidone I, Ulmschneider MB, Di Nola A, Amadei A, Smith JC. Dehydration-driven solvent exposure of hydrophobic surfaces as a driving force in peptide folding. Proc Natl Acad Sci U S A 2007; 104:15230-5. [PMID: 17881585 PMCID: PMC2000556 DOI: 10.1073/pnas.0701401104] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent work has shown that the nature of hydration of pure hydrophobic surfaces changes with the length scale considered: water hydrogen-bonding networks adapt to small exposed hydrophobic species, hydrating or "wetting" them at relatively high densities, whereas larger hydrophobic areas are "dewetted" [Chandler D (2005), Nature 29:640-647]. Here we determine whether this effect is also present in peptides by examining the folding of a beta-hairpin (the 14-residue amyloidogenic prion protein H1 peptide), using microsecond time-scale molecular dynamics simulations. Two simulation models are compared, one explicitly including the water molecules, which may thus adapt locally to peptide configurations, and the other using a popular continuum approximation, the generalized Born/surface area implicit solvent model. The results obtained show that, in explicit solvent, peptide conformers with high solvent-accessible hydrophobic surface area indeed also have low hydration density around hydrophobic residues, whereas a concomitant higher hydration density around hydrophilic residues is observed. This dewetting effect stabilizes the fully folded beta-hairpin state found experimentally. In contrast, the implicit solvent model destabilizes the fully folded hairpin, tending to cluster hydrophobic residues regardless of the size of the exposed hydrophobic surface. Furthermore, the rate of the conformational transitions in the implicit solvent simulation is almost doubled with respect to that of the explicit solvent. The results suggest that dehydration-driven solvent exposure of hydrophobic surfaces may be a significant factor determining peptide conformational equilibria.
Collapse
Affiliation(s)
- Isabella Daidone
- *Interdisciplinary Center for Scientific Computing, University of Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany
- Department of Chemistry, University of Rome “La Sapienza,” Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Martin B. Ulmschneider
- Department of Chemistry, University of Rome “La Sapienza,” Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alfredo Di Nola
- Department of Chemistry, University of Rome “La Sapienza,” Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Andrea Amadei
- Department of Chemical Sciences and Technology, University of Rome “Tor Vergata,” Via della Ricerca Scientifica 1, 00133 Rome, Italy; and
| | - Jeremy C. Smith
- *Interdisciplinary Center for Scientific Computing, University of Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany
- Center for Molecular Biophysics, University of Tennessee/Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
45
|
Auffinger P, Hashem Y. Nucleic acid solvation: from outside to insight. Curr Opin Struct Biol 2007; 17:325-33. [PMID: 17574833 DOI: 10.1016/j.sbi.2007.05.008] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 03/28/2007] [Accepted: 05/31/2007] [Indexed: 11/18/2022]
Abstract
Nucleic acids are polyanionic molecules that were historically considered to be solely surrounded by a shell of water molecules and a neutralizing cloud of monovalent and divalent cations. In this respect, recent experimental and theoretical reports demonstrate that water molecules within complex nucleic acid structures can display very long residency times, and assist drug binding and catalytic reactions. Finally, anions can also bind to these polyanionic systems. Many of these recent insights are provided by state-of-the-art molecular dynamics simulations of nucleic acid systems, which will be described together with relevant methodological issues.
Collapse
Affiliation(s)
- Pascal Auffinger
- Architecture et réactivité de l'ARN, Université Louis Pasteur de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084 Strasbourg, France.
| | | |
Collapse
|