1
|
Töpfer K, Upadhyay M, Meuwly M. Quantitative molecular simulations. Phys Chem Chem Phys 2022; 24:12767-12786. [PMID: 35593769 PMCID: PMC9158373 DOI: 10.1039/d2cp01211a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/30/2022] [Indexed: 11/21/2022]
Abstract
All-atom simulations can provide molecular-level insights into the dynamics of gas-phase, condensed-phase and surface processes. One important requirement is a sufficiently realistic and detailed description of the underlying intermolecular interactions. The present perspective provides an overview of the present status of quantitative atomistic simulations from colleagues' and our own efforts for gas- and solution-phase processes and for the dynamics on surfaces. Particular attention is paid to direct comparison with experiment. An outlook discusses present challenges and future extensions to bring such dynamics simulations even closer to reality.
Collapse
Affiliation(s)
- Kai Töpfer
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| | - Meenu Upadhyay
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| |
Collapse
|
2
|
Meuwly M. Atomistic Simulations for Reactions and Vibrational Spectroscopy in the Era of Machine Learning─ Quo Vadis?. J Phys Chem B 2022; 126:2155-2167. [PMID: 35286087 DOI: 10.1021/acs.jpcb.2c00212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Atomistic simulations using accurate energy functions can provide molecular-level insight into functional motions of molecules in the gas and in the condensed phase. This Perspective delineates the present status of the field from the efforts of others and some of our own work and discusses open questions and future prospects. The combination of physics-based long-range representations using multipolar charge distributions and kernel representations for the bonded interactions is shown to provide realistic models for the exploration of the infrared spectroscopy of molecules in solution. For reactions, empirical models connecting dedicated energy functions for the reactant and product states allow statistically meaningful sampling of conformational space whereas machine-learned energy functions are superior in accuracy. The future combination of physics-based models with machine-learning techniques and integration into all-purpose molecular simulation software provides a unique opportunity to bring such dynamics simulations closer to reality.
Collapse
Affiliation(s)
- Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|
3
|
Baiz CR, Błasiak B, Bredenbeck J, Cho M, Choi JH, Corcelli SA, Dijkstra AG, Feng CJ, Garrett-Roe S, Ge NH, Hanson-Heine MWD, Hirst JD, Jansen TLC, Kwac K, Kubarych KJ, Londergan CH, Maekawa H, Reppert M, Saito S, Roy S, Skinner JL, Stock G, Straub JE, Thielges MC, Tominaga K, Tokmakoff A, Torii H, Wang L, Webb LJ, Zanni MT. Vibrational Spectroscopic Map, Vibrational Spectroscopy, and Intermolecular Interaction. Chem Rev 2020; 120:7152-7218. [PMID: 32598850 PMCID: PMC7710120 DOI: 10.1021/acs.chemrev.9b00813] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Vibrational spectroscopy is an essential tool in chemical analyses, biological assays, and studies of functional materials. Over the past decade, various coherent nonlinear vibrational spectroscopic techniques have been developed and enabled researchers to study time-correlations of the fluctuating frequencies that are directly related to solute-solvent dynamics, dynamical changes in molecular conformations and local electrostatic environments, chemical and biochemical reactions, protein structural dynamics and functions, characteristic processes of functional materials, and so on. In order to gain incisive and quantitative information on the local electrostatic environment, molecular conformation, protein structure and interprotein contacts, ligand binding kinetics, and electric and optical properties of functional materials, a variety of vibrational probes have been developed and site-specifically incorporated into molecular, biological, and material systems for time-resolved vibrational spectroscopic investigation. However, still, an all-encompassing theory that describes the vibrational solvatochromism, electrochromism, and dynamic fluctuation of vibrational frequencies has not been completely established mainly due to the intrinsic complexity of intermolecular interactions in condensed phases. In particular, the amount of data obtained from the linear and nonlinear vibrational spectroscopic experiments has been rapidly increasing, but the lack of a quantitative method to interpret these measurements has been one major obstacle in broadening the applications of these methods. Among various theoretical models, one of the most successful approaches is a semiempirical model generally referred to as the vibrational spectroscopic map that is based on a rigorous theory of intermolecular interactions. Recently, genetic algorithm, neural network, and machine learning approaches have been applied to the development of vibrational solvatochromism theory. In this review, we provide comprehensive descriptions of the theoretical foundation and various examples showing its extraordinary successes in the interpretations of experimental observations. In addition, a brief introduction to a newly created repository Web site (http://frequencymap.org) for vibrational spectroscopic maps is presented. We anticipate that a combination of the vibrational frequency map approach and state-of-the-art multidimensional vibrational spectroscopy will be one of the most fruitful ways to study the structure and dynamics of chemical, biological, and functional molecular systems in the future.
Collapse
Affiliation(s)
- Carlos R. Baiz
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, U.S.A
| | - Bartosz Błasiak
- Department of Physical and Quantum Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Jens Bredenbeck
- Johann Wolfgang Goethe-University, Institute of Biophysics, Max-von-Laue-Str. 1, 60438, Frankfurt am Main, Germany
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jun-Ho Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Steven A. Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, U.S.A
| | - Arend G. Dijkstra
- School of Chemistry and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Chi-Jui Feng
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, U.S.A
| | - Sean Garrett-Roe
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A
| | - Nien-Hui Ge
- Department of Chemistry, University of California at Irvine, Irvine, CA 92697-2025, U.S.A
| | - Magnus W. D. Hanson-Heine
- School of Chemistry, University of Nottingham, Nottingham, University Park, Nottingham, NG7 2RD, U.K
| | - Jonathan D. Hirst
- School of Chemistry, University of Nottingham, Nottingham, University Park, Nottingham, NG7 2RD, U.K
| | - Thomas L. C. Jansen
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Kijeong Kwac
- Center for Molecular Spectroscopy and Dynamics, Seoul 02841, Republic of Korea
| | - Kevin J. Kubarych
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109, U.S.A
| | - Casey H. Londergan
- Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041, U.S.A
| | - Hiroaki Maekawa
- Department of Chemistry, University of California at Irvine, Irvine, CA 92697-2025, U.S.A
| | - Mike Reppert
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Shinji Saito
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki, 444-8585, Japan
| | - Santanu Roy
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110, U.S.A
| | - James L. Skinner
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, U.S.A
| | - Gerhard Stock
- Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - John E. Straub
- Department of Chemistry, Boston University, Boston, MA 02215, U.S.A
| | - Megan C. Thielges
- Department of Chemistry, Indiana University, 800 East Kirkwood, Bloomington, Indiana 47405, U.S.A
| | - Keisuke Tominaga
- Molecular Photoscience Research Center, Kobe University, Nada, Kobe 657-0013, Japan
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, U.S.A
| | - Hajime Torii
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, and Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-Ku, Hamamatsu 432-8561, Japan
| | - Lu Wang
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, U.S.A
| | - Lauren J. Webb
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street, STOP A5300, Austin, Texas 78712, U.S.A
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1396, U.S.A
| |
Collapse
|
4
|
Koner D, Salehi SM, Mondal P, Meuwly M. Non-conventional force fields for applications in spectroscopy and chemical
reaction dynamics. J Chem Phys 2020; 153:010901. [DOI: 10.1063/5.0009628] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Debasish Koner
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel,
Switzerland
| | - Seyedeh Maryam Salehi
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel,
Switzerland
| | - Padmabati Mondal
- Indian Institute of Science Education and Research (IISER) Tirupati, Karakambadi Road, Mangalam, Tirupati 517507, Andhra
Pradesh, India
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel,
Switzerland and Department of Chemistry, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
5
|
Chillemi G, Anselmi M, Sanna N, Padrin C, Balducci L, Cammarata M, Pace E, Chergui M, Benfatto M. Dynamic multiple-scattering treatment of X-ray absorption: Parameterization of a new molecular dynamics force field for myoglobin. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2018; 5:054101. [PMID: 30246048 PMCID: PMC6135643 DOI: 10.1063/1.5031806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
We present a detailed analysis of the X-ray absorption near-edge structure (XANES) data on the Fe K-edge of CO Myoglobin based on a combined procedure of Molecular Dynamics (MD) calculations and MXAN (Minuit XANes) data analysis that we call D-MXAN. The ability of performing quantitative XANES data analysis allows us to refine classical force field MD parameters, thus obtaining a reliable tool for the atomic investigation of this important model system for biological macromolecules. The iterative procedure here applied corrects the greatest part of the structural discrepancy between classical MD sampling and experimental determinations. Our procedure, moreover, is able to discriminate between different heme conformational basins visited during the MD simulation, thus demonstrating the necessity of a sampling on the order of tens of nanoseconds, even for an application such X-ray absorption spectroscopy data analysis.
Collapse
Affiliation(s)
- Giovanni Chillemi
- Authors to whom correspondence should be addressed: , Telephone: +39 06 44486 706 and , Telephone: +39–06-9403–2884
| | - Massimiliano Anselmi
- Institute for Microbiology and Genetics, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | | | - Cristiano Padrin
- CINECA, SuperComputing Applications and Innovation Department, Via dei Tizii 6, 00185 Roma, Italy
| | - Lodovico Balducci
- Université de Rennes 1, CNRS, Univ. Bretagne Loire, Institut de Physique de Rennes, UMR 6251, Rennes F-35042, France
| | - Marco Cammarata
- Université de Rennes 1, CNRS, Univ. Bretagne Loire, Institut de Physique de Rennes, UMR 6251, Rennes F-35042, France
| | - Elisabetta Pace
- Laboratori Nazionali di Frascati, INFN- Via E. Fermi 44, 00044 Frascati, Italy
| | - Majed Chergui
- Lab. of Ultrafast Spectroscopy (LSU) and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB, Station 6, CH-1015 Lausanne, Switzerland
| | - Maurizio Benfatto
- Laboratori Nazionali di Frascati, INFN- Via E. Fermi 44, 00044 Frascati, Italy
| |
Collapse
|
6
|
Wang XW, Zhang JZH, He X. Ab initio Quantum Mechanics/Molecular Mechanics Molecular Dynamics Simulation of CO in the Heme Distal Pocket of Myoglobin. CHINESE J CHEM PHYS 2017. [DOI: 10.1063/1674-0068/30/cjcp1709169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xian-wei Wang
- College of Science, Zhejiang University of Technology, Hangzhou 310023, China
- College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Zhejiang Provincial Collaborative Innovation Center of High-end Laser Manufacturing Equipment, Hangzhou 310014, China
| | - John Z. H. Zhang
- College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Department of Chemistry, New York University, New York 10003, USA
| | - Xiao He
- College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
7
|
Antipov SV, Bhattacharyya S, El Hage K, Xu ZH, Meuwly M, Rothlisberger U, Vaníček J. Ultrafast dynamics induced by the interaction of molecules with electromagnetic fields: Several quantum, semiclassical, and classical approaches. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:061509. [PMID: 29376107 PMCID: PMC5758379 DOI: 10.1063/1.4996559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/11/2017] [Indexed: 06/07/2023]
Abstract
Several strategies for simulating the ultrafast dynamics of molecules induced by interactions with electromagnetic fields are presented. After a brief overview of the theory of molecule-field interaction, we present several representative examples of quantum, semiclassical, and classical approaches to describe the ultrafast molecular dynamics, including the multiconfiguration time-dependent Hartree method, Bohmian dynamics, local control theory, semiclassical thawed Gaussian approximation, phase averaging, dephasing representation, molecular mechanics with proton transfer, and multipolar force fields. In addition to the general overview, some focus is given to the description of nuclear quantum effects and to the direct dynamics, in which the ab initio energies and forces acting on the nuclei are evaluated on the fly. Several practical applications, performed within the framework of the Swiss National Center of Competence in Research "Molecular Ultrafast Science and Technology," are presented: These include Bohmian dynamics description of the collision of H with H2, local control theory applied to the photoinduced ultrafast intramolecular proton transfer, semiclassical evaluation of vibrationally resolved electronic absorption, emission, photoelectron, and time-resolved stimulated emission spectra, infrared spectroscopy of H-bonding systems, and multipolar force fields applications in the condensed phase.
Collapse
Affiliation(s)
- Sergey V Antipov
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Swarnendu Bhattacharyya
- Laboratory of Computational Chemistry and Biochemistry, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Krystel El Hage
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Zhen-Hao Xu
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jiří Vaníček
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
8
|
|
9
|
Newhouse EI, Newhouse JS, Alam M. Molecular dynamics study of hell's gate globin I (HGbI) from a methanotrophic extremophile: oxygen migration through a large cavity. J Mol Model 2013; 19:2265-71. [PMID: 23377896 DOI: 10.1007/s00894-012-1739-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 12/14/2012] [Indexed: 11/24/2022]
Abstract
Hell's gate globin I (HGbI), a heme-containing protein from the extremophile Methylacidiphilum infernorum, has fast oxygen-binding/slow release characteristics due to its distal residues Gln and Tyr. The combination of Gln/Tyr distal iron coordination, adaptation to extreme environmental conditions, and lack of a D helix suggests that ligand migration in HGbI differs from other previously studied globins. Locally enhanced molecular dynamics trajectories of oxygen migration indicate a large internal cavity. This may increase the tendency of oxygen to exit from portals other than the most direct exit from the space near the heme. Oxygen may reside transiently in shallow surface depressions around the exits. Such surface trapping may enhance both oxygen uptake by increasing contact time between molecules, and decrease release by increasing the probability of oxygen reentry from the vicinity of the portal.
Collapse
|
10
|
Anselmi M, Marocchi S, Aschi M, Amadei A. Theoretical modeling of the spectroscopic absorption properties of luciferin and oxyluciferin: A critical comparison with recent experimental studies. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2011.11.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Xu L, Cohen AE, Boxer SG. Electrostatic fields near the active site of human aldose reductase: 2. New inhibitors and complications caused by hydrogen bonds. Biochemistry 2011; 50:8311-22. [PMID: 21859105 DOI: 10.1021/bi200930f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vibrational Stark effect spectroscopy was used to measure electrostatic fields in the hydrophobic region of the active site of human aldose reductase (hALR2). A new nitrile-containing inhibitor was designed and synthesized, and the X-ray structure of its complex, along with cofactor NADP(+), with wild-type hALR2 was determined at 1.3 Å resolution. The nitrile is found to be in the proximity of T113, consistent with a hydrogen bond interaction. Two vibrational absorption peaks were observed at room temperature in the nitrile region when the inhibitor binds to wild-type hALR2, indicating that the nitrile probe experiences two different microenvironments, and these could be empirically separated into a hydrogen-bonded and non-hydrogen-bonded population by comparison with the T113A mutant, in which a hydrogen bond to the nitrile is not present. Classical molecular dynamics simulations based on the structure predict a double-peak distribution in protein electric fields projected along the nitrile probe. The interpretation of these two peaks as a hydrogen bond formation-dissociation process between the probe nitrile group and a nearby amino acid side chain is used to explain the observation of two IR bands, and the simulations were used to investigate the molecular details of this conformational change. Hydrogen bonding complicates the simplest analysis of vibrational frequency shifts as being due solely to electrostatic interactions through the vibrational Stark effect, and the consequences of this complication are discussed.
Collapse
Affiliation(s)
- Lin Xu
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | | | | |
Collapse
|
12
|
Anselmi M, Di Nola A, Amadei A. Kinetics of carbon monoxide migration and binding in solvated neuroglobin as revealed by molecular dynamics simulations and quantum mechanical calculations. J Phys Chem B 2011; 115:2436-46. [PMID: 21332165 DOI: 10.1021/jp110833v] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neuroglobin (Ngb) is a globular protein that reversibly binds small ligands at the six coordination position of the heme. With respect to other globins similar to myoglobin, Ngb displays some peculiarities as the topological reorganization of the internal cavities coupled to the sliding of the heme, or the binding of the endogenous distal histidine to the heme in the absence of an exogenous ligand. In this Article, by using multiple (independent) molecular dynamics trajectories (about 500 ns in total), the migration pathways of photolized carbon monoxide (CO) within solvated Ngb were analyzed, and a quantitative description of CO migration and corresponding kinetics was obtained. MD results, combined with quantum mechanical calculations on the CO-heme binding-unbinding reaction step in Ngb, allowed construction of a quantitative model representing the relevant steps of CO migration and rebinding.
Collapse
|
13
|
Amadei A, Daidone I, Zanetti-Polzi L, Aschi M. Modeling quantum vibrational excitations in condensed-phase molecular systems. Theor Chem Acc 2011. [DOI: 10.1007/s00214-010-0882-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
D'Abramo M, Orozco M, Amadei A. Effects of local electric fields on the redox free energy of single stranded DNA. Chem Commun (Camb) 2010; 47:2646-8. [PMID: 21180762 DOI: 10.1039/c0cc04352d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Influence of external electric field as well as base substitution effects on the reduction/oxidation free energies of single stranded DNA suggest that base sequencing via measuring redox properties might be feasible under the conditions that (i) a difference of ∼ 230 kJ mol(-1) in the oxidation potentials is enough to discriminate between nucleobases conductance signals and (ii) the strand is long enough to reduce end effects.
Collapse
Affiliation(s)
- Marco D'Abramo
- Departamento de Bioquímica y Biología Molecular Universitat de Barcelona, Barcelona, Spain.
| | | | | |
Collapse
|
15
|
Sharma S, Singh H, Harvey JN, Balint-Kurti GG. Design of an infrared laser pulse to control the multiphoton dissociation of the Fe-CO bond in CO-heme compounds. J Chem Phys 2010; 133:174103. [PMID: 21054002 DOI: 10.1063/1.3494543] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Optimal control theory is used to design a laser pulse for the multiphoton dissociation of the Fe-CO bond in the CO-heme compounds. The study uses a hexacoordinated iron-porphyrin-imidazole-CO complex in its ground electronic state as a model for CO liganded to the heme group. The potential energy and dipole moment surfaces for the interaction of the CO ligand with the heme group are calculated using density functional theory. Optimal control theory, combined with a time-dependent quantum dynamical treatment of the laser-molecule interaction, is then used to design a laser pulse capable of efficiently dissociating the CO-heme complex model. The genetic algorithm method is used within the mathematical framework of optimal control theory to perform the optimization process. This method provides good control over the parameters of the laser pulse, allowing optimized pulses with simple time and frequency structures to be designed. The dependence of photodissociation yield on the choice of initial vibrational state and of initial laser field parameters is also investigated. The current work uses a reduced dimensionality model in which only the Fe-C and C-O stretching coordinates are explicitly taken into account in the time-dependent quantum dynamical calculations. The limitations arising from this are discussed in Sec. IV.
Collapse
Affiliation(s)
- Sitansh Sharma
- Center for Computational Natural Sciences and Bioinformatics, International institute of Information Technology, Hyderabad 500032, India.
| | | | | | | |
Collapse
|
16
|
Daidone I, Aschi M, Zanetti-Polzi L, Di Nola A, Amadei A. On the origin of IR spectral changes upon protein folding. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2010.02.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
D’Abramo M, Di Nola A, Amadei A. Kinetics of Carbon Monoxide Migration and Binding in Solvated Myoglobin as Revealed by Molecular Dynamics Simulations and Quantum Mechanical Calculations. J Phys Chem B 2009; 113:16346-53. [DOI: 10.1021/jp903165p] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marco D’Abramo
- Institut de Recerca Biomèdica, Parc Cientific de Barcelona Josep Samitier 1-5, Barcelona 08028 and Barcelona Supercomputing Center Jordi Girona 29, Barcelona 08034, Spain, Departament de Bioquimica, Facultat de Biologia, Universitat de Barcelona, Avgda Diagonal 647 Barcelona 08028, Spain, Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le A. Moro 5 00185 Rome, Italy, and Departimento di Scienze e Tecnologie Chimiche, Università di Roma “Tor Vergata”, via della Ricerca Scientifica 00133 Rome,
| | - Alfredo Di Nola
- Institut de Recerca Biomèdica, Parc Cientific de Barcelona Josep Samitier 1-5, Barcelona 08028 and Barcelona Supercomputing Center Jordi Girona 29, Barcelona 08034, Spain, Departament de Bioquimica, Facultat de Biologia, Universitat de Barcelona, Avgda Diagonal 647 Barcelona 08028, Spain, Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le A. Moro 5 00185 Rome, Italy, and Departimento di Scienze e Tecnologie Chimiche, Università di Roma “Tor Vergata”, via della Ricerca Scientifica 00133 Rome,
| | - Andrea Amadei
- Institut de Recerca Biomèdica, Parc Cientific de Barcelona Josep Samitier 1-5, Barcelona 08028 and Barcelona Supercomputing Center Jordi Girona 29, Barcelona 08034, Spain, Departament de Bioquimica, Facultat de Biologia, Universitat de Barcelona, Avgda Diagonal 647 Barcelona 08028, Spain, Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le A. Moro 5 00185 Rome, Italy, and Departimento di Scienze e Tecnologie Chimiche, Università di Roma “Tor Vergata”, via della Ricerca Scientifica 00133 Rome,
| |
Collapse
|
18
|
Amadei A, D’Alessandro M, D’Abramo M, Aschi M. Theoretical characterization of electronic states in interacting chemical systems. J Chem Phys 2009; 130:084109. [DOI: 10.1063/1.3080887] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
19
|
Abstract
Vibrational spectroscopy is a powerful tool to investigate the structure and dynamics of biomolecules. When small subsystems of large molecules such as active centers of enzymes are studied, quantum chemical calculations based on quantum mechanics/molecular mechanics (QM/MM) coupling schemes are a valuable means to interpret the spectra. The goal of this work is a methodological pilot study on how to selectively and thus efficiently extract certain vibrational information for extended molecular systems described by QM/MM methods. This is achieved by an extension of the mode tracking algorithm and a comparison with the partial Hessian diagonalization approach. After validating the methodology for the CO stretching vibration of 2-butanone and a delocalized CO stretch in acetylacetone, the stretching and bending modes of the CO ligand in CO myoglobin are tracked. Such systems represent an ideal application for mode tracking, because only a few strongly localized vibrations are sought for, while the large remainder of the molecule is of interest only as far as it affects these local vibrations. This influence is treated exactly by mode tracking.
Collapse
Affiliation(s)
- Carmen Herrmann
- Laboratory of Physical Chemistry, ETH Zurich, Wolfgang-Pauli-Str. 10, CH-8093 Zurich, Switzerland
| | | | | |
Collapse
|
20
|
The kinetics of ligand migration in crystallized myoglobin as revealed by molecular dynamics simulations. Biophys J 2008; 94:4277-81. [PMID: 18310235 DOI: 10.1529/biophysj.107.124529] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
By using multiple molecular dynamics trajectories of photolyzed carbon monoxide (CO) within crystallized myoglobin, a quantitative description of CO diffusion and corresponding kinetics was obtained. Molecular dynamics results allowed us to construct a detailed kinetic model of the migration process, shedding light on the kinetic mechanism and relevant steps of CO migration and remarkably-well reproducing the available experimental data as provided by time-resolved Laue x-ray diffraction.
Collapse
|
21
|
The role of higher CO-multipole moments in understanding the dynamics of photodissociated carbonmonoxide in myoglobin. Biophys J 2008; 94:2505-15. [PMID: 18178640 DOI: 10.1529/biophysj.107.120519] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The influence of electrostatic multipole moments up to hexadecapole on the dynamics of photodissociated carbon monoxide (CO) in myoglobin is investigated. The CO electrostatic potential is expressed as an expansion into atomic multipole moments of increasing order up to octopole which are obtained from a distributed multipole analysis. Three models with increasingly accurate molecular multipoles (accurate quadrupole, octopole, and hexadecapole moments, respectively) are developed and used in molecular dynamics simulations. All models with a fluctuating quadrupole moment correctly describe the location of the B-state whereas the sign of the octopole moment differentiates between the Fe...CO and Fe...OC orientation. For the infrared spectrum of photodissociated CO, considerable differences between the three electrostatic models are found. The most detailed electrostatic model correctly reproduces the splitting, shift, and width of the CO spectrum in the B-state. From an analysis of the trajectories, the spectroscopic B(1) and B(2) states are assigned to the Fe...CO and Fe...OC substates, respectively.
Collapse
|
22
|
Nienhaus K, Knapp JE, Palladino P, Royer WE, Nienhaus GU. Ligand migration and binding in the dimeric hemoglobin of Scapharca inaequivalvis. Biochemistry 2007; 46:14018-31. [PMID: 18001141 DOI: 10.1021/bi7016798] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using Fourier transform infrared (FTIR) spectroscopy combined with temperature derivative spectroscopy (TDS) at cryogenic temperatures, we have studied CO binding to the heme and CO migration among cavities in the interior of the dimeric hemoglobin of Scapharca inaequivalvis (HbI) after photodissociation. By combining these studies with X-ray crystallography, three transient ligand docking sites were identified: a primary docking site B in close vicinity to the heme iron, and two secondary docking sites C and D corresponding to the Xe4 and Xe2 cavities of myoglobin. To assess the relevance of these findings for physiological binding, we also performed flash photolysis experiments on HbICO at room temperature and equilibrium binding studies with dioxygen. Our results show that the Xe4 and Xe2 cavities serve as transient docking sites for unbound ligands in the protein, but not as way stations on the entry/exit pathway. For HbI, the so-called histidine gate mechanism proposed for other globins appears as a plausible entry/exit route as well.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Biophysics, University of Ulm, 89069 Ulm, Germany
| | | | | | | | | |
Collapse
|