1
|
Sharma M, Anirudh CR. In silico characterization of residues essential for substrate binding of human cystine transporter, xCT. J Mol Model 2019; 25:336. [PMID: 31705320 DOI: 10.1007/s00894-019-4233-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023]
Abstract
xCT is a sodium-independent amino acid antiporter that imports L-cystine and exports L-glutamate in a 1:1 ratio. It is a component of heterodimeric amino acid transporter system Xc- working at the cross-roads of maintaining neurological processes and regulating antioxidant defense. The transporter has 12 transmembrane domains with intracellular N- and C-termini, and like other transporter proteins can undergo various conformational changes while switching the ligand accessibilities from intracellular to extracellular site. In the present study, we generated two homology models of human xCT in two distinct conformations: inward-facing occluded state and outward-facing open state. Our results indicated the substrate translocation channel composed of transmembrane helices TMs 1, 3, 6, 8, and 10. We docked anionic L-cystine and L-glutamate within the cavities to assess the two distinct binding scenarios for xCT as antiporter. We also assessed the interactions between the ligands and transporter and observed that ligands bind to similar residues within the channel. Using MM-PBSA/MM-GBSA approach, we computed the binding energies of these ligands to different conformational states. Cystine and glutamate bind xCT with favorable binding energies, with more favorable binding observed in inward occluded state than in outward open state. We further computed the residue-wise decomposition of these binding energies and identified the residues as essential for substrate binding/permeation. Filtering the residues that form favorable energetic contributions to the ligand binding in both the states, our studies suggest T56, A60, R135, A138, V141, Y244, A247, F250, S330, L392, and R396 as critical residues for ligand binding as well as ligand transport for any conformational state adopted by xCT during its transport cycle. .Graphical Abstract.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Sector 81, Knowledge City, SAS, Nagar, Punjab, India.
| | - C R Anirudh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Sector 81, Knowledge City, SAS, Nagar, Punjab, India
| |
Collapse
|
2
|
Tamura K, Sugimoto H, Shiro Y, Sugita Y. Chemo-Mechanical Coupling in the Transport Cycle of a Heme ABC Transporter. J Phys Chem B 2019; 123:7270-7281. [PMID: 31362510 DOI: 10.1021/acs.jpcb.9b04356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The heme importer from pathogenic bacteria is a member of the ATP-binding cassette (ABC) transporter family, which uses the energy of ATP-binding and hydrolysis for extensive conformational changes. Previous studies have indicated that conformational changes after heme translocation are triggered by ATP-binding to nucleotide binding domains (NBDs) and then, in turn, induce conformational transitions of the transmembrane domains (TMDs). In this study, we applied a template-based iterative all-atom molecular dynamics (MD) simulation to predict the ATP-bound outward-facing conformation of the Burkholderia cenocepacia heme importer BhuUV-T. The resulting model showed a stable conformation of the TMD with the cytoplasmic gate in the closed state and the periplasmic gate in the open state. Furthermore, targeted MD simulation predicted the intermediate structure of an occluded form (Occ) with bound ATP, in which both ends of the heme translocation channel are closed. The MD simulation of the predicted Occ revealed that Ser147 on the ABC signature motifs (LSGG[Q/E]) of NBDs occasionally flips and loses the active conformation required for ATP-hydrolysis. The flipping motion was found to be coupled to the inter-NBD distance. Our results highlight the functional significance of the signature motif of ABC transporters in regulation of ATPase and chemo-mechanical coupling mechanism.
Collapse
Affiliation(s)
- Koichi Tamura
- Computational Biophysics Research Team , RIKEN Center for Computational Science , 6-7-1 minatojima-Minamimachi, Chuo-ku , Kobe , Hyogo 650-0047 , Japan
| | - Hiroshi Sugimoto
- Graduate School of Life Science , University of Hyogo , 3-2-1 Kouto, Kamigori , Ako , Hyogo 678-1297 , Japan.,Synchrotron Radiation Life Science Instrumentation Team , RIKEN SPring-8 Center , 1-1-1 Kouto , Sayo , Hyogo 679-5148 , Japan
| | - Yoshitsugu Shiro
- Graduate School of Life Science , University of Hyogo , 3-2-1 Kouto, Kamigori , Ako , Hyogo 678-1297 , Japan
| | - Yuji Sugita
- Computational Biophysics Research Team , RIKEN Center for Computational Science , 6-7-1 minatojima-Minamimachi, Chuo-ku , Kobe , Hyogo 650-0047 , Japan.,Theoretical Molecular Science Laboratory , RIKEN Cluster for Pioneering Research , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan.,Laboratory for Biomolecular Function Simulation , RIKEN Center for Biosystems Dynamics Research , 6-7-1 minatojima-Minamimachi, Chuo-ku , Kobe , Hyogo 650-0047 , Japan
| |
Collapse
|
3
|
Pan C, Weng J, Wang W. ATP Hydrolysis Induced Conformational Changes in the Vitamin B12 Transporter BtuCD Revealed by MD Simulations. PLoS One 2016; 11:e0166980. [PMID: 27870912 PMCID: PMC5117765 DOI: 10.1371/journal.pone.0166980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 11/07/2016] [Indexed: 12/17/2022] Open
Abstract
ATP binding cassette (ABC) transporters utilize the energy of ATP hydrolysis to uni-directionally transport substrates across cell membrane. ATP hydrolysis occurs at the nucleotide-binding domain (NBD) dimer interface of ABC transporters, whereas substrate translocation takes place at the translocation pathway between the transmembrane domains (TMDs), which is more than 30 angstroms away from the NBD dimer interface. This raises the question of how the hydrolysis energy released at NBDs is "transmitted" to trigger the conformational changes at TMDs. Using molecular dynamics (MD) simulations, we studied the post-hydrolysis state of the vitamin B12 importer BtuCD. Totally 3-μs MD trajectories demonstrate a predominantly asymmetric arrangement of the NBD dimer interface, with the ADP-bound site disrupted and the ATP-bound site preserved in most of the trajectories. TMDs response to ATP hydrolysis by separation of the L-loops and opening of the cytoplasmic gate II, indicating that hydrolysis of one ATP could facilitate substrate translocation by opening the cytoplasmic end of translocation pathway. It was also found that motions of the L-loops and the cytoplasmic gate II are coupled with each other through a contiguous interaction network involving a conserved Asn83 on the extended stretch preceding TM3 helix plus the cytoplasmic end of TM2/6/7 helix bundle. These findings entail a TMD-NBD communication mechanism for type II ABC importers.
Collapse
Affiliation(s)
- Chao Pan
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, and Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Jingwei Weng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, and Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Wenning Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, and Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| |
Collapse
|
4
|
Prieß M, Schäfer LV. Release of Entropic Spring Reveals Conformational Coupling Mechanism in the ABC Transporter BtuCD-F. Biophys J 2016; 110:2407-2418. [PMID: 27276259 PMCID: PMC4906252 DOI: 10.1016/j.bpj.2016.04.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/30/2016] [Accepted: 04/20/2016] [Indexed: 01/14/2023] Open
Abstract
Substrate translocation by ATP-binding cassette (ABC) transporters involves coupling of ATP binding and hydrolysis in the nucleotide-binding domains (NBDs) to conformational changes in the transmembrane domains. We used molecular dynamics simulations to investigate the atomic-level mechanism of conformational coupling in the ABC transporter BtuCD-F, which imports vitamin B12 across the inner membrane of Escherichia coli. Our simulations show how an engineered disulfide bond across the NBD dimer interface reduces conformational fluctuations and hence configurational entropy. As a result, the disulfide bond is under substantial mechanical stress. Releasing this entropic spring, as is the case in the wild-type transporter, combined with analyzing the pairwise forces between individual residues, unravels the coupling mechanism. The identified pathways along which force is propagated from the NBDs via the coupling helix to the transmembrane domains are composed of highly conserved residues, underlining their functional relevance. This study not only reveals the details of conformational coupling in BtuCD-F, it also provides a promising approach to other long-range conformational couplings, e.g., in ABC exporters or other ATP-driven molecular machines.
Collapse
Affiliation(s)
- Marten Prieß
- Center for Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University, Bochum, Germany
| | - Lars V Schäfer
- Center for Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University, Bochum, Germany.
| |
Collapse
|
5
|
Conformational Motions and Functionally Key Residues for Vitamin B12 Transporter BtuCD-BtuF Revealed by Elastic Network Model with a Function-Related Internal Coordinate. Int J Mol Sci 2015; 16:17933-51. [PMID: 26247943 PMCID: PMC4581229 DOI: 10.3390/ijms160817933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/10/2015] [Accepted: 07/20/2015] [Indexed: 11/17/2022] Open
Abstract
BtuCD-BtuF from Escherichia coli is a binding protein-dependent adenosine triphosphate (ATP)-binding cassette (ABC) transporter system that uses the energy of ATP hydrolysis to transmit vitamin B12 across cellular membranes. Experimental studies have showed that during the transport cycle, the transporter undergoes conformational transitions between the "inward-facing" and "outward-facing" states, which results in the open-closed motions of the cytoplasmic gate of the transport channel. The opening-closing of the channel gate play critical roles for the function of the transporter, which enables the substrate vitamin B12 to be translocated into the cell. In the present work, the extent of opening of the cytoplasmic gate was chosen as a function-related internal coordinate. Then the mean-square fluctuation of the internal coordinate, as well as the cross-correlation between the displacement of the internal coordinate and the movement of each residue in the protein, were calculated based on the normal mode analysis of the elastic network model to analyze the function-related motions encoded in the structure of the system. In addition, the key residues important for the functional motions of the transporter were predicted by using a perturbation method. In order to facilitate the calculations, the internal coordinate was introduced as one of the axes of the coordinate space and the conventional Cartesian coordinate space was transformed into the internal/Cartesian space with linear approximation. All the calculations were carried out in this internal/Cartesian space. Our method can successfully identify the functional motions and key residues for the transporter BtuCD-BtuF, which are well consistent with the experimental observations.
Collapse
|
6
|
Prajapati R, Sangamwar AT. Translocation mechanism of P-glycoprotein and conformational changes occurring at drug-binding site: Insights from multi-targeted molecular dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2882-98. [DOI: 10.1016/j.bbamem.2014.07.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 07/03/2014] [Accepted: 07/08/2014] [Indexed: 11/29/2022]
|
7
|
Asymmetric perturbations of signalling oligomers. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 114:153-69. [PMID: 24650570 DOI: 10.1016/j.pbiomolbio.2014.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/26/2014] [Accepted: 03/04/2014] [Indexed: 01/06/2023]
Abstract
This review focuses on rapid and reversible noncovalent interactions for symmetric oligomers of signalling proteins. Symmetry mismatch, transient symmetry breaking and asymmetric perturbations via chemical (ligand binding) and physical (electric or mechanic) effects can initiate the signalling events. Advanced biophysical methods can reveal not only structural symmetries of stable membrane-bound signalling proteins but also asymmetric functional transition states. Relevant techniques amenable to distinguish between symmetric and asymmetric architectures are discussed including those with the capability of capturing low-populated transient conformational states. Typical examples of signalling proteins are overviewed for symmetry breaking in dimers (GPCRs, growth factor receptors, transcription factors); trimers (acid-sensing ion channels); tetramers (voltage-gated cation channels, ionotropic glutamate receptor, CNG and CHN channels); pentameric ligand-gated and mechanosensitive channels; higher order oligomers (gap junction channel, chaperonins, proteasome, virus capsid); as well as primary and secondary transporters. In conclusion, asymmetric perturbations seem to play important functional roles in a broad range of communicating networks.
Collapse
|
8
|
A Microscopic View of the Mechanisms of Active Transport Across the Cellular Membrane. ANNUAL REPORTS IN COMPUTATIONAL CHEMISTRY 2014. [DOI: 10.1016/b978-0-444-63378-1.00004-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Wen PC, Verhalen B, Wilkens S, Mchaourab HS, Tajkhorshid E. On the origin of large flexibility of P-glycoprotein in the inward-facing state. J Biol Chem 2013; 288:19211-20. [PMID: 23658020 PMCID: PMC3696692 DOI: 10.1074/jbc.m113.450114] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
P-glycoprotein (Pgp) is one of the most biomedically relevant transporters in the ATP binding
cassette (ABC) superfamily due to its involvement in developing multidrug resistance in cancer
cells. Employing molecular dynamics simulations and double electron-electron resonance spectroscopy,
we have investigated the structural dynamics of membrane-bound Pgp in the inward-facing state and
found that Pgp adopts an unexpectedly wide range of conformations, highlighted by the degree of
separation between the two nucleotide-binding domains (NBDs). The distance between the two NBDs in
the equilibrium simulations covers a range of at least 20 Å, including, both, more open and
more closed NBD configurations than the crystal structure. The double electron-electron resonance
measurements on spin-labeled Pgp mutants also show wide distributions covering both longer and
shorter distances than those observed in the crystal structure. Based on structural and sequence
analyses, we propose that the transmembrane domains of Pgp might be more flexible than other
structurally known ABC exporters. The structural flexibility of Pgp demonstrated here is not only in
close agreement with, but also helps rationalize, the reported high NBD fluctuations in several ABC
exporters and possibly represents a fundamental difference in the transport mechanism between ABC
exporters and ABC importers. In addition, during the simulations we have captured partial entrance
of a lipid molecule from the bilayer into the lumen of Pgp, reaching the putative drug binding site.
The location of the protruding lipid suggests a putative pathway for direct drug recruitment from
the membrane.
Collapse
Affiliation(s)
- Po-Chao Wen
- Center for Biophysics and Computational Biology, Department of Biochemistry, College of Medicine, and The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illnois 61801, USA
| | | | | | | | | |
Collapse
|
10
|
In silico model for P-glycoprotein substrate prediction: insights from molecular dynamics and in vitro studies. J Comput Aided Mol Des 2013; 27:347-63. [DOI: 10.1007/s10822-013-9650-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/16/2013] [Indexed: 11/25/2022]
|
11
|
Ruggerone P, Vargiu AV, Collu F, Fischer N, Kandt C. Molecular Dynamics Computer Simulations of Multidrug RND Efflux Pumps. Comput Struct Biotechnol J 2013; 5:e201302008. [PMID: 24688701 PMCID: PMC3962194 DOI: 10.5936/csbj.201302008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/31/2013] [Accepted: 02/04/2013] [Indexed: 01/13/2023] Open
Abstract
Over-expression of multidrug efflux pumps of the Resistance Nodulation Division (RND) protein super family counts among the main causes for microbial resistance against pharmaceuticals. Understanding the molecular basis of this process is one of the major challenges of modern biomedical research, involving a broad range of experimental and computational techniques. Here we review the current state of RND transporter investigation employing molecular dynamics simulations providing conformational samples of transporter components to obtain insights into the functional mechanism underlying efflux pump-mediated antibiotics resistance in Escherichia coli and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Paolo Ruggerone
- Department of Physics, University of Cagliari, Cittadella Universitaria S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato (CA), Cagliari, Italy ; CNR-IOM, Unità SLACS, S.P. Monserrato-Sestu Km 0.700, I-09042 Monserrato (CA), Italy
| | - Attilio V Vargiu
- Department of Physics, University of Cagliari, Cittadella Universitaria S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato (CA), Cagliari, Italy ; CNR-IOM, Unità SLACS, S.P. Monserrato-Sestu Km 0.700, I-09042 Monserrato (CA), Italy
| | - Francesca Collu
- Departement fu r Chemie und Biochemie, Universita t Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Nadine Fischer
- Computational Structural Biology, Department of Life Science Informatics B-IT, Life & Medical Sciences Institute, University of Bonn, Dahlmannstr. 2, 53113 Bonn, Germany
| | - Christian Kandt
- Computational Structural Biology, Department of Life Science Informatics B-IT, Life & Medical Sciences Institute, University of Bonn, Dahlmannstr. 2, 53113 Bonn, Germany
| |
Collapse
|
12
|
Enkavi G, Li J, Mahinthichaichan P, Wen PC, Huang Z, Shaikh SA, Tajkhorshid E. Simulation studies of the mechanism of membrane transporters. Methods Mol Biol 2013; 924:361-405. [PMID: 23034756 DOI: 10.1007/978-1-62703-017-5_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Membrane transporters facilitate active transport of their specific substrates, often against their electrochemical gradients across the membrane, through coupling the process to various sources of cellular energy, for example, ATP binding and hydrolysis in primary transporters, and pre-established electrochemical gradient of molecular species other than the substrate in the case of secondary transporters. In order to provide efficient energy-coupling mechanisms, membrane transporters have evolved into molecular machines in which stepwise binding, translocation, and transformation of various molecular species are closely coupled to protein conformational changes that take the transporter from one functional state to another during the transport cycle. Furthermore, in order to prevent the formation of leaky states and to be able to pump the substrate against its electrochemical gradient, all membrane transporters use the widely-accepted "alternating access mechanism," which ensures that the substrate is only accessible from one side of the membrane at a given time, but relies on complex and usually global protein conformational changes that differ for each family of membrane transporters. Describing the protein conformational changes of different natures and magnitudes is therefore at the heart of mechanistic studies of membrane transporters. Here, using a number of membrane transporters from diverse families, we present common protocols used in setting up and performing molecular dynamics simulations of membrane transporters and in analyzing the results, in order to characterize relevant motions of the system. The emphasis will be on highlighting how optimal design of molecular dynamics simulations combined with mechanistically oriented analysis can shed light onto key functionally relevant protein conformational changes in this family of membrane proteins.
Collapse
Affiliation(s)
- Giray Enkavi
- Department of Biochemistry, Center for Biophysics and Computational Biology, College of Medicine, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Molecular dynamics simulations of membrane proteins. Biophys Rev 2012; 4:271-282. [PMID: 28510077 DOI: 10.1007/s12551-012-0084-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 06/06/2012] [Indexed: 10/28/2022] Open
Abstract
Membrane proteins control the traffic across cell membranes and thereby play an essential role in cell function from transport of various solutes to immune response via molecular recognition. Because it is very difficult to determine the structures of membrane proteins experimentally, computational methods have been increasingly used to study their structure and function. Here we focus on two classes of membrane proteins-ion channels and transporters-which are responsible for the generation of action potentials in nerves, muscles, and other excitable cells. We describe how computational methods have been used to construct models for these proteins and to study the transport mechanism. The main computational tool is the molecular dynamics (MD) simulation, which can be used for everything from refinement of protein structures to free energy calculations of transport processes. We illustrate with specific examples from gramicidin and potassium channels and aspartate transporters how the function of these membrane proteins can be investigated using MD simulations.
Collapse
|
14
|
George AM, Jones PM. Perspectives on the structure-function of ABC transporters: the Switch and Constant Contact models. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 109:95-107. [PMID: 22765920 DOI: 10.1016/j.pbiomolbio.2012.06.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 12/20/2022]
Abstract
ABC transporters constitute one of the largest protein families across the kingdoms of archaea, eubacteria and eukarya. They couple ATP hydrolysis to vectorial translocation of diverse substrates across membranes. The ABC transporter architecture comprises two transmembrane domains and two cytosolic ATP-binding cassettes. During 2002-2012, nine prokaryotic ABC transporter structures and two eukaryotic structures have been solved to medium resolution. Despite a wealth of biochemical, biophysical, and structural data, fundamental questions remain regarding the coupling of ATP hydrolysis to unidirectional substrate translocation, and the mechanistic suite of steps involved. The mechanics of the ATP cassette dimer is defined most popularly by the 'Switch Model', which proposes that hydrolysis in each protomer is sequential, and that as the sites are freed of nucleotide, the protomers lose contact across a large solvent-filled gap of 20-30 Å; as captured in several X-ray solved structures. Our 'Constant Contact' model for the operational mechanics of ATP binding and hydrolysis in the ATP-binding cassettes is derived from the 'alternating sites' model, proposed in 1995, and which requires an intrinsic asymmetry in the ATP sites, but does not require the partner protomers to lose contact. Thus one of the most debated issues regarding the function of ABC transporters is whether the cooperative mechanics of ATP hydrolysis requires the ATP cassettes to separate or remain in constant contact and this dilemma is discussed at length in this review.
Collapse
Affiliation(s)
- Anthony M George
- School of Medical and Molecular Biosciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia.
| | | |
Collapse
|
15
|
St-Pierre JF, Bunker A, Róg T, Karttunen M, Mousseau N. Molecular dynamics simulations of the bacterial ABC transporter SAV1866 in the closed form. J Phys Chem B 2012; 116:2934-42. [PMID: 22339391 DOI: 10.1021/jp209126c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ATP binding cassette (ABC) transporter family of proteins contains members involved in ATP-mediated import or export of ligands at the cell membrane. For the case of exporters, the translocation mechanism involves a large-scale conformational change that involves a clothespin-like motion from an inward-facing open state, able to bind ligands and adenosine triphosphate (ATP), to an outward-facing closed state. Our work focuses on SAV1866, a bacterial member of the ABC transporter family for which the structure is known for the closed state. To evaluate the ability of this protein to undergo conformational changes at physiological temperature, we first performed conventional molecular dynamics (MD) on the cocrystallized adenosine diphosphate (ADP)-bound structure and on a nucleotide-free structure. With this assessment of SAV1866's stability, conformational changes were induced by steered molecular dynamics (SMD), in which the nucleotide binding domains (NBD) were pushed apart, simulating the ATP hydrolysis energy expenditure. We found that the transmembrane domain is not easily perturbed by large-scale motions of the NBDs.
Collapse
Affiliation(s)
- Jean-François St-Pierre
- Département de Physique and Regroupement Québécois sur les Matériaux de Pointe, Université de Montréal, C.P. 6128, succursale centre-ville, Montréal (Québec), Canada H3C 3J7
| | | | | | | | | |
Collapse
|
16
|
Weng J, Fan K, Wang W. The conformational transition pathways of ATP-binding cassette transporter BtuCD revealed by targeted molecular dynamics simulation. PLoS One 2012; 7:e30465. [PMID: 22272354 PMCID: PMC3260306 DOI: 10.1371/journal.pone.0030465] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Accepted: 12/20/2011] [Indexed: 11/18/2022] Open
Abstract
BtuCD is a member of the ATP-binding cassette transporters in Escherichia coli that imports vitamin B(12) into the cell by utilizing the energy of ATP hydrolysis. Crystal structures of BtuCD and its homologous protein HI1470/1 in various conformational states support the "alternating access" mechanism which proposes the conformational transitions of the substrate translocation pathway at transmembrane domain (TMD) between the outward-facing and inward-facing states. The conformational transition at TMD is assumed to couple with the movement of the cytoplasmic nucleotide-binding domains (NBDs) driven by ATP hydrolysis/binding. In this study, we performed targeted molecular dynamics (MD) simulations to explore the atomic details of the conformational transitions of BtuCD importer. The outward-facing to inward-facing (O→I) transition was found to be initiated by the conformational movement of NBDs. The subsequent reorientation of the substrate translocation pathway at TMD began with the closing of the periplasmic gate, followed by the opening of the cytoplamic gate in the last stage of the conformational transition due to the extensive hydrophobic interactions at this region, consistent with the functional requirement of unidirectional transport of the substrates. The reverse inward-facing to outward-facing (I→O) transition was found to exhibit intrinsic diversity of the conformational transition pathways and significant structural asymmetry, suggesting that the asymmetric crystal structure of BtuCD-F is an intermediate state in this process.
Collapse
Affiliation(s)
- Jingwei Weng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Kangnian Fan
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Wenning Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
17
|
Lezon TR. The effects of rigid motions on elastic network model force constants. Proteins 2012; 80:1133-42. [PMID: 22228562 DOI: 10.1002/prot.24014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 11/15/2011] [Accepted: 12/06/2011] [Indexed: 11/10/2022]
Abstract
Elastic network models provide an efficient way to quickly calculate protein global dynamics from experimentally determined structures. The model's single parameter, its force constant, determines the physical extent of equilibrium fluctuations. The values of force constants can be calculated by fitting to experimental data, but the results depend on the type of experimental data used. Here, we investigate the differences between calculated values of force constants and data from NMR and X-ray structures. We find that X-ray B factors carry the signature of rigid-body motions, to the extent that B factors can be almost entirely accounted for by rigid motions alone. When fitting to more refined anisotropic temperature factors, the contributions of rigid motions are significantly reduced, indicating that the large contribution of rigid motions to B factors is a result of over-fitting. No correlation is found between force constants fit to NMR data and those fit to X-ray data, possibly due to the inability of NMR data to accurately capture protein dynamics.
Collapse
Affiliation(s)
- Timothy R Lezon
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| |
Collapse
|
18
|
Molecular-dynamics simulations of the ATP/apo state of a multidrug ATP-binding cassette transporter provide a structural and mechanistic basis for the asymmetric occluded state. Biophys J 2011; 100:3025-34. [PMID: 21689537 DOI: 10.1016/j.bpj.2011.05.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 05/02/2011] [Accepted: 05/11/2011] [Indexed: 01/03/2023] Open
Abstract
ATP-binding cassette transporters use the energy of ATP hydrolysis to transport substrates across cellular membranes. They have two transmembrane domains and two cytosolic nucleotide-binding domains. Biochemical studies have characterized an occluded state of the transporter in which nucleotide is tenaciously bound in one active site, whereas the opposite active site is empty or binds nucleotide loosely. Here, we report molecular-dynamics simulations of the bacterial multidrug ATP-binding cassette transporter Sav1866. In two simulations of the ATP/apo state, the empty site opened substantially by way of rotation of the nucleotide-binding domain (NBD) core subdomain, whereas the ATP-bound site remained occluded and intact. We correlate our findings with elastic network and molecular-dynamics simulation analyses of the Sav1866 NBD monomer, and with existing experimental data, to argue that the observed transition is physiological, and that the final structure observed in the ATP/apo simulations corresponds to the tight/loose state of the NBD dimer characterized experimentally.
Collapse
|
19
|
Inter-domain communication mechanisms in an ABC importer: a molecular dynamics study of the MalFGK2E complex. PLoS Comput Biol 2011; 7:e1002128. [PMID: 21829343 PMCID: PMC3150292 DOI: 10.1371/journal.pcbi.1002128] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 06/07/2011] [Indexed: 12/22/2022] Open
Abstract
ATP-Binding Cassette transporters are ubiquitous membrane proteins that convert the energy from ATP-binding and hydrolysis into conformational changes of the transmembrane region to allow the translocation of substrates against their concentration gradient. Despite the large amount of structural and biochemical data available for this family, it is still not clear how the energy obtained from ATP hydrolysis in the ATPase domains is “transmitted” to the transmembrane domains. In this work, we focus our attention on the consequences of hydrolysis and inorganic phosphate exit in the maltose uptake system (MalFGK2E) from Escherichia coli. The prime goal is to identify and map the structural changes occurring during an ATP-hydrolytic cycle. For that, we use extensive molecular dynamics simulations to study three potential intermediate states (with 10 replicates each): an ATP-bound, an ADP plus inorganic phosphate-bound and an ADP-bound state. Our results show that the residues presenting major rearrangements are located in the A-loop, in the helical sub-domain, and in the “EAA motif” (especially in the “coupling helices” region). Additionally, in one of the simulations with ADP we were able to observe the opening of the NBD dimer accompanied by the dissociation of ADP from the ABC signature motif, but not from its corresponding P-loop motif. This work, together with several other MD studies, suggests a common communication mechanism both for importers and exporters, in which ATP-hydrolysis induces conformational changes in the helical sub-domain region, in turn transferred to the transmembrane domains via the “coupling helices”. ABC transporters are membrane proteins that couple ATP binding and hydrolysis with the active transport of substrates across membranes. These transporters form one of the largest families of membrane proteins and they can be found in all phyla of life. Moreover, some members of this family are involved in several genetic diseases (such as cystic fibrosis) and in multidrug resistance in bacteria, fungi and mammals. In this work, we use molecular dynamics simulations to study conformational changes due to ATP hydrolysis in an ABC transporter responsible for maltose uptake in E. coli. These conformational changes arising from one side of the protein (NBDs – Nucleotide Binding domains) where ATP binds, are propagated across the protein to more distant regions. Additionally, we can observe an NBD dimer interface dissociation event upon inorganic phosphate exit. These simulations together with other theoretical studies suggest that there is a general inter-domain communication mechanism common to importers and exporters.
Collapse
|
20
|
Gyimesi G, Ramachandran S, Kota P, Dokholyan NV, Sarkadi B, Hegedus T. ATP hydrolysis at one of the two sites in ABC transporters initiates transport related conformational transitions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2954-64. [PMID: 21840296 DOI: 10.1016/j.bbamem.2011.07.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/23/2011] [Accepted: 07/25/2011] [Indexed: 12/23/2022]
Abstract
ABC transporters play important roles in all types of organisms by participating in physiological and pathological processes. In order to modulate the function of ABC transporters, detailed knowledge regarding their structure and dynamics is necessary. Available structures of ABC proteins indicate three major conformations, a nucleotide-bound "bottom-closed" state with the two nucleotide binding domains (NBDs) tightly closed, and two nucleotide-free conformations, the "bottom-closed" and the "bottom-open", which differ in the extent of separation of the NBDs. However, it remains a question how the widely open conformation should be interpreted, and whether hydrolysis at one of the sites can drive conformational transitions while the NBDs remain in contact. To extend our knowledge, we have investigated the dynamic properties of the Sav1866 transporter using molecular dynamics (MD) simulations. We demonstrate that the replacement of one ATP by ADP alters the correlated motion patterns of the NBDs and the transmembrane domains (TMD). The results suggest that the hydrolysis of a single nucleotide could lead to extracellular closure, driving the transport cycle. Essential dynamics analysis of simulations suggests that single nucleotide hydrolysis can drive the system toward a "bottom-closed" apo conformation similar to that observed in the structure of the MsbA transporter. We also found significant structural instability of the "bottom-open" form of the transporters in simulations. Our results suggest that ATP hydrolysis at one of the sites promotes transport related conformational changes leading to the "bottom-closed" apo conformation, which could thus be physiologically more relevant for describing the structure of the apo state.
Collapse
Affiliation(s)
- Gergely Gyimesi
- Membrane Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
21
|
Oliveira AS, Baptista AM, Soares CM. Conformational changes induced by ATP-hydrolysis in an ABC transporter: a molecular dynamics study of the Sav1866 exporter. Proteins 2011; 79:1977-90. [PMID: 21488101 DOI: 10.1002/prot.23023] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/30/2011] [Accepted: 02/15/2011] [Indexed: 12/20/2022]
Abstract
ATP-Binding Cassette (ABC) transporters are ubiquitous membrane proteins that use energy from ATP binding or/and hydrolysis to actively transport allocrites across membranes. In this study, we identify ATP-hydrolysis induced conformational changes in a complete ABC exporter (Sav1866) from Staphylococcus aureaus, using molecular dynamics (MD) simulations. By performing MD simulations on the ATP and ADP+IP bound states, we identify the conformational consequences of hydrolysis, showing that the major rearrangements are not restricted to the NBDs, but extend to the transmembrane domains (TMDs) external regions. For the first time, to our knowledge, we see, within the context of a complete transporter, NBD dimer opening in the ADP+IP state in contrast with all ATP-bound states. This opening results from the dissociation of the ABC signature motif from the nucleotide. In addition, in both states, we observe the opening of a gate entrance in the intracellular loop region leading to the exposure of the TMDs internal cavity to the cytoplasm. To see if this opening was large enough to allow allocrite transport, the adiabatic energy profile for doxorubicin passage was determined. For both states, this profile, although an approximation, is overall downhill from the cytoplasmatic to the extracellular side, and the local energy barriers along the TMDs are relatively small, evidencing the exporter nature of Sav1866. The major difference between states is an energy barrier located in the cytoplasmic gate region, which becomes reduced upon hydrolysis, suggesting that allocrite passage is facilitated, and evidencing a possible molecular mechanism for the active transport in these proteins.
Collapse
Affiliation(s)
- A Sofia Oliveira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | |
Collapse
|
22
|
Raunest M, Kandt C. dxTuber: detecting protein cavities, tunnels and clefts based on protein and solvent dynamics. J Mol Graph Model 2011; 29:895-905. [PMID: 21420887 DOI: 10.1016/j.jmgm.2011.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 02/04/2011] [Accepted: 02/14/2011] [Indexed: 10/18/2022]
Abstract
Empty space in a protein structure can provide valuable insight into protein properties such as internal hydration, structure stabilization, substrate translocation, storage compartments or binding sites. This information can be visualized by means of cavity analysis. Numerous tools are available depicting cavities directly or identifying lining residues. So far, all available techniques base on a single conformation neglecting any form of protein and cavity dynamics. Here we report a novel, grid-based cavity detection method that uses protein and solvent residence probabilities derived from molecular dynamics simulations to identify (I) internal cavities, (II) tunnels or (III) clefts on the protein surface. Driven by a graphical user interface, output can be exported in PDB format where cavities are described as individually selectable groups of adjacent voxels representing regions of high solvent residence probability. Cavities can be analyzed in terms of solvent density, cavity volume and cross-sectional area along a principal axis. To assess dxTuber performance we performed test runs on a set of six example proteins representing the three main classes of protein cavities and compared our findings to results obtained with SURFNET, CAVER and PyMol.
Collapse
Affiliation(s)
- Martin Raunest
- Computational Structural Biology, Department of Life Science Informatics, B-IT, Life & Medical Sciences (LIMES) Center, University of Bonn, Dahlmannstr 2, 53113 Bonn, Germany
| | | |
Collapse
|
23
|
Shaikh S, Wen PC, Enkavi G, Huang Z, Tajkhorshid E. Capturing Functional Motions of Membrane Channels and Transporters with Molecular Dynamics Simulation. JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE 2010; 7:2481-2500. [PMID: 23710155 PMCID: PMC3661405 DOI: 10.1166/jctn.2010.1636] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Conformational changes of proteins are involved in all aspects of protein function in biology. Almost all classes of proteins respond to changes in their environment, ligand binding, and interaction with other proteins and regulatory agents through undergoing conformational changes of various degrees and magnitudes. Membrane channels and transporters are the major classes of proteins that are responsible for mediating efficient and selective transport of materials across the cellular membrane. Similar to other proteins, they take advantage of conformational changes to make transitions between various functional states. In channels, large-scale conformational changes are mostly involved in the process of "gating", i.e., opening and closing of the pore of the channel protein in response to various signals. In transporters, conformational changes constitute various steps of the conduction process, and, thus, are more closely integrated in the transport process. Owing to significant progress in developing highly efficient parallel algorithms in molecular dynamics simulations and increased computational resources, and combined with the availability of high-resolution, atomic structures of membrane proteins, we are in an unprecedented position to use computer simulation and modeling methodologies to investigate the mechanism of function of membrane channels and transporters. While the entire transport cycle is still out of reach of current methodologies, many steps involved in the function of transport proteins have been characterized with molecular dynamics simulations. Here, we present several examples of such studies from our laboratory, in which functionally relevant conformational changes of membrane channels and transporters have been characterized using extended simulations.
Collapse
Affiliation(s)
- Saher Shaikh
- Department of Biochemistry, Beckman Institute, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A
| | - Po-Chao Wen
- Department of Biochemistry, Beckman Institute, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A
| | - Giray Enkavi
- Department of Biochemistry, Beckman Institute, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A
| | - Zhijian Huang
- Department of Biochemistry, Beckman Institute, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A
| | - Emad Tajkhorshid
- Department of Biochemistry, Beckman Institute, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A
| |
Collapse
|
24
|
Becker JP, Van Bambeke F, Tulkens PM, Prévost M. Dynamics and structural changes induced by ATP binding in SAV1866, a bacterial ABC exporter. J Phys Chem B 2010; 114:15948-57. [PMID: 21069970 DOI: 10.1021/jp1038392] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Multidrug transporters of the ATP-binding cassette family export a wide variety of compounds across membranes in both prokaryotes and eukaryotes, using ATP hydrolysis as energy source. Several of these membrane proteins are of clinical importance. Although biochemical and structural studies have provided insights into the mechanism underlying substrate transport, many key questions subsist regarding the molecular and structural nature of this mechanism. In particular, the detailed conformational changes occurring during the catalytic cycle are still elusive. We explored the conformational changes occurring upon ATP/Mg(2+) binding using molecular dynamics simulations starting from the nucleotide-bound structure of SAV1866 embedded in an explicit lipid bilayer. The removal of nucleotide revealed a major rearrangement in the outer membrane leaflet portion of the transmembrane domain (TMD) resulting in the closure of the central cavity at the extracellular side. This closure is similar to that observed in the crystal nucleotide-free structures. The interface of the nucleotide-binding domain dimer (NDB) is significantly more hydrated in the nucleotide-free trajectory though it is not disrupted. This finding suggests that the TMD closure could occur as a first step preceding the dissociation of the dimer. The transmission pathway of the signal triggered by the removal of ATP/Mg(2+) mainly involves the conserved Q-loop and X-loop as well as TM6.
Collapse
Affiliation(s)
- Jean-Paul Becker
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, Boulevard du Triomphe CP 206/2, B-1050 Brussels, Belgium
| | | | | | | |
Collapse
|
25
|
Abstract
Membrane proteins play a key role in energy conversion, transport, signal recognition, transduction, and other fundamental biological processes. Despite considerable progress in experimental techniques, the determination of structure and dynamics of membrane proteins still represents a great challenge. Computer simulation methods are becoming an increasingly important tool not only in the interpretation of experiments but also in the prediction of membrane protein dynamics. In the present review, we give a brief introduction to molecular modeling techniques currently used to explore protein dynamics on time scales ranging from femtoseconds to microseconds. We then describe a few recent example applications of these techniques to membrane proteins. In conclusion, we also discuss some of the newest developments in simulation methodology that have the potential to further extend the time scale accessible to explore (membrane) protein dynamics.
Collapse
|
26
|
Oliveira ASF, Baptista AM, Soares CM. Insights into the molecular mechanism of an ABC transporter: conformational changes in the NBD dimer of MJ0796. J Phys Chem B 2010; 114:5486-96. [PMID: 20369870 DOI: 10.1021/jp905735y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Despite the rapid advances in the study of ABC transporters, many fundamental questions linked to ATP binding/hydrolysis and its relation to the transport cycle remain unanswered. In particular, it is still neither clear nor consensual how the ATP energy is used by the nucleotide binding domains (NBDs) to produce mechanical work and drive the substrate translocation. The major conformational changes in the NBDs following ATP hydrolysis during the transport cycle and the role played by the conserved family motifs in harnessing the energy associated with nucleotide hydrolysis are yet unknown. Additionally, the way energy is transmitted from the catalytic to the membrane domains, in order to drive substrate translocation, is also a fundamental question that remains unanswered. Due to the high structure similarities of the NBD architecture throughout the whole ABC family, it is likely that the mechanism of ATP binding, hydrolysis, and communication with the transmembrane domains is similar in all family members, independently of the nature of the transported substrate. In this work, we focused our attention on the consequences of ATP hydrolysis in the NBDs, especially on the structural changes that occur during this process. For that, we use molecular dynamics simulation techniques taking as a starting point the X-ray structure of the MJ0796 dimer from Methanococcus jannaschii. Several potential intermediate states of the ATP hydrolytic cycle are investigated, each consisting of different combinations of nucleotide-bound forms. The results obtained allowed us to identify the conformational rearrangements induced by hydrolysis on the catalytic subunits, as well as the residues involved in this reorganization. The major changes are localized at specific regions of the protein, namely, involving segments 11-19 and 93-124. Additionally, our results together with the knowledge of complete ABC transporter X-ray structures suggest a possible NBD:TMD signal transmission interface.
Collapse
Affiliation(s)
- A Sofia F Oliveira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | | | | |
Collapse
|
27
|
Aittoniemi J, de Wet H, Ashcroft FM, Sansom MSP. Asymmetric switching in a homodimeric ABC transporter: a simulation study. PLoS Comput Biol 2010; 6:e1000762. [PMID: 20454684 PMCID: PMC2861673 DOI: 10.1371/journal.pcbi.1000762] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 03/24/2010] [Indexed: 12/02/2022] Open
Abstract
ABC transporters are a large family of membrane proteins involved in a variety of cellular processes, including multidrug and tumor resistance and ion channel regulation. Advances in the structural and functional understanding of ABC transporters have revealed that hydrolysis at the two canonical nucleotide-binding sites (NBSs) is co-operative and non-simultaneous. A conserved core architecture of bacterial and eukaryotic ABC exporters has been established, as exemplified by the crystal structure of the homodimeric multidrug exporter Sav1866. Currently, it is unclear how sequential ATP hydrolysis arises in a symmetric homodimeric transporter, since it implies at least transient asymmetry at the NBSs. We show by molecular dynamics simulation that the initially symmetric structure of Sav1866 readily undergoes asymmetric transitions at its NBSs in a pre-hydrolytic nucleotide configuration. MgATP-binding residues and a network of charged residues at the dimer interface are shown to form a sequence of putative molecular switches that allow ATP hydrolysis only at one NBS. We extend our findings to eukaryotic ABC exporters which often consist of two non-identical half-transporters, frequently with degeneracy substitutions at one of their two NBSs. Interestingly, many residues involved in asymmetric conformational switching in Sav1866 are substituted in degenerate eukaryotic NBS. This finding strengthens recent suggestions that the interplay of a consensus and a degenerate NBS in eukaroytic ABC proteins pre-determines the sequence of hydrolysis at the two NBSs. ABC transporters are a large family of membrane proteins present in all organisms. Typically, they utilize ATP hydrolysis, the most prominent biological energy source, to translocate substrates into cells (e.g., bacterial nutritient uptake) or out of cells (e.g., multidrug exporters that contribute to antimicrobial resistance in bacteria and resistance to chemotherapeutic drugs in cancer). Also clinically relevant non-transport roles have been identified among ABC proteins. ABC transporters bind two molecules of ATP but do not hydrolyze them simultaneously. Therefore, an ABC transporter that consists of two symmetric halves must temporarily adopt asymmetric conformations at the two ATP-binding sites. Such transient conformational changes are difficult to address biochemically, but may be amenable to study by simulation methods, leading to future experiments. We employ molecular dynamics simulations to study how asymmetric switching might occur in the homodimeric bacterial ABC multidrug exporter Sav1866. The simulations suggest a mechanism of conformational switching that encompasses the ATP-binding sites and their interface towards the substrate-binding site. We extend our findings to show how asymmetric residue substitutions may render the switching process non-stochastic in mammalian Sav1866-like ABC exporters. This contributes to ongoing discussions about the role of two dissimilar ATP-binding sites in clinically relevant ABC proteins.
Collapse
Affiliation(s)
- Jussi Aittoniemi
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Heidi de Wet
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Frances M. Ashcroft
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Bahar I, Lezon TR, Bakan A, Shrivastava IH. Normal mode analysis of biomolecular structures: functional mechanisms of membrane proteins. Chem Rev 2010; 110:1463-97. [PMID: 19785456 PMCID: PMC2836427 DOI: 10.1021/cr900095e] [Citation(s) in RCA: 393] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ivet Bahar
- Department of Computational Biology, School of Medicine, University of Pittsburgh, 3064 BST3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | |
Collapse
|
29
|
Weng JW, Fan KN, Wang WN. The conformational transition pathway of ATP binding cassette transporter MsbA revealed by atomistic simulations. J Biol Chem 2010; 285:3053-63. [PMID: 19996093 PMCID: PMC2823423 DOI: 10.1074/jbc.m109.056432] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Revised: 12/05/2009] [Indexed: 12/14/2022] Open
Abstract
ATP binding cassette transporters are integral membrane proteins that use the energy released from ATP hydrolysis at the two nucleotide binding domains (NBDs) to translocate a wide variety of substrates through a channel at the two transmembrane domains (TMDs) across the cell membranes. MsbA from Gram-negative bacteria is a lipid and multidrug resistance ATP binding cassette exporter that can undergo large scale conformational changes between the outward-facing and the inward-facing conformations revealed by crystal structures in different states. Here, we use targeted molecular dynamics simulation methods to explore the atomic details of the conformational transition from the outward-facing to the inward-facing states of MsbA. The molecular dynamics trajectories revealed a clear spatiotemporal order of the conformational movements. The disruption of the nucleotide binding sites at the NBD dimer interface is the very first event that initiates the following conformational changes, verifying the assumption that the conformational conversion is triggered by ATP hydrolysis. The conserved x-loops of the NBDs were identified to participate in the interaction network that stabilizes the cytoplasmic tetrahelix bundle of the TMDs and play an important role in mediating the cross-talk between the NBD and TMD. The movement of the NBD dimer is transmitted through x-loops to break the tetrahelix bundle, inducing the packing rearrangements of the transmembrane helices at the cytoplasmic side and the periplasmic side sequentially. The packing rearrangement within each periplasmic wing of TMD that results in exposure of the substrate binding sites occurred at the end stage of the trajectory, preventing the wrong timing of the binding site accessibility.
Collapse
Affiliation(s)
- Jing-Wei Weng
- From the Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, and
| | - Kang-Nian Fan
- From the Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, and
| | - Wen-Ning Wang
- From the Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, and
- Institute of Biomedical Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
30
|
Khalili-Araghi F, Gumbart J, Wen PC, Sotomayor M, Tajkhorshid E, Schulten K. Molecular dynamics simulations of membrane channels and transporters. Curr Opin Struct Biol 2009; 19:128-37. [PMID: 19345092 DOI: 10.1016/j.sbi.2009.02.011] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/22/2009] [Accepted: 02/24/2009] [Indexed: 11/27/2022]
Abstract
Membrane transport constitutes one of the most fundamental processes in all living cells with proteins as major players. Proteins as channels provide highly selective diffusive pathways gated by environmental factors, and as transporters furnish directed, energetically uphill transport consuming energy. X-ray crystallography of channels and transporters furnishes a rapidly growing number of atomic resolution structures, permitting molecular dynamics (MD) simulations to reveal the physical mechanisms underlying channel and transporter function. Ever increasing computational power today permits simulations stretching up to 1 micros, that is, to physiologically relevant time scales. Membrane protein simulations presently focus on ion channels, on aquaporins, on protein-conducting channels, as well as on various transporters. In this review we summarize recent developments in this rapidly evolving field.
Collapse
Affiliation(s)
- Fatemeh Khalili-Araghi
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
31
|
Procko E, O'Mara ML, Bennett WFD, Tieleman DP, Gaudet R. The mechanism of ABC transporters: general lessons from structural and functional studies of an antigenic peptide transporter. FASEB J 2009; 23:1287-302. [PMID: 19174475 DOI: 10.1096/fj.08-121855] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The shuttling of substrates across a cellular membrane frequently requires a specialized ATP-binding cassette (ABC) transporter, which couples the energy of ATP binding and hydrolysis to substrate transport. Due to its importance in immunity, the ABC transporter associated with antigen processing (TAP) has been studied extensively and is an excellent model for other ABC transporters. The TAP protein pumps cytosolic peptides into the endoplasmic reticulum for loading onto class I major histocompatibility complex (MHC) for subsequent immune surveillance. Here, we outline a potential mechanism for the TAP protein with supporting evidence from bacterial transporter structures. The similarities and differences between TAP and other transporters support the notion that ABC transporters in general have adapted around a universal transport mechanism.
Collapse
Affiliation(s)
- Erik Procko
- Department of Molecular and Cellular Biology, Harvard University 7 Divinity Ave., Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
32
|
Holo-BtuF stabilizes the open conformation of the vitamin B12 ABC transporter BtuCD. Proteins 2009; 78:738-53. [DOI: 10.1002/prot.22606] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
33
|
Dimer opening of the nucleotide binding domains of ABC transporters after ATP hydrolysis. Biophys J 2008; 95:5100-10. [PMID: 18790847 DOI: 10.1529/biophysj.108.139444] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
ABC transporters constitute one of the most abundant membrane transporter families. The most common feature shared in the family is the highly conserved nucleotide binding domains (NBDs) that drive the transport process through binding and hydrolysis of ATP. Molecular dynamics simulations are used to investigate the effect of ATP hydrolysis in the NBDs. Starting with the ATP-bound, closed dimer of MalK, four simulation systems with all possible combinations of ATP or ADP-P(i) bound to the two nucleotide binding sites are constructed and simulated with equilibrium molecular dynamics for approximately 70 ns each. The results suggest that the closed form of the NBD dimer can only be maintained with two bound ATP molecules; in other words, hydrolysis of one ATP can lead to the opening of the dimer interface of the NBD dimer. Furthermore, we observed that the opening is an immediate effect of hydrolysis of ATP into ADP and P(i) rather than the dissociation of hydrolysis products. In addition, the opening is mechanistically triggered by the dissociation of the LSGGQ motif from the bound nucleotide. A metastable ADP-P(i) bound conformational state is consistently observed before the dimer opening in all the simulation systems.
Collapse
|
34
|
ATP-binding cassette transporters in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1757-71. [DOI: 10.1016/j.bbamem.2008.06.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 06/10/2008] [Accepted: 06/12/2008] [Indexed: 12/14/2022]
|
35
|
Davidson AL, Dassa E, Orelle C, Chen J. Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 2008; 72:317-64, table of contents. [PMID: 18535149 PMCID: PMC2415747 DOI: 10.1128/mmbr.00031-07] [Citation(s) in RCA: 967] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
SUMMARY ATP-binding cassette (ABC) systems are universally distributed among living organisms and function in many different aspects of bacterial physiology. ABC transporters are best known for their role in the import of essential nutrients and the export of toxic molecules, but they can also mediate the transport of many other physiological substrates. In a classical transport reaction, two highly conserved ATP-binding domains or subunits couple the binding/hydrolysis of ATP to the translocation of particular substrates across the membrane, through interactions with membrane-spanning domains of the transporter. Variations on this basic theme involve soluble ABC ATP-binding proteins that couple ATP hydrolysis to nontransport processes, such as DNA repair and gene expression regulation. Insights into the structure, function, and mechanism of action of bacterial ABC proteins are reported, based on phylogenetic comparisons as well as classic biochemical and genetic approaches. The availability of an increasing number of high-resolution structures has provided a valuable framework for interpretation of recent studies, and realistic models have been proposed to explain how these fascinating molecular machines use complex dynamic processes to fulfill their numerous biological functions. These advances are also important for elucidating the mechanism of action of eukaryotic ABC proteins, because functional defects in many of them are responsible for severe human inherited diseases.
Collapse
Affiliation(s)
- Amy L Davidson
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | |
Collapse
|
36
|
Mechanism of signal propagation upon retinal isomerization: insights from molecular dynamics simulations of rhodopsin restrained by normal modes. Biophys J 2008; 95:789-803. [PMID: 18390613 DOI: 10.1529/biophysj.107.120691] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As one of the best studied members of the pharmaceutically relevant family of G-protein-coupled receptors, rhodopsin serves as a prototype for understanding the mechanism of G-protein-coupled receptor activation. Here, we aim at exploring functionally relevant conformational changes and signal transmission mechanisms involved in its photoactivation brought about through a cis-trans photoisomerization of retinal. For this exploration, we propose a molecular dynamics simulation protocol that utilizes normal modes derived from the anisotropic network model for proteins. Deformations along multiple low-frequency modes of motion are used to efficiently sample collective conformational changes in the presence of explicit membrane and water environment, consistent with interresidue interactions. We identify two highly stable regions in rhodopsin, one clustered near the chromophore, the other near the cytoplasmic ends of transmembrane helices H1, H2, and H7. Due to redistribution of interactions in the neighborhood of retinal upon stabilization of the trans form, local structural rearrangements in the adjoining H3-H6 residues are efficiently propagated to the cytoplasmic end of these particular helices. In the structures obtained by our simulations, all-trans retinal interacts with Cys(167) on H4 and Phe(203) on H5, which were not accessible in the dark state, and exhibits stronger interactions with H5, while some of the contacts made (in the cis form) with H6 are lost.
Collapse
|
37
|
Ecker GF, Stockner T, Chiba P. Computational models for prediction of interactions with ABC-transporters. Drug Discov Today 2008; 13:311-7. [PMID: 18405843 DOI: 10.1016/j.drudis.2007.12.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2007] [Revised: 12/10/2007] [Accepted: 12/20/2007] [Indexed: 01/22/2023]
Abstract
The polyspecific ligand recognition pattern of ATB-binding cassette (ABC)-transporters, combined with the limited knowledge on the molecular basis of their multispecificity, makes it difficult to apply traditional molecular modelling and quantitative structure-activity relationships (QSAR) methods for identification of new ligands. Recent advances relied mainly on pharmacophore modelling and machine learning methods. Structure-based design studies suffer from the lack of available protein structures at atomic resolution. The recently published protein homology models of P-glycoprotein structure, based on the high-resolution structure of the bacterial ABC-transporter of Sav1866, may open a new chapter for structure-based studies. Last, but not least, molecular dynamics simulations have already proved their high potential for structure-function modelling of ABC-transporter. Because of the recognition of several ABC-transporters as antitargets, algorithms for predicting substrate properties are of increasing interest.
Collapse
Affiliation(s)
- Gerhard F Ecker
- Emerging Field Pharmacoinformatics, Department of Medicinal Chemistry, University of Vienna, Althanstrasse 14, 1090 Wien, Austria.
| | | | | |
Collapse
|
38
|
Liu M, Sun T, Hu J, Chen W, Wang C. Study on the mechanism of the BtuF periplasmic-binding protein for vitamin B12. Biophys Chem 2008; 135:19-24. [PMID: 18358587 DOI: 10.1016/j.bpc.2008.02.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 02/27/2008] [Accepted: 02/28/2008] [Indexed: 11/16/2022]
Abstract
BtuF is the periplasmic binding protein (PBP) that binds vitamin B(12) and delivers it to the periplasmic surface of the ABC transporter BtuCD. PBPs generally exhibit considerable conformational changes during ligand binding process, however, BtuF belongs to a subclass of PBPs that, doesn't show such behavior on the basis of the crystal structures. Employing steered molecular dynamics on the B(12)-bound BtuF, we investigated the energetics and mechanism of BtuF. A potential of mean force along the postulated vitamin B(12) unbinding pathway was constructed through Jarzynski's equality. The large free energy differences of the postulated B(12) unbinding process suggests the B(12)-bound structure is in a stable closed state and some conformation changes may be necessary to the B(12) unbinding. From the result of the principal component analysis, we found the BtuF-B(12) complex shows clear opening-closing and twisting motion tendencies which may facilitate the unbinding of B(12) from the binding pocket. The intrinsic flexibility of BtuF was also explored, and it's suggested the Trp44-Gln45 pair, which is situated at the mouth of the B(12) binding pocket, may act as a gate in the B(12) binding and unbinding process.
Collapse
Affiliation(s)
- Ming Liu
- College of Life Sciences and Bioengineering, Beijing University of Technology, Beijing, China
| | | | | | | | | |
Collapse
|
39
|
Sapay N, Tieleman DP. Chapter 4 Molecular Dynamics Simulation of Lipid–Protein Interactions. CURRENT TOPICS IN MEMBRANES 2008. [DOI: 10.1016/s1063-5823(08)00004-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
40
|
The conformational coupling and translocation mechanism of vitamin B12 ATP-binding cassette transporter BtuCD. Biophys J 2007; 94:612-21. [PMID: 17951296 DOI: 10.1529/biophysj.107.110734] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ATP-binding cassette transporter BtuCD mediating vitamin B(12) uptake in Escherichia coli couples the energy of ATP hydrolysis to the translocation of vitamin B(12) across the membrane into the cell. Elastic normal mode analysis of BtuCD demonstrates that the simultaneous substrate trapping at periplasmic cavity and ATP binding at the ATP-binding cassette (BtuD) dimer proceeds readily along the lowest energy pathway. The transport power stroke is attributed to ATP-hydrolysis-induced opening of the nucleotide-binding domain dimer, which is coupled to conformational rearrangement of transmembrane domain (BtuC) helices leading to the closing at the periplasmic side and opening at the cytoplasmic gate. Simultaneous hydrolysis of two ATP is supported by the fact that antisymmetric movement of BtuD dimer implying alternating hydrolysis cannot induce effective conformational change of the translocation pathway. A plausible mechanism of translocation cycle is proposed in which the possible effect of the association of periplasmic binding protein BtuF to the transporter is also considered.
Collapse
|
41
|
Daus ML, Grote M, Müller P, Doebber M, Herrmann A, Steinhoff HJ, Dassa E, Schneider E. ATP-driven MalK dimer closure and reopening and conformational changes of the "EAA" motifs are crucial for function of the maltose ATP-binding cassette transporter (MalFGK2). J Biol Chem 2007; 282:22387-96. [PMID: 17545154 DOI: 10.1074/jbc.m701979200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We have investigated conformational changes of the purified maltose ATP-binding cassette transporter (MalFGK(2)) upon binding of ATP. The transport complex is composed of a heterodimer of the hydrophobic subunits MalF and MalG constituting the translocation pore and of a homodimer of MalK, representing the ATP-hydrolyzing subunit. Substrate is delivered to the transporter in complex with periplasmic maltose-binding protein (MalE). Cross-linking experiments with a variant containing an A85C mutation within the Q-loop of each MalK monomer indicated an ATP-induced shortening of the distance between both monomers. Cross-linking caused a substantial inhibition of MalE-maltose-stimulated ATPase activity. We further demonstrated that a mutation affecting the "catalytic carboxylate" (E159Q) locks the MalK dimer in the closed state, whereas a transporter containing the "ABC signature" mutation Q140K permanently resides in the resting state. Cross-linking experiments with variants containing the A85C mutation combined with cysteine substitutions in the conserved EAA motifs of MalF and MalG, respectively, revealed close proximity of these residues in the resting state. The formation of a MalK-MalG heterodimer remained unchanged upon the addition of ATP, indicating that MalG-EAA moves along with MalK during dimer closure. In contrast, the yield of MalK-MalF dimers was substantially reduced. This might be taken as further evidence for asymmetric functions of both EAA motifs. Cross-linking also caused inhibition of ATPase activity, suggesting that transporter function requires conformational changes of both EAA motifs. Together, our data support ATP-driven MalK dimer closure and reopening as crucial steps in the translocation cycle of the intact maltose transporter and are discussed with respect to a current model.
Collapse
Affiliation(s)
- Martin L Daus
- Institut für Biologie/Bakterienphysiologie, Humboldt Universität zu Berlin, Chausseestrasse 117, D-10115 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|