1
|
Rivera-Rivera LY, Moore TC, Glotzer SC. Inverse design of triblock Janus spheres for self-assembly of complex structures in the crystallization slot via digital alchemy. SOFT MATTER 2023; 19:2726-2736. [PMID: 36974942 DOI: 10.1039/d2sm01593e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The digital alchemy framework is an extended ensemble simulation technique that incorporates particle attributes as thermodynamic variables, enabling the inverse design of colloidal particles for desired behavior. Here, we extend the digital alchemy framework for the inverse design of patchy spheres that self-assemble into target crystal structures. To constrain the potentials to non-trivial solutions, we conduct digital alchemy simulations with constant second virial coefficient. We optimize the size, range, and strength of patchy interactions in model triblock Janus spheres to self-assemble the 2D kagome and snub square lattices and the 3D pyrochlore lattice, and demonstrate self-assembly of all three target structures with the designed models. The particles designed for the kagome and snub square lattices assemble into high quality clusters of their target structures, while competition from similar polymorphs lower the yield of the pyrochlore assemblies. We find that the alchemically designed potentials do not always match physical intuition, illustrating the ability of the method to find nontrivial solutions to the optimization problem. We identify a window of second virial coefficients that result in self-assembly of the target structures, analogous to the crystallization slot in protein crystallization.
Collapse
Affiliation(s)
| | - Timothy C Moore
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Sharon C Glotzer
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Das TK, Chou DK, Jiskoot W, Arosio P. Nucleation in protein aggregation in biotherapeutic development: a look into the heart of the event. J Pharm Sci 2022; 111:951-959. [DOI: 10.1016/j.xphs.2022.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 12/26/2022]
|
3
|
|
4
|
Resolving Liquid-Liquid Phase Separation for a Peptide Fused Monoclonal Antibody by Formulation Optimization. J Pharm Sci 2020; 110:738-745. [PMID: 32961238 DOI: 10.1016/j.xphs.2020.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/10/2020] [Accepted: 09/14/2020] [Indexed: 11/22/2022]
Abstract
Liquid-liquid phase separation (LLPS) of protein solutions has been usually related to strong protein-protein interactions (PPI) under certain conditions. For the first time, we observed the LLPS phenomenon for a novel protein modality, peptide-fused monoclonal antibody (pmAb). LLPS emerged within hours between pH 6.0 to 7.0 and disappeared when solution pH values decreased to pH 5.0 or lower. Negative values of interaction parameter (kD) and close to zero values of zeta potential (ζ) were correlated to LLPS appearance. However, between pH 6.0 to 7.0, a strong electrostatic repulsion force was expected to potentially avoid LLPS based on the sequence predicted pI value, 8.35. Surprisingly, this is significantly away from experimentally determined pI, 6.25, which readily attributes the LLPS appearances of pmAb to the attenuated electrostatic repulsion force. Such discrepancy between experiment and prediction reminds the necessity of actual measurement for a complicated modality like pmAb. Furthermore, significant protein degradation took place upon thermal stress at pH 5.0 or lower. Therefore, the effects of pH and selected excipients on the thermal stability of pmAb were further assessed. A formulation consisting of arginine at pH 6.5 successfully prevented the appearance of LLPS and enhanced its thermal stability at 40 °C for pmAb. In conclusion, we have reported LLPS for a pmAb and successfully resolved the issue by optimizing formulation with aids from PPI characterization.
Collapse
|
5
|
Pantuso E, Mastropietro TF, Briuglia ML, Gerard CJJ, Curcio E, Ter Horst JH, Nicoletta FP, Di Profio G. On the Aggregation and Nucleation Mechanism of the Monoclonal Antibody Anti-CD20 Near Liquid-Liquid Phase Separation (LLPS). Sci Rep 2020; 10:8902. [PMID: 32483267 PMCID: PMC7264149 DOI: 10.1038/s41598-020-65776-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/30/2020] [Indexed: 12/02/2022] Open
Abstract
The crystallization of Anti-CD20, a full-length monoclonal antibody, has been studied in the PEG400/Na2SO4/Water system near Liquid-Liquid Phase Separation (LLPS) conditions by both sitting-drop vapour diffusion and batch methods. In order to understand the Anti-CD20 crystallization propensity in the solvent system of different compositions, we investigated some measurable parameters, normally used to assess protein conformational and colloidal stability in solution, with the aim to understand the aggregation mechanism of this complex biomacromolecule. We propose that under crystallization conditions a minor population of specifically aggregated protein molecules are present. While this minor species hardly contributes to the measured average solution behaviour, it induces and promotes crystal formation. The existence of this minor species is the result of the LLPS occurring concomitantly under crystallization conditions.
Collapse
Affiliation(s)
- Elvira Pantuso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci Edificio Polifunzionale, 87036, Rende, CS, Italy
| | - Teresa F Mastropietro
- National Research Council of Italy (CNR) - Institute on Membrane Technology (ITM), Via P. Bucci Cubo 17/C, 87036, Rende, CS, Italy
| | - Maria L Briuglia
- EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation (CMAC), Strathclyde Institute of Pharmacy and Biomedical Sciences, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Charline J J Gerard
- EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation (CMAC), Strathclyde Institute of Pharmacy and Biomedical Sciences, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Efrem Curcio
- Department of Environmental Engineering (DIAm), University of Calabria, Via P. Bucci Cubo 45/A, 87036, Rende, CS, Italy
- Seligenda Membrane Technologies S.r.l., Via P. Bucci Cubo 45/A, 87036, Rende, CS, Italy
| | - Joop H Ter Horst
- EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation (CMAC), Strathclyde Institute of Pharmacy and Biomedical Sciences, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Fiore P Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci Edificio Polifunzionale, 87036, Rende, CS, Italy.
| | - Gianluca Di Profio
- National Research Council of Italy (CNR) - Institute on Membrane Technology (ITM), Via P. Bucci Cubo 17/C, 87036, Rende, CS, Italy.
- Seligenda Membrane Technologies S.r.l., Via P. Bucci Cubo 45/A, 87036, Rende, CS, Italy.
| |
Collapse
|
6
|
Gentiluomo L, Roessner D, Streicher W, Mahapatra S, Harris P, Frieß W. Characterization of Native Reversible Self-Association of a Monoclonal Antibody Mediated by Fab-Fab Interaction. J Pharm Sci 2020; 109:443-451. [DOI: 10.1016/j.xphs.2019.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/22/2019] [Accepted: 09/16/2019] [Indexed: 11/28/2022]
|
7
|
Singh P, Roche A, van der Walle CF, Uddin S, Du J, Warwicker J, Pluen A, Curtis R. Determination of Protein-Protein Interactions in a Mixture of Two Monoclonal Antibodies. Mol Pharm 2019; 16:4775-4786. [PMID: 31613625 DOI: 10.1021/acs.molpharmaceut.9b00430] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The coformulation of monoclonal antibody (mAb) mixtures provides an attractive route to achieving therapeutic efficacy where the targeting of multiple epitopes is necessary. Controlling and predicting the behavior of such mixtures requires elucidating the molecular basis for the self- and cross-protein-protein interactions and how they depend on solution variables. While self-interactions are now beginning to be well understood, systematic studies of cross-interactions between mAbs in solution do not exist. Here, we have used static light scattering to measure the set of self- and cross-osmotic second virial coefficients in a solution containing a mixture of two mAbs, mAbA and mAbB, as a function of ionic strength and pH. mAbB exhibits strong association at a low ionic strength, which is attributed to an electrostatic attraction that is enhanced by the presence of a strong short-ranged attraction of nonelectrostatic origin. Under all solution conditions, the measured cross-interactions are intermediate self-interactions and follow similar patterns of behavior. There is a strong electrostatic attraction at higher pH values, reflecting the behavior of mAbB. Protein-protein interactions become more attractive with an increasing pH due to reducing the overall protein net charges, an effect that is attenuated with an increasing ionic strength due to the screening of electrostatic interactions. Under moderate ionic strength conditions, the reduced cross-virial coefficient, which reflects only the energetic contribution to protein-protein interactions, is given by a geometric average of the corresponding self-coefficients. We show the relationship can be rationalized using a patchy sphere model, where the interaction energy between sites i and j is given by the arithmetic mean of the i-i and j-j interactions. The geometric mean does not necessarily apply to all mAb mixtures and is expected to break down at a lower ionic strength due to the nonadditivity of electrostatic interactions.
Collapse
Affiliation(s)
- Priyanka Singh
- Manchester Pharmacy School , University of Manchester , Manchester M13 9PL , United Kingdom
| | - Aisling Roche
- School of Chemical Engineering and Analytical Science , University of Manchester , Manchester M1 7DN , United Kingdom
| | - Christopher F van der Walle
- School of Chemical Engineering and Analytical Science , University of Manchester , Manchester M1 7DN , United Kingdom.,Dosage Form Design & Development , AstraZeneca , Granta Park , Cambridge CB21 6GH , United Kingdom
| | - Shahid Uddin
- Formulation Sciences CMC , Immunocore , Milton Park , Abingdon OX14 4RW , United Kingdom
| | - Jiali Du
- Dosage Form Design & Development , AstraZeneca , Gaithersburg MD20878 , United States
| | - Jim Warwicker
- School of Chemistry , University of Manchester , Manchester M1 7DN , United Kingdom
| | - Alain Pluen
- Manchester Pharmacy School , University of Manchester , Manchester M13 9PL , United Kingdom
| | - Robin Curtis
- School of Chemical Engineering and Analytical Science , University of Manchester , Manchester M1 7DN , United Kingdom
| |
Collapse
|
8
|
A stepwise mechanism for aqueous two-phase system formation in concentrated antibody solutions. Proc Natl Acad Sci U S A 2019; 116:15784-15791. [PMID: 31337677 DOI: 10.1073/pnas.1900886116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aqueous two-phase system (ATPS) formation is the macroscopic completion of liquid-liquid phase separation (LLPS), a process by which aqueous solutions demix into 2 distinct phases. We report the temperature-dependent kinetics of ATPS formation for solutions containing a monoclonal antibody and polyethylene glycol. Measurements are made by capturing dark-field images of protein-rich droplet suspensions as a function of time along a linear temperature gradient. The rate constants for ATPS formation fall into 3 kinetically distinct categories that are directly visualized along the temperature gradient. In the metastable region, just below the phase separation temperature, T ph , ATPS formation is slow and has a large negative apparent activation energy. By contrast, ATPS formation proceeds more rapidly in the spinodal region, below the metastable temperature, T meta , and a small positive apparent activation energy is observed. These region-specific apparent activation energies suggest that ATPS formation involves 2 steps with opposite temperature dependencies. Droplet growth is the first step, which accelerates with decreasing temperature as the solution becomes increasingly supersaturated. The second step, however, involves droplet coalescence and is proportional to temperature. It becomes the rate-limiting step in the spinodal region. At even colder temperatures, below a gelation temperature, T gel , the proteins assemble into a kinetically trapped gel state that arrests ATPS formation. The kinetics of ATPS formation near T gel is associated with a remarkably fragile solid-like gel structure, which can form below either the metastable or the spinodal region of the phase diagram.
Collapse
|
9
|
Du Q, Damschroder M, Pabst TM, Hunter AK, Wang WK, Luo H. Process optimization and protein engineering mitigated manufacturing challenges of a monoclonal antibody with liquid-liquid phase separation issue by disrupting inter-molecule electrostatic interactions. MAbs 2019; 11:789-802. [PMID: 30913985 DOI: 10.1080/19420862.2019.1599634] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We report a case study in which liquid-liquid phase separation (LLPS) negatively impacted the downstream manufacturability of a therapeutic mAb. Process parameter optimization partially mitigated the LLPS, but limitations remained for large-scale manufacturing. Electrostatic interaction driven self-associations and the resulting formation of high-order complexes are established critical properties that led to LLPS. Through chain swapping substitutions with a well-behaved antibody and subsequent study of their solution behaviors, we found the self-association interactions between the light chains (LCs) of this mAb are responsible for the LLPS behavior. With the aid of in silico homology modeling and charged-patch analysis, seven charged residues in the LC complementarity-determining regions (CDRs) were selected for mutagenesis, then evaluated for self-association and LLPS properties. Two charged residues in the light chain (K30 and D50) were identified as the most significant to the LLPS behaviors and to the antigen-binding affinity. Four adjacent charged residues in the light chain (E49, K52, R53, and R92) also contributed to self-association, and thus to LLPS. Molecular engineering substitution of these charged residues with a neutral or oppositely-charged residue disrupted the electrostatic interactions. A double-mutation in CDR2 and CDR3 resulted in a variant that retained antigen-binding affinity and eliminated LLPS. This study demonstrates the critical nature of surface charged resides on LLPS, and highlights the applied power of in silico protein design when applied to improving physiochemical characteristics of therapeutic antibodies. Our study indicates that in silico design and effective protein engineering may be useful in the development of mAbs that encounter similar LLPS issues.
Collapse
Affiliation(s)
- Qun Du
- a Department of Antibody Discovery and Protein Engineering, AstraZeneca , Gaithersburg , MD , USA
| | - Melissa Damschroder
- a Department of Antibody Discovery and Protein Engineering, AstraZeneca , Gaithersburg , MD , USA
| | - Timothy M Pabst
- b Purification Process Sciences , AstraZeneca , Gaithersburg , MD , USA
| | - Alan K Hunter
- b Purification Process Sciences , AstraZeneca , Gaithersburg , MD , USA
| | - William K Wang
- b Purification Process Sciences , AstraZeneca , Gaithersburg , MD , USA
| | - Haibin Luo
- b Purification Process Sciences , AstraZeneca , Gaithersburg , MD , USA
| |
Collapse
|
10
|
Chai Q, Shih J, Weldon C, Phan S, Jones BE. Development of a high-throughput solubility screening assay for use in antibody discovery. MAbs 2019; 11:747-756. [PMID: 30913963 DOI: 10.1080/19420862.2019.1589851] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Poor solubility is a common challenge encountered during the development of high concentration monoclonal antibody (mAb) formulations, but there are currently no methods that can provide predictive information on high-concentration behavior of mAbs in early discovery. We explored the utility of methodologies used for determining extrapolated solubility as a way to rank-order mAbs based on their relative solubility properties. We devised two approaches to accomplish this: 1) vapor diffusion technique utilized in traditional protein crystallization practice, and 2) polyethylene glycol (PEG)-induced precipitation and quantitation by turbidity. Using a variety of in-house mAbs with known high-concentration behavior, we demonstrated that both approaches exhibited reliable predictability of the relative solubility properties of these mAbs. Optimizing the latter approach, we developed a format that is capable of screening a large panel of mAbs in multiple pH and buffer conditions. This simple, material-saving, high-throughput approach enables the selection of superior molecules and optimal formulation conditions much earlier in the antibody discovery process, prior to time-consuming and material intensive high-concentration studies.
Collapse
Affiliation(s)
- Qing Chai
- a BioTechnology Discovery Research , Eli Lilly Biotechnology Center , San Diego , CA , USA
| | - James Shih
- a BioTechnology Discovery Research , Eli Lilly Biotechnology Center , San Diego , CA , USA
| | - Caroline Weldon
- b Intellicyt Corporation , Part of the Sartorius Group , Albuquerque , NM , USA
| | - Samantha Phan
- a BioTechnology Discovery Research , Eli Lilly Biotechnology Center , San Diego , CA , USA
| | - Bryan E Jones
- a BioTechnology Discovery Research , Eli Lilly Biotechnology Center , San Diego , CA , USA
| |
Collapse
|
11
|
Tian Y, Huang L, Ruotolo BT, Wang N. Hydrogen/deuterium exchange-mass spectrometry analysis of high concentration biotherapeutics: application to phase-separated antibody formulations. MAbs 2019; 11:779-788. [PMID: 30890021 PMCID: PMC6601547 DOI: 10.1080/19420862.2019.1589850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
High concentration biotherapeutic formulations are often required to deliver large doses of drugs to achieve a desired degree of efficacy and less frequent dose. However, highly concentrated protein-containing solutions may exhibit undesirable therapeutic properties, such as increased viscosity, aggregation, and phase separation that can affect drug efficacy and raise safety issues. The characterization of high concentration protein formulations is a critical yet challenging analytical task for therapeutic development efforts, due to the lack of technologies capable of making accurate measurements under such conditions. To address this issue, we developed a novel dilution-free hydrogen/deuterium exchange (HDX) mass spectrometry (MS) method for the direct conformational analysis of high concentration biotherapeutics. Here, we particularly focused on studying phase separation phenomenon that can occur at high protein concentrations. First, two aliquots of monoclonal antibodies (mAbs) were dialyzed in either hydrogen- or deuterium-containing buffers at low salt and pH. Phases that separated were then discretely sampled and subjected to dilution-free HDX-MS analysis through mixing the non-deuterated and deuterated protein aliquots. Our HDX-MS results analyzed at a global protein level reveal less deuterium incorporation for the protein-enriched phase compared to the protein-depleted phase present in high concentration formulations. A peptide level analysis further confirmed these observed differences, and a detailed statistical analysis provided direct information surrounding the details of the conformational changes observed. Based on our HDX-MS results, we propose possible structures for the self-associated mAbs present at high concentrations. Our new method can potentially provide useful insights into the unusual behavior of therapeutic proteins in high concentration formulations, aiding their development.
Collapse
Affiliation(s)
- Yuwei Tian
- a Bioproduct Research and Development , Lilly Research Laboratories, Eli Lilly and Company , Indianapolis , IN , USA.,b Department of Chemistry , University of Michigan , Ann Arbor , MI , USA
| | - Lihua Huang
- a Bioproduct Research and Development , Lilly Research Laboratories, Eli Lilly and Company , Indianapolis , IN , USA
| | - Brandon T Ruotolo
- b Department of Chemistry , University of Michigan , Ann Arbor , MI , USA
| | - Ning Wang
- a Bioproduct Research and Development , Lilly Research Laboratories, Eli Lilly and Company , Indianapolis , IN , USA
| |
Collapse
|
12
|
Corbett D, Bye JW, Curtis RA. Measuring Nonspecific Protein-Protein Interactions by Dynamic Light Scattering. Methods Mol Biol 2019; 2039:3-21. [PMID: 31342415 DOI: 10.1007/978-1-4939-9678-0_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dynamic light scattering has become a method of choice for measuring and quantifying weak, nonspecific protein-protein interactions due to its ease of use, minimal sample consumption, and amenability to high-throughput screening via plate readers. A procedure is given on how to prepare protein samples, carry out measurements by commonly used experimental setups including flow through systems, plate readers, and cuvettes, and analyze the correlation functions to obtain diffusion coefficient data. The chapter concludes by a theoretical section that derives and rationalizes the correlation between diffusion coefficient measurements and protein-protein interactions.
Collapse
Affiliation(s)
- Daniel Corbett
- School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK
| | - Jordan W Bye
- School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK
| | - Robin A Curtis
- School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK.
| |
Collapse
|
13
|
Kalyuzhnyi YV, Vlachy V. Modeling the depletion effect caused by an addition of polymer to monoclonal antibody solutions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:485101. [PMID: 30418950 PMCID: PMC6693579 DOI: 10.1088/1361-648x/aae914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present a theoretical study of colloidal stability of the model mixtures of monoclonal antibody molecules and non-adsorbing (no polymer-protein attraction) polymers. The antibodies are pictured as an assembly of seven hard spheres assuming a Y-like shape. Polymers present in the mixture are modeled as chain-like molecules having from 32 up to 128 monomers represented as hard spheres. We use Wertheim's thermodynamic perturbation theory to construct the two molecular species and to calculate measurable properties. The calculations are performed in the osmotic ensemble. In view that no direct attractive interaction is present in the model Hamiltonian, we only account for the entropic contribution to the phase equilibrium. We calculate chemical potentials and the equation of state for the model mixture to determine the liquid-liquid part of the phase diagram. We investigate how the critical antibody number density depends on the degree of polymerization and the bead size ratio of the polymer and protein components. The model mixture qualitatively correctly predicts some basic features of real systems. The effects of the model 'protein' geometry, that is the difference in results for the flexible Y-shaped protein versus the rigid spherical one, are also examined.
Collapse
Affiliation(s)
- Yu V Kalyuzhnyi
- Department of Chemistry, Faculty of Science, J E Purkinje University, 400 96 Ústí nad Labem, Czechia
| | | |
Collapse
|
14
|
AUC measurements of diffusion coefficients of monoclonal antibodies in the presence of human serum proteins. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 47:709-722. [DOI: 10.1007/s00249-018-1319-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/07/2018] [Accepted: 07/04/2018] [Indexed: 12/21/2022]
|
15
|
Klijn ME, Hubbuch J. Application of Empirical Phase Diagrams for Multidimensional Data Visualization of High-Throughput Microbatch Crystallization Experiments. J Pharm Sci 2018; 107:2063-2069. [PMID: 29709489 DOI: 10.1016/j.xphs.2018.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/20/2018] [Indexed: 01/18/2023]
Abstract
Protein phase diagrams are a tool to investigate the cause and consequence of solution conditions on protein phase behavior. The effects are scored according to aggregation morphologies such as crystals or amorphous precipitates. Solution conditions affect morphologic features, such as crystal size, as well as kinetic features, such as crystal growth time. Commonly used data visualization techniques include individual line graphs or phase diagrams based on symbols. These techniques have limitations in terms of handling large data sets, comprehensiveness or completeness. To eliminate these limitations, morphologic and kinetic features obtained from crystallization images generated with high throughput microbatch experiments have been visualized with radar charts in combination with the empirical phase diagram method. Morphologic features (crystal size, shape, and number, as well as precipitate size) and kinetic features (crystal and precipitate onset and growth time) are extracted for 768 solutions with varying chicken egg white lysozyme concentration, salt type, ionic strength, and pH. Image-based aggregation morphology and kinetic features were compiled into a single and easily interpretable figure, thereby showing that the empirical phase diagram method can support high-throughput crystallization experiments in its data amount as well as its data complexity.
Collapse
Affiliation(s)
- Marieke E Klijn
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany.
| |
Collapse
|
16
|
Hong MS, Severson KA, Jiang M, Lu AE, Love JC, Braatz RD. Challenges and opportunities in biopharmaceutical manufacturing control. Comput Chem Eng 2018. [DOI: 10.1016/j.compchemeng.2017.12.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Manning MC, Liu J, Li T, Holcomb RE. Rational Design of Liquid Formulations of Proteins. THERAPEUTIC PROTEINS AND PEPTIDES 2018; 112:1-59. [DOI: 10.1016/bs.apcsb.2018.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Rowe JB, Cancel RA, Evangelous TD, Flynn RP, Pechenov S, Subramony JA, Zhang J, Wang Y. Metastability Gap in the Phase Diagram of Monoclonal IgG Antibody. Biophys J 2017; 113:1750-1756. [PMID: 29045869 DOI: 10.1016/j.bpj.2017.08.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 11/26/2022] Open
Abstract
Crystallization of IgG antibodies has important applications in the fields of structural biology, biotechnology, and biopharmaceutics. However, a rational approach to crystallize antibodies is still lacking. In this work, we report a method to estimate the solubility of antibodies at various temperatures. We experimentally determined the full phase diagram of an IgG antibody. Using the full diagram, we examined the metastability gaps, i.e., the distance between the crystal solubility line and the liquid-liquid coexistence curve, of IgG antibodies. By comparing our results to the partial phase diagrams of other IgGs reported in literature, we found that IgG antibodies have similar metastability gaps. Thereby, we present an equation with two phenomenological parameters to predict the approximate location of the solubility line of IgG antibodies with respect to their liquid-liquid coexistence curves. We have previously shown that the coexistence curve of an antibody solution can be readily determined by the polyethylene glycol-induced liquid-liquid phase separation method. Combining the polyethylene glycol-induced liquid-liquid phase separation measurements and the phenomenological equation in this article, we provide a general and practical means to predict the thermodynamic conditions for crystallizing IgG antibodies in the solution environments of interest.
Collapse
Affiliation(s)
- Jacob B Rowe
- Department of Chemistry and Biochemistry, University of North Carolina at Wilmington, Wilmington, North Carolina
| | - Rachel A Cancel
- Department of Chemistry and Biochemistry, University of North Carolina at Wilmington, Wilmington, North Carolina
| | - Tyler D Evangelous
- Department of Chemistry and Biochemistry, University of North Carolina at Wilmington, Wilmington, North Carolina
| | - Rhiannon P Flynn
- Department of Chemistry and Biochemistry, University of North Carolina at Wilmington, Wilmington, North Carolina
| | | | | | | | - Ying Wang
- Department of Chemistry and Biochemistry, University of North Carolina at Wilmington, Wilmington, North Carolina.
| |
Collapse
|
19
|
Schermeyer MT, Wöll AK, Kokke B, Eppink M, Hubbuch J. Characterization of highly concentrated antibody solution - A toolbox for the description of protein long-term solution stability. MAbs 2017; 9:1169-1185. [PMID: 28617076 PMCID: PMC5627599 DOI: 10.1080/19420862.2017.1338222] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 12/21/2022] Open
Abstract
High protein titers are gaining importance in biopharmaceutical industry. A major challenge in the development of highly concentrated mAb solutions is their long-term stability and often incalculable viscosity. The complexity of the molecule itself, as well as the various molecular interactions, make it difficult to describe their solution behavior. To study the formulation stability, long- and short-range interactions and the formation of complex network structures have to be taken into account. For a better understanding of highly concentrated solutions, we combined established and novel analytical tools to characterize the effect of solution properties on the stability of highly concentrated mAb formulations. In this study, monoclonal antibody solutions in a concentration range of 50-200 mg/ml at pH 5-9 with and without glycine, PEG4000, and Na2SO4 were analyzed. To determine the monomer content, analytical size-exclusion chromatography runs were performed. ζ-potential measurements were conducted to analyze the electrophoretic properties in different solutions. The melting and aggregation temperatures were determined with the help of fluorescence and static light scattering measurements. Additionally, rheological measurements were conducted to study the solution viscosity and viscoelastic behavior of the mAb solutions. The so-determined analytical parameters were scored and merged in an analytical toolbox. The resulting scoring was then successfully correlated with long-term storage (40 d of incubation) experiments. Our results indicate that the sensitivity of complex rheological measurements, in combination with the applied techniques, allows reliable statements to be made with respect to the effect of solution properties, such as protein concentration, ionic strength, and pH shift, on the strength of protein-protein interaction and solution colloidal stability.
Collapse
Affiliation(s)
- Marie-Therese Schermeyer
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Anna K. Wöll
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Bas Kokke
- Synthon Biopharmaceuticals B.V., Nijmegen, The Netherlands
| | - Michel Eppink
- Synthon Biopharmaceuticals B.V., Nijmegen, The Netherlands
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
20
|
Kheddo P, Bramham JE, Dearman RJ, Uddin S, van der Walle CF, Golovanov AP. Investigating Liquid–Liquid Phase Separation of a Monoclonal Antibody Using Solution-State NMR Spectroscopy: Effect of Arg·Glu and Arg·HCl. Mol Pharm 2017; 14:2852-2860. [DOI: 10.1021/acs.molpharmaceut.7b00418] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Priscilla Kheddo
- Manchester
Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, M1 7DN, U.K
| | - Jack E. Bramham
- Manchester
Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, M1 7DN, U.K
| | - Rebecca J. Dearman
- School
of Biological Sciences, The University of Manchester, Manchester, M13 9PL, U.K
| | - Shahid Uddin
- Formulation
Sciences, MedImmune Ltd., Aaron Klug Building, Granta Park, Cambridge, CB21 6GH, U.K
| | | | - Alexander P. Golovanov
- Manchester
Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, M1 7DN, U.K
| |
Collapse
|
21
|
Da Vela S, Roosen-Runge F, Skoda MWA, Jacobs RMJ, Seydel T, Frielinghaus H, Sztucki M, Schweins R, Zhang F, Schreiber F. Effective Interactions and Colloidal Stability of Bovine γ-Globulin in Solution. J Phys Chem B 2017; 121:5759-5769. [DOI: 10.1021/acs.jpcb.7b03510] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Stefano Da Vela
- Institut
für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen D-72076, Germany
| | - Felix Roosen-Runge
- Institut Max von Laue − Paul Langevin (ILL), CS 20156, 71 Avenue des Martyrs, Grenoble Cedex 9, F-38042, France
| | - Maximilian W. A. Skoda
- Institut
für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen D-72076, Germany
| | - Robert M. J. Jacobs
- Department
of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Tilo Seydel
- Institut Max von Laue − Paul Langevin (ILL), CS 20156, 71 Avenue des Martyrs, Grenoble Cedex 9, F-38042, France
| | - Henrich Frielinghaus
- Jülich
Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum (JCNS at
MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, Garching D-85747, Germany
| | - Michael Sztucki
- European Synchrotron Radiation Facility (ESRF), CS 40220, 71 Avenue des Martyrs, Grenoble Cedex 9, F-38043, France
| | - Ralf Schweins
- Institut Max von Laue − Paul Langevin (ILL), CS 20156, 71 Avenue des Martyrs, Grenoble Cedex 9, F-38042, France
| | - Fajun Zhang
- Institut
für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen D-72076, Germany
| | - Frank Schreiber
- Institut
für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen D-72076, Germany
| |
Collapse
|
22
|
Bauer KC, Hämmerling F, Kittelmann J, Dürr C, Görlich F, Hubbuch J. Influence of structure properties on protein-protein interactions-QSAR modeling of changes in diffusion coefficients. Biotechnol Bioeng 2017; 114:821-831. [PMID: 27801503 DOI: 10.1002/bit.26210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 10/05/2016] [Accepted: 10/28/2016] [Indexed: 11/07/2022]
Abstract
Information about protein-protein interactions provides valuable knowledge about the phase behavior of protein solutions during the biopharmaceutical production process. Up to date it is possible to capture their overall impact by an experimentally determined potential of mean force. For the description of this potential, the second virial coefficient B22, the diffusion interaction parameter kD, the storage modulus G', or the diffusion coefficient D is applied. In silico methods do not only have the potential to predict these parameters, but also to provide deeper understanding of the molecular origin of the protein-protein interactions by correlating the data to the protein's three-dimensional structure. This methodology furthermore allows a lower sample consumption and less experimental effort. Of all in silico methods, QSAR modeling, which correlates the properties of the molecule's structure with the experimental behavior, seems to be particularly suitable for this purpose. To verify this, the study reported here dealt with the determination of a QSAR model for the diffusion coefficient of proteins. This model consisted of diffusion coefficients for six different model proteins at various pH values and NaCl concentrations. The generated QSAR model showed a good correlation between experimental and predicted data with a coefficient of determination R2 = 0.9 and a good predictability for an external test set with R2 = 0.91. The information about the properties affecting protein-protein interactions present in solution was in agreement with experiment and theory. Furthermore, the model was able to give a more detailed picture of the protein properties influencing the diffusion coefficient and the acting protein-protein interactions. Biotechnol. Bioeng. 2017;114: 821-831. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Katharina Christin Bauer
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 3, 76131 Karlsruhe, Germany
| | - Frank Hämmerling
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 3, 76131 Karlsruhe, Germany
| | - Jörg Kittelmann
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 3, 76131 Karlsruhe, Germany
| | - Cathrin Dürr
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 3, 76131 Karlsruhe, Germany
| | - Fabian Görlich
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 3, 76131 Karlsruhe, Germany
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 3, 76131 Karlsruhe, Germany
| |
Collapse
|
23
|
Liquid-liquid phase separation causes high turbidity and pressure during low pH elution process in Protein A chromatography. J Chromatogr A 2017; 1488:57-67. [PMID: 28159365 DOI: 10.1016/j.chroma.2017.01.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/11/2017] [Accepted: 01/25/2017] [Indexed: 11/20/2022]
Abstract
Turbid elution pools and high column back pressure are common during elution of monoclonal antibodies (mAbs) by acidic pH in Protein A chromatography. This phenomenon has been historically attributed to acid-induced precipitation of incorrectly folded or pH-sensitive mAbs and host cell proteins (HCPs). In this work, we propose a new mechanism that may account for some observations of elution turbidity in Protein A chromatography. We report several examples of turbidity and high column back pressure occurring transiently under a short course of neutral conditions during Protein A elution. A systematic study of three mAbs displaying this behavior revealed phase separation characterized by liquid drops under certain conditions including neutral pH, low ionic strength, and high protein concentration. These liquid droplets caused solution turbidity and exhibited extremely high viscosity, resulting in high column back pressure. We found out that the droplets were formed through liquid-liquid phase separation (LLPS) as a result of protein self-association. We also found multiple factors, including pH, temperature, ionic strength, and protein concentration can affect LLPS behaviors. Careful selection of process parameters during protein A elution, including temperature, flow rate, buffer, and salt can inhibit formation of a dense liquid phase, reducing both turbidity (by 90%) and column back pressure (below 20 pounds per square inch). These findings provide both mechanistic insight and practical mitigation strategies for Protein A chromatography induced LLPS.
Collapse
|
24
|
Bauer KC, Göbel M, Schwab ML, Schermeyer MT, Hubbuch J. Concentration-dependent changes in apparent diffusion coefficients as indicator for colloidal stability of protein solutions. Int J Pharm 2016; 511:276-287. [PMID: 27421911 DOI: 10.1016/j.ijpharm.2016.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 11/28/2022]
Abstract
The colloidal stability of a protein solution during downstream processing, formulation, and storage is a key issue for the biopharmaceutical production process. Thus, knowledge about colloidal solution characteristics, such as the tendency to form aggregates or high viscosity, at various processing conditions is of interest. This work correlates changes in the apparent diffusion coefficient as a parameter of protein interactions with observed protein aggregation and dynamic viscosity of the respective protein samples. For this purpose, the diffusion coefficient, the protein phase behavior, and the dynamic viscosity in various systems containing the model proteins α-lactalbumin, lysozyme, and glucose oxidase were studied. Each of these experiments revealed a wide range of variations in protein interactions depending on protein type, protein concentration, pH, and the NaCl concentration. All these variations showed to be mirrored by changes in the apparent diffusion coefficient in the respective samples. Whereas stable samples with relatively low viscosity showed an almost linear dependence, the deviation from the concentration-dependent linearity indicated both an increase in the sample viscosity and probability of protein aggregation. This deviation of the apparent diffusion coefficient from concentration-dependent linearity was independent of protein type and solution properties for this study. Thus, this single parameter shows the potential to act as a prognostic tool for colloidal stability of protein solutions.
Collapse
Affiliation(s)
- Katharina Christin Bauer
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Mathias Göbel
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Marie-Luise Schwab
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Marie-Therese Schermeyer
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Jürgen Hubbuch
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| |
Collapse
|
25
|
Baumgartner K, Großhans S, Schütz J, Suhm S, Hubbuch J. Prediction of salt effects on protein phase behavior by HIC retention and thermal stability. J Pharm Biomed Anal 2016; 128:216-225. [PMID: 27268946 DOI: 10.1016/j.jpba.2016.04.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 04/28/2016] [Indexed: 11/26/2022]
Abstract
In the biopharmaceutical industry it is mandatory to know and ensure the correct protein phase state as a critical quality attribute in every process step. Unwanted protein precipitation or crystallization can lead to column, pipe or filter blocking. In formulation, the formation of aggregates can even be lethal when injected into the patient. The typical methodology to illustrate protein phase states is the generation of protein phase diagrams. Commonly, protein phase behavior is shown in dependence of protein and precipitant concentration. Despite using high-throughput methods for the generation of phase diagrams, the time necessary to reach equilibrium is the bottleneck. Faster methods to predict protein phase behavior are desirable. In this study, hydrophobic interaction chromatography retention times were correlated to crystal size and form. High-throughput thermal stability measurements (melting and aggregation temperatures), using an Optim(®)2 system, were successfully correlated to glucose isomerase stability. By using hydrophobic interaction chromatography and thermal stability determinations, glucose isomerase conformational and colloidal stability were successfully predicted for different salts in a specific pH range.
Collapse
Affiliation(s)
- Kai Baumgartner
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Steffen Großhans
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Juliane Schütz
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Susanna Suhm
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| |
Collapse
|
26
|
Chow CK, Allan BW, Chai Q, Atwell S, Lu J. Therapeutic Antibody Engineering To Improve Viscosity and Phase Separation Guided by Crystal Structure. Mol Pharm 2016; 13:915-23. [DOI: 10.1021/acs.molpharmaceut.5b00817] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Chi-Kin Chow
- Biotechnology
Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Barrett W. Allan
- Eli Lilly Biotechnology Center, San
Diego, California 92121, United States
| | - Qing Chai
- Eli Lilly Biotechnology Center, San
Diego, California 92121, United States
| | - Shane Atwell
- Eli Lilly Biotechnology Center, San
Diego, California 92121, United States
| | - Jirong Lu
- Biotechnology
Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| |
Collapse
|
27
|
Hasegawa H, Woods CE, Kinderman F, He F, Lim AC. Russell body phenotype is preferentially induced by IgG mAb clones with high intrinsic condensation propensity: relations between the biosynthetic events in the ER and solution behaviors in vitro. MAbs 2015; 6:1518-32. [PMID: 25484054 DOI: 10.4161/mabs.36242] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The underlying reasons for why some mAb (monoclonal antibody) clones are much more inclined to induce a Russell body (RB) phenotype during immunoglobulin biosynthesis remain elusive. Although RBs are morphologically understood as enlarged globular aggregates of immunoglobulins deposited in the endoplasmic reticulum (ER), little is known about the properties of the RB-inducing mAb clones as secretory cargo and their physical behaviors in the extracellular space. To elucidate how RB-inducing propensities, secretion outputs, and the intrinsic physicochemical properties of individual mAb clones are interrelated, we used HEK293 cells to study the biosynthesis of 5 human IgG mAbs for which prominent solution behavior problems were known a priori. All 5 model mAbs with inherently high condensation propensities induced RB phenotypes both at steady state and under ER-to-Golgi transport block, and resulted in low secretion titer. By contrast, one reference mAb that readily crystallized at neutral pH in vitro produced rod-shaped crystalline bodies in the ER without inducing RBs. Another reference mAb without notable solution behavior issues did not induce RBs and was secreted abundantly. Intrinsic physicochemical properties of individual IgG clones thus directly affected the biosynthetic steps in the ER, and thereby produced distinctive cellular phenotypes and influenced IgG secretion output. The findings implicated that RB formation represents a phase separation event or a loss of colloidal stability in the secretory pathway organelles. The process of RB induction allows the cell to preemptively reduce the extracellular concentration of potentially pathogenic, highly aggregation-prone IgG clones by selectively storing them in the ER.
Collapse
Key Words
- BFA, Brefeldin A
- CB, crystalline body
- DIC, differential interference contrast
- ER, endoplasmic reticulum;
- Fab, fragment antigen binding
- HC, heavy chain
- HEK, human embryonic kidney
- IgG, immunoglobulin G
- LC, light chain;
- RB, Russell body
- Russell body
- VH, heavy chain variable domain
- VL, light chain variable domain
- crystalline body
- endoplasmic reticulum
- gelation
- immunoglobulin
- mAb, monoclonal antibody
- phase separation
- protein aggregation
- protein condensation
- protein crystallization
Collapse
Affiliation(s)
- Haruki Hasegawa
- a Department of Therapeutic Discovery; Amgen ; Seattle , WA USA
| | | | | | | | | |
Collapse
|
28
|
Self-Interaction Chromatography of mAbs: Accurate Measurement of Dead Volumes. Pharm Res 2015; 32:3975-85. [PMID: 26268546 PMCID: PMC4628098 DOI: 10.1007/s11095-015-1758-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/14/2015] [Indexed: 10/31/2022]
Abstract
PURPOSE Measurement of the second virial coefficient B22 for proteins using self-interaction chromatography (SIC) is becoming an increasingly important technique for studying their solution behaviour. In common with all physicochemical chromatographic methods, measuring the dead volume of the SIC packed column is crucial for accurate retention data; this paper examines best practise for dead volume determination. METHOD SIC type experiments using catalase, BSA, lysozyme and a mAb as model systems are reported, as well as a number of dead column measurements. RESULTS It was observed that lysozyme and mAb interacted specifically with Toyopearl AF-Formyl dead columns depending upon pH and [NaCl], invalidating their dead volume usage. Toyopearl AF-Amino packed dead columns showed no such problems and acted as suitable dead columns without any solution condition dependency. Dead volume determinations using dextran MW standards with protein immobilised SIC columns provided dead volume estimates close to those obtained using Toyopearl AF-Amino dead columns. CONCLUSION It is concluded that specific interactions between proteins, including mAbs, and select SIC support phases can compromise the use of some standard approaches for estimating the dead volume of SIC columns. Two other methods were shown to provide good estimates for the dead volume.
Collapse
|
29
|
Arzenšek D, Kuzman D, Podgornik R. Hofmeister Effects in Monoclonal Antibody Solution Interactions. J Phys Chem B 2015. [DOI: 10.1021/acs.jpcb.5b02459] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Dejan Arzenšek
- Sandoz Biopharmaceuticals
Mengeš, Lek Pharmaceuticals d.d., Kolodvorska 27, Mengeš SI-1234, Slovenia
- Netica storitve
d.o.o., Reteče 97, Škofja Loka SI-4220, Slovenia
- Department
of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, Ljubljana SI-1000, Slovenia
| | - Drago Kuzman
- Sandoz Biopharmaceuticals
Mengeš, Lek Pharmaceuticals d.d., Kolodvorska 27, Mengeš SI-1234, Slovenia
| | - Rudolf Podgornik
- Department
of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, Ljubljana SI-1000, Slovenia
- Department
of Theoretical Physics, J. Stefan Institute, Jamova cesta 39, Ljubljana SI-1000, Slovenia
| |
Collapse
|
30
|
Rakel N, Bauer KC, Galm L, Hubbuch J. From osmotic second virial coefficient (B22 ) to phase behavior of a monoclonal antibody. Biotechnol Prog 2015; 31:438-51. [PMID: 25683855 DOI: 10.1002/btpr.2065] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/31/2015] [Indexed: 12/14/2022]
Abstract
Antibodies are complex macromolecules and their phase behavior as well as interactions within different solvents and precipitants are still not understood. To shed some light into the processes on a molecular dimension, the occurring self-interactions between antibody molecules were analyzed by means of the osmotic second virial coefficient (B22 ). The determined B22 follows qualitatively the phenomenological Hofmeister series describing the aggregation probability of antibodies for the various solvent compositions. However, a direct correlation between crystallization probability and B22 in form of a crystallization slot does not seem to be feasible for antibodies since the phase behavior is strongly dependent on their anisotropy. Kinetic parameters have to be taken into account due to the molecular size and complexity of the molecules. This is confirmed by a comparison of experimental data with a theoretical phase diagram. On the other hand the solubility is thermodynamically driven and therefore the B22 could be used to establish a universal solubility line for the monoclonal antibody mAb04c and different solvent compositions by using thermodynamic models.
Collapse
Affiliation(s)
- Natalie Rakel
- Section IV: Biomolecular Separation Engineering, Inst. of Engineering in Life Sciences, Karlsruhe Inst. of Technology, Engler-Bunte-Ring 1, Karlsruhe, 76131, Germany; Roche Diagnostics GmbH, Mannheim, Germany
| | | | | | | |
Collapse
|
31
|
Flanagan SE, Malanowski AJ, Kizilay E, Seeman D, Dubin PL, Donato-Capel L, Bovetto L, Schmitt C. Complex equilibria, speciation, and heteroprotein coacervation of lactoferrin and β-lactoglobulin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:1776-1783. [PMID: 25565379 DOI: 10.1021/la504020e] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
There has been a resurgence of interest in complex coacervation, a form of liquid-liquid phase separation (LLPS) in systems of oppositely charged macroions, but very few reports describe the somewhat anomalous coacervation between acidic and basic proteins, which occurs under very narrow ranges of conditions. We sought to identify the roles of equilibrium interprotein complexes during the coacervation of β-lactoglobulin dimer (BLG2) with lactoferrin (LF) and found that this LLPS arises specifically from LF(BLG2)2. We followed the progress of complexation and coacervation as a function of r, the LF/BLG molar ratio, using turbidity to monitor the degree of coacervation and proton release and dynamic light scattering (DLS) to assess the stoichiometry and abundance of complexes. Isothermal titration calorimetry (ITC) showed that initial complex formation is endothermic, but a large exotherm related to coacervate formation obscured other regions. On the basis of turbidimetry, proton release, and DLS, we propose a speciation diagram that presents the abundance of various complexes as a function of r. Although multiple species could be simultaneously present, distinct regions could be identified corresponding to equilibria among particular protein pairs.
Collapse
Affiliation(s)
- Sean E Flanagan
- Department of Chemistry, University of Massachusetts-Amherst , Amherst, Massachusetts 01003, United States
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Rakel N, Galm L, Bauer KC, Hubbuch J. Influence of macromolecular precipitants on phase behavior of monoclonal antibodies. Biotechnol Prog 2015; 31:145-53. [PMID: 25504581 DOI: 10.1002/btpr.2027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/29/2014] [Indexed: 11/10/2022]
Abstract
For the successful application of protein crystallization as a downstream step, a profound knowledge of protein phase behavior in solutions is needed. Therefore, a systematic screening was conducted to analyze the influence of macromolecular precipitants in the form of polyethylene glycol (PEG). First, the influence of molecular weight and concentration of PEG at different pH-values were investigated and analyzed in three-dimensional (3-D) phase diagrams to find appropriate conditions in terms of a fast kinetic and crystal size for downstream processing. In comparison to the use of salts as precipitant, PEG was more suitable to obtain compact 3-D crystals over a broad range of conditions, whereby the molecular weight of PEG is, besides the pH-value, the most important parameter. Second, osmotic second virial coefficients as parameters for protein interactions are experimentally determined with static light scattering to gain a deep insight view in the phase behavior on a molecular basis. The PEG-protein solutions were analyzed as a pseudo-one-compartment system. As the precipitant is also a macromolecule, the new approach of analyzing cross-interactions between the protein and the macromolecule PEG in form of the osmotic second cross-virial coefficient (B23 ) was applied. Both parameters help to understand the protein phase behavior. However, a predictive description of protein phase behavior for systems consisting of monoclonal antibodies and PEG as precipitant is not possible, as kinetic phenomena and concentration dependencies were not taken into account.
Collapse
Affiliation(s)
- Natalie Rakel
- Section IV: Biomolecular Separation Engineering, Inst. of Engineering in Life Sciences, Karlsruhe Inst. of Technology, Engler-Bunte-Ring 1, 76131, Karlsruhe, Germany; Roche Diagnostics GmbH, 68305, Mannheim, Germany
| | | | | | | |
Collapse
|
33
|
Lewus RA, Levy NE, Lenhoff AM, Sandler SI. A comparative study of monoclonal antibodies. 1. Phase behavior and protein-protein interactions. Biotechnol Prog 2015; 31:268-76. [PMID: 25378269 PMCID: PMC5891218 DOI: 10.1002/btpr.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/01/2014] [Indexed: 01/18/2023]
Abstract
Protein phase behavior is involved in numerous aspects of downstream processing, either by design as in crystallization or precipitation processes, or as an undesired effect, such as aggregation. This work explores the phase behavior of eight monoclonal antibodies (mAbs) that exhibit liquid-liquid separation, aggregation, gelation, and crystallization. The phase behavior has been studied systematically as a function of a number of factors, including solution composition and pH, in order to explore the degree of variability among different antibodies. Comparisons of the locations of phase boundaries show consistent trends as a function of solution composition; however, changing the solution pH has different effects on each of the antibodies studied. Furthermore, the types of dense phases formed varied among the antibodies. Protein-protein interactions, as reflected by values of the osmotic second virial coefficient, are used to correlate the phase behavior. The primary findings are that values of the osmotic second virial coefficient are useful for correlating phase boundary locations, though there is appreciable variability among the antibodies in the apparent strengths of the intrinsic protein-protein attraction manifested. However, the osmotic second virial coefficient does not provide a clear basis to predict the type of dense phase likely to result under a given set of solution conditions.
Collapse
Affiliation(s)
| | | | - Abraham M. Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Stanley I. Sandler
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
34
|
Remmele RL, Bee JS, Phillips JJ, Mo WD, Higazi DR, Zhang J, Lindo V, Kippen AD. Characterization of Monoclonal Antibody Aggregates and Emerging Technologies. ACS SYMPOSIUM SERIES 2015. [DOI: 10.1021/bk-2015-1202.ch005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Richard L. Remmele
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Jared S. Bee
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Jonathan J. Phillips
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Wenjun David Mo
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Daniel R. Higazi
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Jifeng Zhang
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Vivian Lindo
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Alistair D. Kippen
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| |
Collapse
|
35
|
Baumgartner K, Galm L, Nötzold J, Sigloch H, Morgenstern J, Schleining K, Suhm S, Oelmeier SA, Hubbuch J. Determination of protein phase diagrams by microbatch experiments: exploring the influence of precipitants and pH. Int J Pharm 2014; 479:28-40. [PMID: 25541147 DOI: 10.1016/j.ijpharm.2014.12.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/13/2014] [Indexed: 12/01/2022]
Abstract
Knowledge of protein phase behavior is essential for downstream process design in the biopharmaceutical industry. Proteins can either be soluble, crystalline or precipitated. Additionally liquid-liquid phase separation, gelation and skin formation can occur. A method to generate phase diagrams in high throughput on an automated liquid handling station in microbatch scale was developed. For lysozyme from chicken egg white, human lysozyme, glucose oxidase and glucose isomerase phase diagrams were generated at four different pH values – pH 3, 5, 7 and 9. Sodium chloride, ammonium sulfate, polyethylene glycol 300 and polyethylene glycol 1000 were used as precipitants. Crystallizing conditions could be found for lysozyme from chicken egg white using sodium chloride, for human lysozyme using sodium chloride or ammonium sulfate and glucose isomerase using ammonium sulfate. PEG caused destabilization of human lysozyme and glucose oxidase solutions or a balance of stabilizing and destabilizing effects for glucose isomerase near the isoelectric point. This work presents a systematic generation and extensive study of phase diagrams of proteins. Thus, it adds to the general understanding of protein behavior in liquid formulation and presents a convenient methodology applicable to any protein solution.
Collapse
Affiliation(s)
- Kai Baumgartner
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Engler-Bunte-Ring 1, Karlsruhe 76131, Germany
| | - Lara Galm
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Engler-Bunte-Ring 1, Karlsruhe 76131, Germany
| | - Juliane Nötzold
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Engler-Bunte-Ring 1, Karlsruhe 76131, Germany
| | - Heike Sigloch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Engler-Bunte-Ring 1, Karlsruhe 76131, Germany
| | - Josefine Morgenstern
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Engler-Bunte-Ring 1, Karlsruhe 76131, Germany
| | - Kristina Schleining
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Engler-Bunte-Ring 1, Karlsruhe 76131, Germany
| | - Susanna Suhm
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Engler-Bunte-Ring 1, Karlsruhe 76131, Germany
| | - Stefan A Oelmeier
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Engler-Bunte-Ring 1, Karlsruhe 76131, Germany
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Engler-Bunte-Ring 1, Karlsruhe 76131, Germany.
| |
Collapse
|
36
|
Roberts D, Keeling R, Tracka M, van der Walle CF, Uddin S, Warwicker J, Curtis R. Specific Ion and Buffer Effects on Protein–Protein Interactions of a Monoclonal Antibody. Mol Pharm 2014; 12:179-93. [DOI: 10.1021/mp500533c] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- D. Roberts
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester M13 9PL, U.K
| | - R. Keeling
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester M13 9PL, U.K
| | - M. Tracka
- Formulation
Sciences, MedImmune, Ltd., Aaron Klug Building, Granta Park, Cambridge CB21 6GH, U.K
| | - C. F. van der Walle
- Formulation
Sciences, MedImmune, Ltd., Aaron Klug Building, Granta Park, Cambridge CB21 6GH, U.K
| | - S. Uddin
- Formulation
Sciences, MedImmune, Ltd., Aaron Klug Building, Granta Park, Cambridge CB21 6GH, U.K
| | - J. Warwicker
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester M13 9PL, U.K
| | - R. Curtis
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester M13 9PL, U.K
| |
Collapse
|
37
|
Geng SB, Cheung JK, Narasimhan C, Shameem M, Tessier PM. Improving monoclonal antibody selection and engineering using measurements of colloidal protein interactions. J Pharm Sci 2014; 103:3356-3363. [PMID: 25209466 DOI: 10.1002/jps.24130] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/30/2014] [Accepted: 07/29/2014] [Indexed: 12/14/2022]
Abstract
A limitation of using mAbs as therapeutic molecules is their propensity to associate with themselves and/or with other molecules via nonaffinity (colloidal) interactions. This can lead to a variety of problems ranging from low solubility and high viscosity to off-target binding and fast antibody clearance. Measuring such colloidal interactions is challenging given that they are weak and potentially involve diverse target molecules. Nevertheless, assessing these weak interactions-especially during early antibody discovery and lead candidate optimization-is critical to preventing problems that can arise later in the development process. Here we review advances in developing and implementing sensitive methods for measuring antibody colloidal interactions as well as using these measurements for guiding antibody selection and engineering. These systematic efforts to minimize nonaffinity interactions are expected to yield more effective and stable mAbs for diverse therapeutic applications. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:3356-3363, 2014.
Collapse
Affiliation(s)
- Steven B Geng
- Center for Biotechnology & Interdisciplinary Studies, Isermann Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Jason K Cheung
- Sterile Product and Analytical Development, Merck Research Laboratories, Kenilworth, New Jersey 07033
| | - Chakravarthy Narasimhan
- Sterile Product and Analytical Development, Merck Research Laboratories, Kenilworth, New Jersey 07033
| | - Mohammed Shameem
- Sterile Product and Analytical Development, Merck Research Laboratories, Kenilworth, New Jersey 07033
| | - Peter M Tessier
- Center for Biotechnology & Interdisciplinary Studies, Isermann Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180.
| |
Collapse
|
38
|
Rakel N, Baum M, Hubbuch J. Moving through three-dimensional phase diagrams of monoclonal antibodies. Biotechnol Prog 2014; 30:1103-13. [PMID: 25044865 DOI: 10.1002/btpr.1947] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 06/14/2014] [Indexed: 11/12/2022]
Abstract
Protein phase behavior characterization is a multivariate problem due to the high amount of influencing parameters and the diversity of the proteins. Single influences on the protein are not understood and fundamental knowledge remains to be obtained. For this purpose, a systematic screening method was developed to characterize the influence of fluid phase conditions on the phase behavior of proteins in three-dimensional phase diagrams. This approach was applied to three monoclonal antibodies to investigate influences of pH, protein and salt concentrations, with five different salts being tested. Although differences exist between the antibodies, this extensive study confirmed the general applicability of the Hofmeister series over the broad parameter range analyzed. The influence of the different salts on the aggregation (crystallization and precipitation) probability was described qualitatively using this Hofmeister series, with a differentiation between crystallization and precipitation being impossible, however.
Collapse
Affiliation(s)
- Natalie Rakel
- Biomolecular Separation Engineering, Institute of Engineering in Life Sciences, Karlsruhe Institute of Technology, Engler-Bunte-Ring 1, 76131, Karlsruhe, Germany
| | | | | |
Collapse
|
39
|
Roberts D, Keeling R, Tracka M, van der Walle CF, Uddin S, Warwicker J, Curtis R. The role of electrostatics in protein-protein interactions of a monoclonal antibody. Mol Pharm 2014; 11:2475-89. [PMID: 24892385 DOI: 10.1021/mp5002334] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Understanding how protein-protein interactions depend on the choice of buffer, salt, ionic strength, and pH is needed to have better control over protein solution behavior. Here, we have characterized the pH and ionic strength dependence of protein-protein interactions in terms of an interaction parameter kD obtained from dynamic light scattering and the osmotic second virial coefficient B22 measured by static light scattering. A simplified protein-protein interaction model based on a Baxter adhesive potential and an electric double layer force is used to separate out the contributions of longer-ranged electrostatic interactions from short-ranged attractive forces. The ionic strength dependence of protein-protein interactions for solutions at pH 6.5 and below can be accurately captured using a Deryaguin-Landau-Verwey-Overbeek (DLVO) potential to describe the double layer forces. In solutions at pH 9, attractive electrostatics occur over the ionic strength range of 5-275 mM. At intermediate pH values (7.25 to 8.5), there is a crossover effect characterized by a nonmonotonic ionic strength dependence of protein-protein interactions, which can be rationalized by the competing effects of long-ranged repulsive double layer forces at low ionic strength and a shorter ranged electrostatic attraction, which dominates above a critical ionic strength. The change of interactions from repulsive to attractive indicates a concomitant change in the angular dependence of protein-protein interaction from isotropic to anisotropic. In the second part of the paper, we show how the Baxter adhesive potential can be used to predict values of kD from fitting to B22 measurements, thus providing a molecular basis for the linear correlation between the two protein-protein interaction parameters.
Collapse
Affiliation(s)
- D Roberts
- School of Chemical Engineering and Analytical Science, The University of Manchester , Sackville Street, Manchester M13 9PL, U.K
| | | | | | | | | | | | | |
Collapse
|
40
|
Wang Y, Lomakin A, Latypov RF, Laubach JP, Hideshima T, Richardson PG, Munshi NC, Anderson KC, Benedek GB. Phase transitions in human IgG solutions. J Chem Phys 2014; 139:121904. [PMID: 24089716 DOI: 10.1063/1.4811345] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Protein condensations, such as crystallization, liquid-liquid phase separation, aggregation, and gelation, have been observed in concentrated antibody solutions under various solution conditions. While most IgG antibodies are quite soluble, a few outliers can undergo condensation under physiological conditions. Condensation of IgGs can cause serious consequences in some human diseases and in biopharmaceutical formulations. The phase transitions underlying protein condensations in concentrated IgG solutions is also of fundamental interest for the understanding of the phase behavior of non-spherical protein molecules. Due to the high solubility of generic IgGs, the phase behavior of IgG solutions has not yet been well studied. In this work, we present an experimental approach to study IgG solutions in which the phase transitions are hidden below the freezing point of the solution. Using this method, we have investigated liquid-liquid phase separation of six human myeloma IgGs and two recombinant pharmaceutical human IgGs. We have also studied the relation between crystallization and liquid-liquid phase separation of two human cryoglobulin IgGs. Our experimental results reveal several important features of the generic phase behavior of IgG solutions: (1) the shape of the coexistence curve is similar for all IgGs but quite different from that of quasi-spherical proteins; (2) all IgGs have critical points located at roughly the same protein concentration at ~100 mg/ml while their critical temperatures vary significantly; and (3) the liquid-liquid phase separation in IgG solutions is metastable with respect to crystallization. These features of phase behavior of IgG solutions reflect the fact that all IgGs have nearly identical molecular geometry but quite diverse net inter-protein interaction energies. This work provides a foundation for further experimental and theoretical studies of the phase behavior of generic IgGs as well as outliers with large propensity to condense. The investigation of the phase diagram of IgG solutions is of great importance for the understanding of immunoglobulin deposition diseases as well as for the understanding of the colloidal stability of IgG pharmaceutical formulations.
Collapse
Affiliation(s)
- Ying Wang
- Materials Processing Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Tessier PM, Wu J, Dickinson CD. Emerging methods for identifying monoclonal antibodies with low propensity to self-associate during the early discovery process. Expert Opin Drug Deliv 2014; 11:461-5. [DOI: 10.1517/17425247.2014.876989] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Binabaji E, Rao S, Zydney AL. Improved method for evaluating the dead volume and protein-protein interactions by self-interaction chromatography. Anal Chem 2013; 85:9101-6. [PMID: 23971517 DOI: 10.1021/ac4017242] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Self-interaction chromatography (SIC) is a well-established method for studying protein-protein interactions. The second virial coefficient in SIC is evaluated directly from the measured retention coefficient for the protein using a column packed with resin on which the same protein has been immobilized on the pore surface. One of the challenges in determining the retention coefficient is the evaluation of the dead volume, which is the retention volume that would be measured for a noninteracting solute with the same effective size as the protein of interest. Previous studies of SIC have used a "dead column" packed with the same resin but without the immobilized protein to evaluate the dead volume, but this creates several experimental and theoretical challenges. We have developed a new approach using a dextran standard with effective size equal to that of the protein (as determined by size exclusion chromatography). The second virial coefficient was evaluated for a monoclonal antibody over a range of buffer conditions using this new approach. The data were in good agreement with independent measurements obtained by membrane osmometry under conditions dominated by repulsive interactions. The simplicity and accuracy of this method should facilitate the use of self-interaction chromatography for quantifying protein-protein interactions.
Collapse
Affiliation(s)
- Elaheh Binabaji
- Department of Chemical Engineering, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | | | | |
Collapse
|
43
|
Johnson HR, Lenhoff AM. Characterization and suitability of therapeutic antibody dense phases for subcutaneous delivery. Mol Pharm 2013; 10:3582-91. [PMID: 24011376 DOI: 10.1021/mp400006g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Subcutaneous antibody dosing formulations comprising solid suspensions have the potential to reduce dosage viscosity and injection volume. Gel beads of three therapeutic antibodies were prepared to determine the feasibility of such formulations. The beads were formed directly from aqueous solution within 0.1-4 days upon addition of biocompatible precipitating agents under conditions compatible with the use of stabilizing excipients. The phase behavior of antibody gel beads and their mechanical characteristics were measured. Gel beads were characterized by reduced elastic moduli of 0.4-1.0 MPa, as measured by atomic force microscopy, and completely redissolved within 10-20 min under physiologic conditions, in vitro. Crystalline particles could also be prepared in some cases and were found to have reduced elastic moduli 3 orders of magnitude greater than those for the gel beads. Both crystalline and gel particles had protein concentrations of 100-180 mg/mL within the dense phase. Protein stored within the dense phase was recoverable after 40 days of incubation at room temperature or 4 °C.
Collapse
Affiliation(s)
- Harvey R Johnson
- Center for Molecular and Engineering Thermodynamics, Department of Chemical and Biomolecular Engineering, University of Delaware , Newark, Delaware 19716, United States
| | | |
Collapse
|
44
|
Sun T, Reid F, Liu Y, Cao Y, Estep P, Nauman C, Xu Y. High throughput detection of antibody self-interaction by bio-layer interferometry. MAbs 2013; 5:838-41. [PMID: 23995620 DOI: 10.4161/mabs.26186] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Self-interaction of an antibody may lead to aggregation, low solubility or high viscosity. Rapid identification of highly developable leads remains challenging, even though progress has been made with the introduction of techniques such as self-interaction chromatography (SIC) and cross-interaction chromatography (CIC). Here, we report a high throughput method to detect antibody clone self-interaction (CSI) using bio-layer interferometry (BLI) technology. Antibodies with strong self-interaction responses in the CSI-BLI assay also show delayed retention times in SIC and CIC. This method allows hundreds of candidates to be screened in a matter of hours with minimal material consumption.
Collapse
Affiliation(s)
| | | | - Yuqi Liu
- Protein Analytics; Adimab; Lebanon, NH USA
| | - Yuan Cao
- Protein Analytics; Adimab; Lebanon, NH USA
| | | | | | - Yingda Xu
- Protein Analytics; Adimab; Lebanon, NH USA
| |
Collapse
|
45
|
Rakel N, Schleining K, Dismer F, Hubbuch J. Self-interaction chromatography in pre-packed columns: A critical evaluation of self-interaction chromatography methodology to determine the second virial coefficient. J Chromatogr A 2013; 1293:75-84. [DOI: 10.1016/j.chroma.2013.03.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 03/05/2013] [Accepted: 03/31/2013] [Indexed: 11/26/2022]
|
46
|
|
47
|
Srinivasan C, Weight AK, Bussemer T, Klibanov AM. Non-Aqueous Suspensions of Antibodies are Much Less Viscous Than Equally Concentrated Aqueous Solutions. Pharm Res 2013; 30:1749-57. [DOI: 10.1007/s11095-013-1017-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/01/2013] [Indexed: 01/09/2023]
|
48
|
Sule SV, Dickinson CD, Lu J, Chow CK, Tessier PM. Rapid analysis of antibody self-association in complex mixtures using immunogold conjugates. Mol Pharm 2013; 10:1322-31. [PMID: 23383873 DOI: 10.1021/mp300524x] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A key challenge in developing therapeutic antibodies is their highly variable propensities to self-associate at high antibody concentrations (>50 mg/mL) required for subcutaneous delivery. Identification of monoclonal antibodies (mAbs) in the initial discovery process that not only have high binding affinity but also have high solubility and low viscosity would simplify the development of safe and effective antibody therapeutics. Unfortunately, the low purities, small quantities and large numbers of antibody candidates during the early discovery process are incompatible with current methods of measuring antibody self-association. We report a method (affinity-capture self-interaction nanoparticle spectroscopy, AC-SINS) capable of identifying mAbs with low self-association propensity that is robust even at low mAb concentrations (5-50 μg/mL) and in the presence of cell culture media. Gold nanoparticles are coated with polyclonal antibodies specific for human antibodies, and then human mAbs are captured from dilute antibody solutions. We find that the wavelength of maximum absorbance (plasmon wavelength) of antibody-gold conjugates--which red-shifts as the distance between particles is reduced due to attractive mAb self-interactions--is well correlated with light scattering measurements conducted at several orders of magnitude higher antibody concentrations. The generality of AC-SINS makes it well suited for use in diverse settings ranging from antibody discovery to formulation development.
Collapse
Affiliation(s)
- Shantanu V Sule
- Center for Biotechnology & Interdisciplinary Studies, Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | | | | | |
Collapse
|
49
|
Second Osmotic Virial Coefficients and Aggregation of Monoclonal Antibodies by Static Laser Light Scattering. Z PHYS CHEM 2013. [DOI: 10.1524/zpch.2013.0325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
The second osmotic virial coefficient and the apparent molar mass of two human and one mouse monoclonal antibodies were measured in different aequeous buffer solutions which also contained sodium chloride or ammonium sulfate, respectively, by static laser light scattering in batch mode. The apparent molar mass indicates aggregation. At a constant pH value of 6.5 the sodium chloride concentration was varied from 0 to 2 M and the ammonium sulfate concentration from 0 to 0.8 M, respectively. A 20 mM sodium-phosphate buffer was used for all experiments. Furthermore the pH value was varied without adding additional salt from 4.5 to 10. The results of the salt dependency are in line with the Hofmeister-series. The results of the pH dependency correspond to the net charge of the molecules.
Collapse
|
50
|
Arzenšek D, Kuzman D, Podgornik R. Colloidal interactions between monoclonal antibodies in aqueous solutions. J Colloid Interface Sci 2012; 384:207-16. [DOI: 10.1016/j.jcis.2012.06.055] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/01/2012] [Accepted: 06/02/2012] [Indexed: 12/20/2022]
|