1
|
Stress-dependent activation of myosin in the heart requires thin filament activation and thick filament mechanosensing. Proc Natl Acad Sci U S A 2021; 118:2023706118. [PMID: 33850019 PMCID: PMC8072254 DOI: 10.1073/pnas.2023706118] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The efficiency of the heart as a pump depends on an autoregulatory mechanism, the Frank–Starling law of the heart, that potentiates the strength of contraction in response to an increase in ventricular filling. Disruption of this mechanism compromises the ability of the heart to pump blood, potentially leading to heart failure. We used fluorescent probes on myosin in heart muscle cells to investigate the molecular basis of the Frank–Starling mechanism. Our results show that the stronger contraction of heart muscle at longer lengths is due to a calcium-dependent interfilament signaling pathway that links stress sensing in the myosin-containing filaments with calcium activation of the actin-containing filaments. This pathway can potentially be targeted for treating heart failure. Myosin-based regulation in the heart muscle modulates the number of myosin motors available for interaction with calcium-regulated thin filaments, but the signaling pathways mediating the stronger contraction triggered by stretch between heartbeats or by phosphorylation of the myosin regulatory light chain (RLC) remain unclear. Here, we used RLC probes in demembranated cardiac trabeculae to investigate the molecular structural basis of these regulatory pathways. We show that in relaxed trabeculae at near-physiological temperature and filament lattice spacing, the RLC-lobe orientations are consistent with a subset of myosin motors being folded onto the filament surface in the interacting-heads motif seen in isolated filaments. The folded conformation of myosin is disrupted by cooling relaxed trabeculae, similar to the effect induced by maximal calcium activation. Stretch or increased RLC phosphorylation in the physiological range have almost no effect on RLC conformation at a calcium concentration corresponding to that between beats. These results indicate that in near-physiological conditions, the folded myosin motors are not directly switched on by RLC phosphorylation or by the titin-based passive tension at longer sarcomere lengths in the absence of thin filament activation. However, at the higher calcium concentrations that activate the thin filaments, stretch produces a delayed activation of folded myosin motors and force increase that is potentiated by RLC phosphorylation. We conclude that the increased contractility of the heart induced by RLC phosphorylation and stretch can be explained by a calcium-dependent interfilament signaling pathway involving both thin filament sensitization and thick filament mechanosensing.
Collapse
|
2
|
Shroder DY, Lippert LG, Goldman YE. Single molecule optical measurements of orientation and rotations of biological macromolecules. Methods Appl Fluoresc 2016; 4:042004. [PMID: 28192292 PMCID: PMC5308470 DOI: 10.1088/2050-6120/4/4/042004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Subdomains of macromolecules often undergo large orientation changes during their catalytic cycles that are essential for their activity. Tracking these rearrangements in real time opens a powerful window into the link between protein structure and functional output. Site-specific labeling of individual molecules with polarized optical probes and measurement of their spatial orientation can give insight into the crucial conformational changes, dynamics, and fluctuations of macromolecules. Here we describe the range of single molecule optical technologies that can extract orientation information from these probes, review the relevant types of probes and labeling techniques, and highlight the advantages and disadvantages of these technologies for addressing specific inquiries.
Collapse
|
3
|
Kampourakis T, Sun YB, Irving M. Orientation of the N- and C-terminal lobes of the myosin regulatory light chain in cardiac muscle. Biophys J 2015; 108:304-14. [PMID: 25606679 PMCID: PMC4302210 DOI: 10.1016/j.bpj.2014.11.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 11/07/2014] [Accepted: 11/10/2014] [Indexed: 02/02/2023] Open
Abstract
The orientations of the N- and C-terminal lobes of the cardiac isoform of the myosin regulatory light chain (cRLC) in the fully dephosphorylated state in ventricular trabeculae from rat heart were determined using polarized fluorescence from bifunctional sulforhodamine probes. cRLC mutants with one of eight pairs of surface-accessible cysteines were expressed, labeled with bifunctional sulforhodamine, and exchanged into demembranated trabeculae to replace some of the native cRLC. Polarized fluorescence data from the probes in each lobe were combined with RLC crystal structures to calculate the lobe orientation distribution with respect to the filament axis. The orientation distribution of the N-lobe had three distinct peaks (N1–N3) at similar angles in relaxation, isometric contraction, and rigor. The orientation distribution of the C-lobe had four peaks (C1–C4) in relaxation and isometric contraction, but only two of these (C2 and C4) remained in rigor. The N3 and C4 orientations are close to those of the corresponding RLC lobes in myosin head fragments bound to isolated actin filaments in the absence of ATP (in rigor), but also close to those of the pair of heads folded back against the filament surface in isolated thick filaments in the so-called J-motif conformation. The N1 and C1 orientations are close to those expected for actin-bound myosin heads with their light chain domains in a pre-powerstroke conformation. The N2 and C3 orientations have not been observed previously. The results show that the average change in orientation of the RLC region of the myosin heads on activation of cardiac muscle is small; the RLC regions of most heads remain in the same conformation as in relaxation. This suggests that the orientation of the dephosphorylated RLC region of myosin heads in cardiac muscle is primarily determined by an interaction with the thick filament surface.
Collapse
Affiliation(s)
- Thomas Kampourakis
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Yin-Biao Sun
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Malcolm Irving
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom.
| |
Collapse
|
4
|
Knowles AC, Irving M, Sun YB. Conformation of the troponin core complex in the thin filaments of skeletal muscle during relaxation and active contraction. J Mol Biol 2012; 421:125-37. [PMID: 22579625 DOI: 10.1016/j.jmb.2012.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 04/25/2012] [Accepted: 05/03/2012] [Indexed: 01/13/2023]
Abstract
Contraction of skeletal and cardiac muscles is regulated by Ca(2+) binding to troponin in the actin-containing thin filaments, leading to an azimuthal movement of tropomyosin around the filament that uncovers the myosin binding sites on actin. Here, we use polarized fluorescence to determine the orientation of the C-terminal lobe of troponin C (TnC) in skeletal muscle cells as a step toward elucidating the molecular mechanism of troponin-mediated regulation. Assuming, as shown by X-ray crystallography, that this lobe of TnC is part of a well-defined troponin domain called the IT arm, we show that the coiled coil formed by troponin components I and T makes an angle of about 55° with the thin filament axis in relaxed muscle, in contrast with previous models based on electron microscopy in which this angle is close to 0°. The E helix of TnC makes an angle of about 45° with the thin filament axis. Both the IT coiled coil and the TnC E helix tilt by about 10° on muscle activation. By combining in situ measurements of the orientation of the IT arm and regulatory domain of troponin, which together form the troponin core complex, with published intermolecular distances between thin filament components, we derive models of thin filament structure in which the IT arm of troponin holds its regulatory domain close to the actin surface. Although the structure and function of troponin regions outside the core complex remain to be characterized, the present results provide useful constraints for molecular models of the mechanism of muscle regulation.
Collapse
Affiliation(s)
- Andrea C Knowles
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London SE1 1UL, UK
| | | | | |
Collapse
|
5
|
Romano D, Brandmeier BD, Sun YB, Trentham DR, Irving M. Orientation of the N-terminal lobe of the myosin regulatory light chain in skeletal muscle fibers. Biophys J 2012; 102:1418-26. [PMID: 22455925 DOI: 10.1016/j.bpj.2012.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 02/03/2012] [Accepted: 02/07/2012] [Indexed: 11/17/2022] Open
Abstract
The orientation of the N-terminal lobe of the myosin regulatory light chain (RLC) in demembranated fibers of rabbit psoas muscle was determined by polarized fluorescence. The native RLC was replaced by a smooth muscle RLC with a bifunctional rhodamine probe attached to its A, B, C, or D helix. Fiber fluorescence data were interpreted using the crystal structure of the head domain of chicken skeletal myosin in the nucleotide-free state. The peak angle between the lever axis of the myosin head and the fiber or actin filament axis was 100-110° in relaxation, isometric contraction, and rigor. In each state the hook helix was at an angle of ∼40° to the lever/filament plane. The in situ orientation of the RLC D and E helices, and by implication of its N- and C-lobes, was similar in smooth and skeletal RLC isoforms. The angle between these two RLC lobes in rigor fibers was different from that in the crystal structure. These results extend previous crystallographic evidence for bending between the two lobes of the RLC to actin-attached myosin heads in muscle fibers, and suggest that such bending may have functional significance in contraction and regulation of vertebrate striated muscle.
Collapse
Affiliation(s)
- Daniela Romano
- Medical Research Council, National Institute for Medical Research, London, United Kingdom
| | | | | | | | | |
Collapse
|
6
|
Structure and dynamics of the kinesin-microtubule interaction revealed by fluorescence polarization microscopy. Methods Cell Biol 2010. [PMID: 20466150 DOI: 10.1016/s0091-679x(10)95025-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Fluorescence polarization microscopy (FPM) is the analysis of the polarization of light in a fluorescent microscope in order to determine the angular orientation and rotational mobility of fluorescent molecules. Key advantages of FPM, relative to other structural analysis techniques, are that it allows the detection of conformational changes of fluorescently labeled macromolecules in real time in physiological conditions and at the single-molecule level. In this chapter we describe in detail the FPM experimental set-up and analysis methods we have used to investigate structural intermediates of the motor protein kinesin-1 associated with its walking mechanism along microtubules. We also briefly describe additional FPM methods that have been used to investigate other macromolecular complexes.
Collapse
|
7
|
De Simone A, Corrie JET, Dale RE, Irving M, Fraternali F. Conformation and dynamics of a rhodamine probe attached at two sites on a protein: implications for molecular structure determination in situ. J Am Chem Soc 2009; 130:17120-8. [PMID: 19053408 DOI: 10.1021/ja807264v] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Replica exchange molecular dynamics (REMD) calculations were used to determine the conformation and dynamics of bifunctional rhodamine probes attached to pairs of cysteines in three model systems: (a) a polyalanine helix, (b) the isolated C helix (residues 53-66) of troponin C, and (c) the C helix of the N-terminal region (residues 1-90) of troponin C (sNTnC). In each case, and for both diastereoisomers of each probe-protein complex, the hydrophobic face of the probe is close to the protein surface, and its carboxylate group is highly solvated. The visible-range fluorescence dipole of the probe is approximately parallel to the line joining the two cysteine residues, as assumed in previous in situ fluorescence polarization studies. The independent rotational motion of the probe with respect to the protein on the nanosecond time scale is highly restricted, in agreement with data from fluorescence polarization and NMR relaxation studies. The detailed interaction of the probe with the protein surface depends on steric factors, electrostatic and hydrophobic interactions, hydrogen bonds, and hydration effects. The interaction is markedly different between diastereoisomers, and multiple preferred conformations exist for a single diasteroisomer. These results show that the combination of the hydrophobic xanthylium moiety of bifunctional rhodamine with the carboxylate substitution in its pendant phenyl ring causes the probe to be immobilized on the protein surface, while the two-site cysteine attachment defines the orientation of its fluorescence dipole. These features allow the orientation of protein components to be accurately determined in situ by polarized fluorescence measurements from bifunctional rhodamine probes.
Collapse
Affiliation(s)
- Alfonso De Simone
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
| | | | | | | | | |
Collapse
|
8
|
Sun YB, Lou F, Irving M. Calcium- and myosin-dependent changes in troponin structure during activation of heart muscle. J Physiol 2008; 587:155-63. [PMID: 19015190 DOI: 10.1113/jphysiol.2008.164707] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Each heartbeat is triggered by a pulse of intracellular calcium ions which bind to troponin on the actin-containing thin filaments of heart muscle cells, initiating a change in filament structure that allows myosin to bind and generate force. We investigated the molecular mechanism of calcium regulation in demembranated trabeculae from rat ventricle using polarized fluorescence from probes on troponin C (TnC). Native TnC was replaced by double-cysteine mutants of human cardiac TnC with bifunctional rhodamine attached along either the C helix, adjacent to the regulatory Ca(2+)-binding site, or the E helix in the IT arm of the troponin complex. Changes in the orientation of both troponin helices had the same steep Ca(2+) dependence as active force production, with a Hill coefficient (n(H)) close to 3, consistent with a single co-operative transition controlled by Ca(2+) binding. Complete inhibition of active force by 25 microM blebbistatin had very little effect on the Ca(2+)-dependent structural changes and in particular did not significantly reduce the value of n(H). Binding of rigor myosin heads to thin filaments following MgATP depletion in the absence of Ca(2+) also changed the orientation of the C and E helices, and addition of Ca(2+) in rigor produced further changes characterized by increased Ca(2+) affinity but with n(H) close to 1. These results show that, although myosin binding can switch on thin filaments in rigor conditions, it does not contribute significantly under physiological conditions. The physiological mechanism of co-operative Ca(2+) regulation of cardiac contractility must therefore be intrinsic to the thin filaments.
Collapse
Affiliation(s)
- Yin-Biao Sun
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK.
| | | | | |
Collapse
|
9
|
Orientation of the essential light chain region of myosin in relaxed, active, and rigor muscle. Biophys J 2008; 95:3882-91. [PMID: 18621839 DOI: 10.1529/biophysj.108.131508] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The orientation of the ELC region of myosin in skeletal muscle was determined by polarized fluorescence from ELC mutants in which pairs of introduced cysteines were cross-linked by BSR. The purified ELC-BSRs were exchanged for native ELC in demembranated fibers from rabbit psoas muscle using a trifluoperazine-based protocol that preserved fiber function. In the absence of MgATP (in rigor) the ELC orientation distribution was narrow; in terms of crystallographic structures of the myosin head, the LCD long axis linking heavy-chain residues 707 and 843 makes an angle (beta) of 120-125 degrees with the filament axis. This is approximately 30 degrees larger than the broader distribution determined previously from RLC probes, suggesting that, relative to crystallographic structures, the LCD is bent between its ELC and RLC regions in rigor muscle. The ELC orientation distribution in relaxed muscle had two broad peaks with beta approximately 70 degrees and approximately 110 degrees, which may correspond to the two head regions of each myosin molecule, in contrast with the single broad distribution of the RLC region in relaxed muscle. During isometric contraction the ELC orientation distribution peaked at beta approximately 105 degrees , similar to that determined previously for the RLC region.
Collapse
|
10
|
Julien O, Mercier P, Spyracopoulos L, Corrie JET, Sykes BD. NMR studies of the dynamics of a bifunctional rhodamine probe attached to troponin C. J Am Chem Soc 2008; 130:2602-9. [PMID: 18251471 DOI: 10.1021/ja0772694] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fluorescence polarization measurements of bifunctional rhodamine (BR) probes provide a powerful approach to determine the in situ orientation of proteins within ordered complexes such as muscle fibers. For accurate interpretation of fluorescence measurements, it is important to understand the probe dynamics relative to the protein to which it is attached. We previously determined the structure of the N-domain of chicken skeletal troponin C, BR-labeled on the C helix, in complex with the switch region of troponin I, and demonstrated that the probe does not perturb the structure or dynamics of the protein. In this study, the motion of the fluorescence label relative to the protein has been characterized using NMR relaxation measurements of 13C-labeled methyl groups on the BR probe and 15N-labeled backbone amides of the protein. Probe dynamics were monitored using off-resonance 13C-R(1rho), 13C-R(1) and {1H}-13C NOE at magnetic field strengths of 500, 600, and 800 MHz. Relaxation data were interpreted in terms of the overall rotational correlation time of the protein and a two-time scale model for internal motion of the BR methyl groups, using a numerical optimization with Monte Carlo parameter error estimation. The analysis yields a 1.5 +/- 0.4 ps correlation time for rotation around the three-fold methyl symmetry axis, and a 0.8 +/- 0.4 ns rotational correlation time for reorientation of the 13C-14N bond with an associated S2s of 0.79 +/- 0.03. Order parameters of the backbone NH vectors in the helix to which the probe is attached average S2 approximately 0.85, implying that the amplitude of independent reorientation of the BR probe is small in magnitude, consistent with results from fluorescence polarization measurements in reconstituted muscle fibers.
Collapse
Affiliation(s)
- Olivier Julien
- Department of Biochemistry, University of Alberta, Edmonton T6G 2H7, Canada
| | | | | | | | | |
Collapse
|