1
|
Wang D, Hedayati M, Stuart JD, Madruga LYC, Popat KC, Snow CD, Kipper MJ. Ligand Presentation Inside Protein Crystal Nanopores: Tunable Interfacial Adhesion Noncovalently Modulates Cell Attachment. MATERIALS TODAY. NANO 2023; 24:100432. [PMID: 38370345 PMCID: PMC10871713 DOI: 10.1016/j.mtnano.2023.100432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Protein crystals with sufficiently large solvent pores can non-covalently adsorb polymers in the pores. In principle, if these polymers contain cell adhesion ligands, the polymer-laden crystals could present ligands to cells with tunable adhesion strength. Moreover, porous protein crystals can store an internal ligand reservoir, so that the surface can be replenished. In this study, we demonstrate that poly(ethylene glycol) terminated with a cyclic cell adhesion ligand peptide (PEG-RGD) can be loaded into porous protein crystals by diffusion. Through atomic force microscopy (AFM), force-distance correlations of the mechanical interactions between activated AFM tips and protein crystals were precisely measured. The activation of AFM tips allows the tips to interact with PEG-RGD that was pre-loaded in the protein crystal nanopores, mimicking how a cell might attach to and pull on the ligand through integrin receptors. The AFM experiments also simultaneously reveal the detailed morphology of the buffer-immersed nanoporous protein crystal surface. We also show that porous protein crystals (without and with loaded PEG-RGD) serve as suitable substrates for attachment and spreading of adipose-derived stem cells. This strategy can be used to design surfaces that non-covalently present multiple different ligands to cells with tunable adhesive strength for each ligand, and with an internal reservoir to replenish the precisely defined crystalline surface.
Collapse
Affiliation(s)
- Dafu Wang
- Department of Chemical and Biological Engineering, Colorado State University, 1370Campus Delivery, Fort Collins, CO 80523, U.S.A
- School of Advanced Materials Discovery, Colorado State University, 1617 Campus Delivery, Fort Collins, CO 80523, U.S.A
| | - Mohammadhasan Hedayati
- Department of Chemical and Biological Engineering, Colorado State University, 1370Campus Delivery, Fort Collins, CO 80523, U.S.A
| | - Julius D Stuart
- Department of Chemistry, Colorado State University, 1872 Campus Delivery, FortCollins, CO 80523, U.S.A
| | - Liszt Y C Madruga
- Department of Chemical and Biological Engineering, Colorado State University, 1370Campus Delivery, Fort Collins, CO 80523, U.S.A
| | - Ketul C Popat
- Department of Chemical and Biological Engineering, Colorado State University, 1370Campus Delivery, Fort Collins, CO 80523, U.S.A
| | - Christopher D Snow
- Department of Chemical and Biological Engineering, Colorado State University, 1370Campus Delivery, Fort Collins, CO 80523, U.S.A
- School of Advanced Materials Discovery, Colorado State University, 1617 Campus Delivery, Fort Collins, CO 80523, U.S.A
- Department of Chemistry, Colorado State University, 1872 Campus Delivery, FortCollins, CO 80523, U.S.A
- School of Biomedical Engineering, Colorado State University, 1301 Campus Delivery, Fort Collins, CO 80523, U.S.A
| | - Matt J Kipper
- Department of Chemical and Biological Engineering, Colorado State University, 1370Campus Delivery, Fort Collins, CO 80523, U.S.A
- School of Advanced Materials Discovery, Colorado State University, 1617 Campus Delivery, Fort Collins, CO 80523, U.S.A
- School of Biomedical Engineering, Colorado State University, 1301 Campus Delivery, Fort Collins, CO 80523, U.S.A
| |
Collapse
|
2
|
Soheilmoghaddam F, Rumble M, Cooper-White J. High-Throughput Routes to Biomaterials Discovery. Chem Rev 2021; 121:10792-10864. [PMID: 34213880 DOI: 10.1021/acs.chemrev.0c01026] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many existing clinical treatments are limited in their ability to completely restore decreased or lost tissue and organ function, an unenviable situation only further exacerbated by a globally aging population. As a result, the demand for new medical interventions has increased substantially over the past 20 years, with the burgeoning fields of gene therapy, tissue engineering, and regenerative medicine showing promise to offer solutions for full repair or replacement of damaged or aging tissues. Success in these fields, however, inherently relies on biomaterials that are engendered with the ability to provide the necessary biological cues mimicking native extracellular matrixes that support cell fate. Accelerating the development of such "directive" biomaterials requires a shift in current design practices toward those that enable rapid synthesis and characterization of polymeric materials and the coupling of these processes with techniques that enable similarly rapid quantification and optimization of the interactions between these new material systems and target cells and tissues. This manuscript reviews recent advances in combinatorial and high-throughput (HT) technologies applied to polymeric biomaterial synthesis, fabrication, and chemical, physical, and biological screening with targeted end-point applications in the fields of gene therapy, tissue engineering, and regenerative medicine. Limitations of, and future opportunities for, the further application of these research tools and methodologies are also discussed.
Collapse
Affiliation(s)
- Farhad Soheilmoghaddam
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| | - Madeleine Rumble
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| | - Justin Cooper-White
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| |
Collapse
|
3
|
Lan T, Cheng K, Ren T, Arce SH, Tseng Y. Displacement correlations between a single mesenchymal-like cell and its nucleus effectively link subcellular activities and motility in cell migration analysis. Sci Rep 2016; 6:34047. [PMID: 27670131 PMCID: PMC5037420 DOI: 10.1038/srep34047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 09/07/2016] [Indexed: 01/13/2023] Open
Abstract
Cell migration is an essential process in organism development and physiological maintenance. Although current methods permit accurate comparisons of the effects of molecular manipulations and drug applications on cell motility, effects of alterations in subcellular activities on motility cannot be fully elucidated from those methods. Here, we develop a strategy termed cell-nuclear (CN) correlation to parameterize represented dynamic subcellular activities and to quantify their contributions in mesenchymal-like migration. Based on the biophysical meaning of the CN correlation, we propose a cell migration potential index (CMPI) to measure cell motility. When the effectiveness of CMPI was evaluated with respect to one of the most popular cell migration analysis methods, Persistent Random Walk, we found that the cell motility estimates among six cell lines used in this study were highly consistent between these two approaches. Further evaluations indicated that CMPI can be determined using a shorter time period and smaller cell sample size, and it possesses excellent reliability and applicability, even in the presence of a wide range of noise, as might be generated from individual imaging acquisition systems. The novel approach outlined here introduces a robust strategy through an analysis of subcellular locomotion activities for single cell migration assessment.
Collapse
Affiliation(s)
- Tian Lan
- Department of Chemical Engineering, Gainesville, FL 32611, USA
| | - Kai Cheng
- Department of Chemical Engineering, Gainesville, FL 32611, USA
| | - Tina Ren
- Harvard School of Dental Medicine, Boston, MA 02115, USA
| | | | - Yiider Tseng
- Department of Chemical Engineering, Gainesville, FL 32611, USA.,J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, FL 32611, USA.,Institute for Cell &Tissue Science and Engineering, University of Florida, Gainesville, FL 32611, USA.,National Cancer Institute-Physical Science Oncology Center, Gainesville, FL 32611, USA
| |
Collapse
|
4
|
Tang D, Dong S, Jiang Y, Li H, Huang Y. ITGO: Invasive tumor growth optimization algorithm. Appl Soft Comput 2015. [DOI: 10.1016/j.asoc.2015.07.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Leong MC, Vedula SRK, Lim CT, Ladoux B. Geometrical constraints and physical crowding direct collective migration of fibroblasts. Commun Integr Biol 2013; 6:e23197. [PMID: 23750300 PMCID: PMC3609846 DOI: 10.4161/cib.23197] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Migrating cells constantly interact with their immediate microenvironment and neighbors. Although studies on single cell migration offer us insights into the molecular and biochemical signaling pathways, they cannot predict the influence of cell crowding and geometrical cues. Using microfabrication techniques, we examine the influence of cell density and geometrical constraints on migrating fibroblasts. Fibroblasts were allowed to migrate on fibronectin strips of different widths. Under such conditions, cells experience various physical guidance cues including boundary effect, confinement and contact inhibition from neighboring cells. Fibroblasts migrating along the edge of the fibronectin pattern exhibit spindle-like morphology, reminiscent of migrating cells within confined space and high cell density are associated with increased alignment and higher speed in migrating fibroblasts.
Collapse
Affiliation(s)
- Man Chun Leong
- NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore
| | | | | | | |
Collapse
|
6
|
Computer simulations of in vitro morphogenesis. Biosystems 2012; 109:430-43. [DOI: 10.1016/j.biosystems.2012.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/15/2012] [Accepted: 06/15/2012] [Indexed: 01/08/2023]
|
7
|
Meyer AS, Hughes-Alford SK, Kay JE, Castillo A, Wells A, Gertler FB, Lauffenburger DA. 2D protrusion but not motility predicts growth factor-induced cancer cell migration in 3D collagen. ACTA ACUST UNITED AC 2012; 197:721-9. [PMID: 22665521 PMCID: PMC3373410 DOI: 10.1083/jcb.201201003] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In breast cancer cells, growth factor stimulation of membrane protrusion was a better predictor of 3D migration than 2D motility, cognate receptor expression, or receptor activation. Growth factor–induced migration is a critical step in the dissemination and metastasis of solid tumors. Although differences in properties characterizing cell migration on two-dimensional (2D) substrata versus within three-dimensional (3D) matrices have been noted for particular growth factor stimuli, the 2D approach remains in more common use as an efficient surrogate, especially for high-throughput experiments. We therefore were motivated to investigate which migration properties measured in various 2D assays might be reflective of 3D migratory behavioral responses. We used human triple-negative breast cancer lines stimulated by a panel of receptor tyrosine kinase ligands relevant to mammary carcinoma progression. Whereas 2D migration properties did not correlate well with 3D behavior across multiple growth factors, we found that increased membrane protrusion elicited by growth factor stimulation did relate robustly to enhanced 3D migration properties of the MDA-MB-231 and MDA-MB-157 lines. Interestingly, we observed this to be a more reliable relationship than cognate receptor expression or activation levels across these and two additional mammary tumor lines.
Collapse
Affiliation(s)
- Aaron S Meyer
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Ventre M, Valle F, Bianchi M, Biscarini F, Netti PA. Cell fluidics: producing cellular streams on micropatterned synthetic surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:714-721. [PMID: 22121886 DOI: 10.1021/la204144k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Patterning cell-adhesive molecules on material surfaces provides a powerful tool for controlling and guiding cell locomotion and migration. Here we report fast, reliable, easy to implement methods to fabricate large patterns of proteins on synthetic substrates to control the direction and speed of cells. Two common materials exhibiting very different protein adsorption capacities, namely, polystyrene and Teflon, were functionalized with micrometric stripes of laminin. The protein was noncovalently immobilized onto the surface by following either lithographically controlled wetting (LCW) or micromolding in capillaries (MIMIC). These techniques proved to be sufficiently mild so as not to interfere with the protein adhesion capability. Cells adhered onto the functionalized stripes and remained viable for more than 20 h. During this time frame, cells migrated along the lanes and the dynamics of motion was strongly affected by the substrate surface chemistry and culturing conditions. In particular, enhanced mismatches of cell adhesive properties obtained by the juxtaposition of bare and laminin-functionalized Teflon caused cells to move slowly and their movement to be highly confined. The patterning procedure was also effective at guiding migration on conventional cell culture dishes that were functionalized with laminin patterns, even in the presence of serum proteins, although to a lesser extent compared to that for Teflon. This work demonstrates the possibility of creating well-defined, long-range cellular streams on synthetic substrates by pursuing straightforward functionalizing techniques that can be implemented for a broad class of materials under conventional, long-time cell-culturing conditions. The procedure effectively confines cells to migrate along predefined patterns and can be implemented in different biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Maurizio Ventre
- Istituto Italiano di Tecnologia, Center for Advanced Biomaterials for Health Care @CRIB
| | | | | | | | | |
Collapse
|
9
|
Spatial organization of mesenchymal stem cells in vitro--results from a new individual cell-based model with podia. PLoS One 2011; 6:e21960. [PMID: 21760935 PMCID: PMC3132757 DOI: 10.1371/journal.pone.0021960] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 06/15/2011] [Indexed: 11/19/2022] Open
Abstract
Therapeutic application of mesenchymal stem cells (MSC) requires their extensive in vitro expansion. MSC in culture typically grow to confluence within a few weeks. They show spindle-shaped fibroblastoid morphology and align to each other in characteristic spatial patterns at high cell density. We present an individual cell-based model (IBM) that is able to quantitatively describe the spatio-temporal organization of MSC in culture. Our model substantially improves on previous models by explicitly representing cell podia and their dynamics. It employs podia-generated forces for cell movement and adjusts cell behavior in response to cell density. At the same time, it is simple enough to simulate thousands of cells with reasonable computational effort. Experimental sheep MSC cultures were monitored under standard conditions. Automated image analysis was used to determine the location and orientation of individual cells. Our simulations quantitatively reproduced the observed growth dynamics and cell-cell alignment assuming cell density-dependent proliferation, migration, and morphology. In addition to cell growth on plain substrates our model captured cell alignment on micro-structured surfaces. We propose a specific surface micro-structure that according to our simulations can substantially enlarge cell culture harvest. The 'tool box' of cell migratory behavior newly introduced in this study significantly enhances the bandwidth of IBM. Our approach is capable of accommodating individual cell behavior and collective cell dynamics of a variety of cell types and tissues in computational systems biology.
Collapse
|
10
|
Stefanoni F, Ventre M, Mollica F, Netti PA. A numerical model for durotaxis. J Theor Biol 2011; 280:150-8. [PMID: 21530547 DOI: 10.1016/j.jtbi.2011.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 03/25/2011] [Accepted: 04/02/2011] [Indexed: 11/19/2022]
Abstract
Cell migration is a phenomenon that is involved in several physiological processes. In the absence of external guiding factors it shares analogies with Brownian motion. The presence of biochemical or biophysical cues, on the other hand, can influence cell migration transforming it in a biased random movement. Recent studies have shown that different cell types are able to recognise the mechanical properties of the substratum over which they move and that these properties direct the motion through a process called durotaxis. In this work a 2D mathematical model for the description of this phenomenon is presented. The model is based on the Langevin equation that has been modified to take into account the local mechanical properties of the substratum perceived by the cells. Numerical simulations of the model provide individual cell tracks, whose characteristics can be compared with experimental observations directly. The present model is solved for two important cases: an isotropic substratum, to check that random motility is recovered as a subcase, and a biphasic substratum, to investigate durotaxis. The degree of agreement is satisfactory in both cases. The model can be a useful tool for quantifying relevant parameters of cell migration as a function of the substratum mechanical properties.
Collapse
Affiliation(s)
- Filippo Stefanoni
- Department of Engineering, University of Ferrara, Via Saragat 1 44122 Ferrara, Italy
| | | | | | | |
Collapse
|
11
|
Groh A, Wagner M. Biased three-dimensional cell migration and collagen matrix modification. Math Biosci 2011; 231:105-19. [PMID: 21354184 DOI: 10.1016/j.mbs.2011.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 10/15/2010] [Accepted: 02/18/2011] [Indexed: 11/28/2022]
Abstract
Various tumours can be resected even for cure with complete removal. Surgical excision with a wide margin to ensure complete removal has therefore been suggested as the primary treatment for such lesions. The histological examination of the three-dimensional (3D) excision margins (3D histology) constitutes an important part of the quality control mechanisms in tumour surgery. Understanding histologically relevant properties of the constituents of the microenvironment in tumours and the circumferential portion of non-lesional tissue is therefore critical. Accompanied by the increasing availability of high performance computers in recent decades, there has been a strong movement aiming at the development of mathematical models whose implementations allow in silico simulations of biological reaction networks. Due to its relevance in numerous biological and pathological processes, there have been various attempts to model biased migration of single cells. The model introduced in this paper plays a prominent role insofar as it covers the under-represented 3D case. Moreover, it is uniformly formulated for both two and three dimensions. The velocity of each cell is characterised by a generalised Langevin equation, a stochastic differential equation, where chemotaxis as well as contact guidance are considered to simulate selected aspects of interactions between carcinoma cell groups and fibroblast-like cells. Algorithmic and numeric aspects of the developed equations are detailed in this paper and the results of the simulations are illustrated in different manners to emphasise specific features. A simple test scenario as well as a geometry based on segmentation data of a real histological slide has served for verification of the software. The resulting morphologies closely resemble that of desmoplastic stromal reaction readily identifiable in histological slides of infiltrating carcinoma, and the images can be interpreted in the context of 3D histology.
Collapse
Affiliation(s)
- A Groh
- Saarland University, Faculty 6 - Mathematics and Computer Science, POB 151150, 66041 Saarbrücken, Germany.
| | | |
Collapse
|
12
|
Simon CG, Lin-Gibson S. Combinatorial and high-throughput screening of biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:369-387. [PMID: 20839249 DOI: 10.1002/adma.201001763] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Indexed: 05/29/2023]
Abstract
Combinatorial and high-throughput methods have been increasingly used to accelerate research and development of new biomaterials. These methods involve creating miniaturized libraries that contain many specimens in one sample in the form of gradients or arrays, followed by automated data collection and analysis. This article reviews recent advances in utilizing combinatorial and high-throughput methods to better understand cell-material interactions, particularly highlighting our efforts at the NIST Polymers Division. Specifically, fabrication techniques to generate controlled surfaces (2D) and 3D cell environments (tissue engineering scaffolds) as well as methods to characterize and analyze material properties and cell-material interactions are described. In conclusion, additional opportunities for combinatorial methods for biomaterials research are noted, including streamlined sample fabrication and characterization, appropriate and automated bioassays, and data analysis.
Collapse
Affiliation(s)
- Carl G Simon
- Polymers Division, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD 29899, USA
| | | |
Collapse
|
13
|
Guarnieri D, De Capua A, Ventre M, Borzacchiello A, Pedone C, Marasco D, Ruvo M, Netti PA. Covalently immobilized RGD gradient on PEG hydrogel scaffold influences cell migration parameters. Acta Biomater 2010; 6:2532-9. [PMID: 20051270 DOI: 10.1016/j.actbio.2009.12.050] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 12/11/2009] [Accepted: 12/29/2009] [Indexed: 11/30/2022]
Abstract
Understanding the influence of a controlled spatial distribution of biological cues on cell activities can be useful to design "cell instructive" materials, able to control and guide the formation of engineered tissues in vivo and in vitro. To this purpose, biochemical and mechanical properties of the resulting biomaterial must be carefully designed and controlled. In this work, the effect of covalently immobilized RGD peptide gradients on poly(ethylene glycol) diacrylate hydrogels on cell behaviour was studied. We set up a mechanical device generating gradients based on a fluidic chamber. Cell response to RGD gradients with different slope (0.7, 1 and 2 mM cm(-1)) was qualitatively and quantitatively assessed by evaluating cell adhesion and, in particular, cell migration, compared to cells seeded on hydrogels with uniform distribution of RGD peptides. To evaluate the influence of RGD gradient and to exclude any concentration effect on cell response, all analyses were carried out in a specific region of the gradients which displayed the same average concentration of RGD (1.5 mM). Results suggest that cells recognize the RGD gradient and adhere onto it assuming a stretched shape. Moreover, cells tend to migrate in the direction of the gradient, as their speed is higher than that of cells migrating on hydrogels with a uniform distribution of RGD and increases by increasing RGD gradient steepness. This increment is due to an augmentation of bias speed component of the mean squared speed, that is, the drift of the cell population migrating on the anisotropic surface provided by the RGD gradient.
Collapse
Affiliation(s)
- D Guarnieri
- Interdisciplinary Research Centre on Biomaterials (CRIB), Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Jeon J, Quaranta V, Cummings PT. An off-lattice hybrid discrete-continuum model of tumor growth and invasion. Biophys J 2010; 98:37-47. [PMID: 20074513 DOI: 10.1016/j.bpj.2009.10.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 09/25/2009] [Accepted: 10/01/2009] [Indexed: 11/29/2022] Open
Abstract
We have developed an off-lattice hybrid discrete-continuum (OLHDC) model of tumor growth and invasion. The continuum part of the OLHDC model describes microenvironmental components such as matrix-degrading enzymes, nutrients or oxygen, and extracellular matrix (ECM) concentrations, whereas the discrete portion represents individual cell behavior such as cell cycle, cell-cell, and cell-ECM interactions and cell motility by the often-used persistent random walk, which can be depicted by the Langevin equation. Using this framework of the OLHDC model, we develop a phenomenologically realistic and bio/physically relevant model that encompasses the experimentally observed superdiffusive behavior (at short times) of mammalian cells. When systemic simulations based on the OLHDC model are performed, tumor growth and its morphology are found to be strongly affected by cell-cell adhesion and haptotaxis. There is a combination of the strength of cell-cell adhesion and haptotaxis in which fingerlike shapes, characteristic of invasive tumor, are observed.
Collapse
Affiliation(s)
- Junhwan Jeon
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA.
| | | | | |
Collapse
|
15
|
Quaranta V, Tyson DR, Garbett SP, Weidow B, Harris MP, Georgescu W. Trait variability of cancer cells quantified by high-content automated microscopy of single cells. Methods Enzymol 2009; 467:23-57. [PMID: 19897088 DOI: 10.1016/s0076-6879(09)67002-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Mapping quantitative cell traits (QCT) to underlying molecular defects is a central challenge in cancer research because heterogeneity at all biological scales, from genes to cells to populations, is recognized as the main driver of cancer progression and treatment resistance. A major roadblock to a multiscale framework linking cell to signaling to genetic cancer heterogeneity is the dearth of large-scale, single-cell data on QCT-such as proliferation, death sensitivity, motility, metabolism, and other hallmarks of cancer. High-volume single-cell data can be used to represent cell-to-cell genetic and nongenetic QCT variability in cancer cell populations as averages, distributions, and statistical subpopulations. By matching the abundance of available data on cancer genetic and molecular variability, QCT data should enable quantitative mapping of phenotype to genotype in cancer. This challenge is being met by high-content automated microscopy (HCAM), based on the convergence of several technologies including computerized microscopy, image processing, computation, and heterogeneity science. In this chapter, we describe an HCAM workflow that can be set up in a medium size interdisciplinary laboratory, and its application to produce high-throughput QCT data for cancer cell motility and proliferation. This type of data is ideally suited to populate cell-scale computational and mathematical models of cancer progression for quantitatively and predictively evaluating cancer drug discovery and treatment.
Collapse
Affiliation(s)
- Vito Quaranta
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Integrative Cancer Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Darren R Tyson
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Integrative Cancer Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Shawn P Garbett
- Vanderbilt Integrative Cancer Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Brandy Weidow
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Integrative Cancer Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mark P Harris
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Walter Georgescu
- Vanderbilt Integrative Cancer Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biomedical Engineering, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
16
|
Kipper MJ, Kleinman HK, Wang FW. Covalent surface chemistry gradients for presenting bioactive peptides. Anal Biochem 2007; 363:175-84. [PMID: 17339030 DOI: 10.1016/j.ab.2007.01.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Revised: 01/26/2007] [Accepted: 01/26/2007] [Indexed: 11/18/2022]
Abstract
The activation of surfaces by covalent attachment of bioactive moieties is an important strategy for improving the performance of biomedical materials. Such techniques have also been used as tools to study cellular responses to particular chemistries of interest. The creation of gradients of covalently bound chemistries is a logical extension of this technique. Gradient surfaces may permit the rapid screening of a large range of concentrations in a single experiment. In addition, the biological response to the gradient itself may provide new information on receptor requirements and cell signaling. The current work describes a rapid and flexible technique for the covalent addition of bioactive peptide gradients to a surface or gel and a simple fluorescence technique for assaying the gradient. In this technique, bioactive peptides with a terminal cysteine are bound via a heterobifunctional coupling agent to primary amine-containing surfaces and gels. A gradient in the coupling agent is created on the surfaces or gels by varying the residence time of the coupling agent across the surface or gel, thereby controlling the extent of reaction. We demonstrate this technique using poly(l-lysine)-coated glass surfaces and fibrin gels. Once the surface or gel has been activated by the addition of the coupling agent gradient, the bioactive peptide is added. Quantitation of the gradient is achieved by measuring the reaction kinetics of the coupling agent with the surface or gel of interest. This can be done either by fluorescently labeling the coupling agent (in the case of surfaces) or by spectrophotometrically detecting the release of pyridine-2-thione, which is produced when the thiol-reactive portion of the coupling agent reacts. By these methods, we can obtain reasonably precise estimates for the peptide gradients without using expensive spectroscopic or radiolabeling techniques. Validation with changes in fibroblast cell migration behavior across a bioactive peptide gradient illustrates preservation of peptide function as well as the usefulness of this technique.
Collapse
Affiliation(s)
- Matt J Kipper
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|