1
|
Ansaloni F, Gerdol M, Torboli V, Fornaini NR, Greco S, Giulianini PG, Coscia MR, Miccoli A, Santovito G, Buonocore F, Scapigliati G, Pallavicini A. Cold Adaptation in Antarctic Notothenioids: Comparative Transcriptomics Reveals Novel Insights in the Peculiar Role of Gills and Highlights Signatures of Cobalamin Deficiency. Int J Mol Sci 2021; 22:ijms22041812. [PMID: 33670421 PMCID: PMC7918649 DOI: 10.3390/ijms22041812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 01/13/2023] Open
Abstract
Far from being devoid of life, Antarctic waters are home to Cryonotothenioidea, which represent one of the fascinating cases of evolutionary adaptation to extreme environmental conditions in vertebrates. Thanks to a series of unique morphological and physiological peculiarities, which include the paradigmatic case of loss of hemoglobin in the family Channichthyidae, these fish survive and thrive at sub-zero temperatures. While some of the distinctive features of such adaptations have been known for decades, our knowledge of their genetic and molecular bases is still limited. We generated a reference de novo assembly of the icefish Chionodraco hamatus transcriptome and used this resource for a large-scale comparative analysis among five red-blooded Cryonotothenioidea, the sub-Antarctic notothenioid Eleginops maclovinus and seven temperate teleost species. Our investigation targeted the gills, a tissue of primary importance for gaseous exchange, osmoregulation, ammonia excretion, and its role in fish immunity. One hundred and twenty genes were identified as significantly up-regulated in Antarctic species and surprisingly shared by red- and white-blooded notothenioids, unveiling several previously unreported molecular players that might have contributed to the evolutionary success of Cryonotothenioidea in Antarctica. In particular, we detected cobalamin deficiency signatures and discussed the possible biological implications of this condition concerning hematological alterations and the heavy parasitic loads typically observed in all Cryonotothenioidea.
Collapse
Affiliation(s)
- Federico Ansaloni
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.A.); (V.T.); (N.R.F.); (S.G.); (P.G.G.); (A.P.)
- International School for Advanced Studies, 34136 Trieste, Italy
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.A.); (V.T.); (N.R.F.); (S.G.); (P.G.G.); (A.P.)
- Correspondence:
| | - Valentina Torboli
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.A.); (V.T.); (N.R.F.); (S.G.); (P.G.G.); (A.P.)
| | - Nicola Reinaldo Fornaini
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.A.); (V.T.); (N.R.F.); (S.G.); (P.G.G.); (A.P.)
- Department of Cell Biology, Charles University, 12800 Prague, Czech Republic
| | - Samuele Greco
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.A.); (V.T.); (N.R.F.); (S.G.); (P.G.G.); (A.P.)
| | - Piero Giulio Giulianini
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.A.); (V.T.); (N.R.F.); (S.G.); (P.G.G.); (A.P.)
| | - Maria Rosaria Coscia
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, 80131 Naples, Italy;
| | - Andrea Miccoli
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (A.M.); (F.B.); (G.S.)
| | | | - Francesco Buonocore
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (A.M.); (F.B.); (G.S.)
| | - Giuseppe Scapigliati
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (A.M.); (F.B.); (G.S.)
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.A.); (V.T.); (N.R.F.); (S.G.); (P.G.G.); (A.P.)
- Anton Dohrn Zoological Station, 80122 Naples, Italy
- National Institute of Oceanography and Experimental Geophysics, 34010 Trieste, Italy
| |
Collapse
|
2
|
Young JN, Schmidt K. It's what's inside that matters: physiological adaptations of high-latitude marine microalgae to environmental change. THE NEW PHYTOLOGIST 2020; 227:1307-1318. [PMID: 32391569 DOI: 10.1111/nph.16648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 03/23/2020] [Indexed: 05/13/2023]
Abstract
Marine microalgae within seawater and sea ice fuel high-latitude ecosystems and drive biogeochemical cycles through the fixation and export of carbon, uptake of nutrients, and production and release of oxygen and organic compounds. High-latitude marine environments are characterized by cold temperatures, dark winters and a strong seasonal cycle. Within this environment a number of diverse and dynamic habitats exist, particularly in association with the formation and melt of sea ice, with distinct microalgal communities that transition with the season. Algal physiology is a crucial component, both responding to the dynamic environment and in turn influencing its immediate physicochemical environment. As high-latitude oceans shift into new climate regimes the analysis of seasonal responses may provide insights into how microalgae will respond to long-term environmental change. This review discusses recent developments in our understanding of how the physiology of high-latitude marine microalgae is regulated over a polar seasonal cycle, with a focus on ice-associated (sympagic) algae. In particular, physiologies that impact larger scale processes will be explored, with an aim to improve our understanding of current and future ecosystems and biogeochemical cycles.
Collapse
Affiliation(s)
- Jodi N Young
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Katrin Schmidt
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
3
|
Carrie D, Gilmour KM. Phosphorylation increases the catalytic activity of rainbow trout gill cytosolic carbonic anhydrase. J Comp Physiol B 2016; 186:111-22. [PMID: 26498599 DOI: 10.1007/s00360-015-0942-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/30/2015] [Accepted: 10/11/2015] [Indexed: 11/26/2022]
Abstract
Cytoplasmic carbonic anhydrase (CAc) in the gill of teleost fish contributes to ionic regulation and acid–base balance by catalyzing the reversible reaction of CO2 and water, CO2 + H2O ↔ H(+) + HCO3(-). Regulation of CAc abundance and activity therefore is expected to fine-tune responses to ionic or acid–base challenges. The present study investigated the potential for gill CAc of rainbow trout, Oncorhynchus mykiss (tCAc), to undergo reversible phosphorylation. The activity of tCAc was approximately doubled by phosphorylation achieved through in vitro stimulation of endogenous protein kinases; kinase stimulation doubled phospho-threonine content from that observed in tCAc isolated under conditions where both kinases and protein phosphatases were inhibited. In vitro incubation to preferentially stimulate specific kinases implicated protein kinase G (PKG) in mediating the increase in tCAc activity. The kinetic parameters of turnover number (k cat) and substrate affinity (K m) were similarly affected by stimulation of either kinase or phosphatase action. However, phosphorylation via kinase stimulation significantly increased the efficiency of tCAc (V max /K m), and this factor may have contributed to the elevation of tCAc activity. In addition, phosphorylation of tCAc by kinase stimulation significantly increased the inhibition constant (K i) for acetazolamide. These results demonstrate that tCAc is subject to reversible phosphorylation; future work should focus on identifying the physiological situation(s) in which phosphorylation of trout branchial CAc occurs.
Collapse
|
4
|
Ferreira-Martins D, McCormick SD, Campos A, Lopes-Marques M, Osório H, Coimbra J, Castro LFC, Wilson JM. A cytosolic carbonic anhydrase molecular switch occurs in the gills of metamorphic sea lamprey. Sci Rep 2016; 6:33954. [PMID: 27703170 PMCID: PMC5050428 DOI: 10.1038/srep33954] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/05/2016] [Indexed: 01/12/2023] Open
Abstract
Carbonic anhydrase plays a key role in CO2 transport, acid-base and ion regulation and metabolic processes in vertebrates. While several carbonic anhydrase isoforms have been identified in numerous vertebrate species, basal lineages such as the cyclostomes have remained largely unexamined. Here we investigate the repertoire of cytoplasmic carbonic anhydrases in the sea lamprey (Petromyzon marinus), that has a complex life history marked by a dramatic metamorphosis from a benthic filter-feeding ammocoete larvae into a parasitic juvenile which migrates from freshwater to seawater. We have identified a novel carbonic anhydrase gene (ca19) beyond the single carbonic anhydrase gene (ca18) that was known previously. Phylogenetic analysis and synteny studies suggest that both carbonic anhydrase genes form one or two independent gene lineages and are most likely duplicates retained uniquely in cyclostomes. Quantitative PCR of ca19 and ca18 and protein expression in gill across metamorphosis show that the ca19 levels are highest in ammocoetes and decrease during metamorphosis while ca18 shows the opposite pattern with the highest levels in post-metamorphic juveniles. We propose that a unique molecular switch occurs during lamprey metamorphosis resulting in distinct gill carbonic anhydrases reflecting the contrasting life modes and habitats of these life-history stages.
Collapse
Affiliation(s)
- D. Ferreira-Martins
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR) Universidade do Porto, 4050-123, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313, Porto, Portugal
| | - S. D. McCormick
- USGS, Leetown Science Center, S.O. Conte Anadromous Fish Research Laboratory, 01376, Turner Falls MA USA
| | - A. Campos
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR) Universidade do Porto, 4050-123, Porto, Portugal
| | - M. Lopes-Marques
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR) Universidade do Porto, 4050-123, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313, Porto, Portugal
| | - H. Osório
- i3s-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135, Porto, Portugal
- Departamento de Patologia e Oncologia, Faculdade de Medicina, Universidade do Porto, 4200-319, Porto, Portugal
| | - J. Coimbra
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR) Universidade do Porto, 4050-123, Porto, Portugal
| | - L. F. C. Castro
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR) Universidade do Porto, 4050-123, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169–007, Porto, Portugal
| | - J. M. Wilson
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR) Universidade do Porto, 4050-123, Porto, Portugal
- Department of Biology, Wilfrid Laurier University, N2L 3C5, Waterloo, Canada
| |
Collapse
|
5
|
Liu Y, Chen L, Zhang D. Complete mitochondrial genome of the Antarctic crocodile icefish, Chionodraco hamatus (Perciformes: Channichthyidae). Mitochondrial DNA B Resour 2016; 1:138-139. [PMID: 33644332 PMCID: PMC7871858 DOI: 10.1080/23802359.2016.1144098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Antarctic icefish Chionodraco hamatus is an ideal model for studying cold adaptation mechanisms. The complete mitochondrial genome of C. hamatus was sequenced in this study. The genome sequence is 17 373 bp in length, which comprises 13 protein-coding genes, 22 tRNAs, two rRNAs and a control region. The overall base composition is A: 26.25%, T: 26.05%, G: 17.49% and C: 30.21%, with an A:T content of 52.3%. The phylogenetic analyses based on the concatenated nucleotide sequences of all the genes and control region supported a relatively close relationship with Parachaenichthys. charcoti. The complete mitochondrial genome sequence will be useful for evolutionary and functional studies of Antarctic Notothenioids.
Collapse
Affiliation(s)
- Yimeng Liu
- Key Laboratory of Aquacultural Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, PR China
| | - Liangbiao Chen
- Key Laboratory of Aquacultural Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, PR China
| | - Dongsheng Zhang
- Key Laboratory of Aquacultural Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, PR China
| |
Collapse
|
6
|
Abstract
Metalloproteins are enormously important in biology. While a variety of techniques exist for studying metals in biology, X-ray absorption spectroscopy is particularly useful in that it can determine the local electronic and physical structure around the metal center, and is one of the few avenues for studying "spectroscopically silent" metal ions like Zn(II) and Cu(I) that have completely filled valence bands. While X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) are useful for studying metalloprotein structure, they suffer the limitation that the detected signal is an average of all the various metal centers in the sample, which limits its usefulness for studying metal centers in situ or in cell lysates. It would be desirable to be able to separate the various proteins in a mixture prior to performing X-ray absorption studies, so that the derived signal is from one species only. Here we describe a method for performing X-ray absorption spectroscopy on protein bands following electrophoretic separation and western blotting.
Collapse
Affiliation(s)
- Jesse Ward
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL, 60439, USA
| | | | | | | |
Collapse
|
7
|
Santovito G, Marino SM, Sattin G, Cappellini R, Bubacco L, Beltramini M. Cloning and characterization of cytoplasmic carbonic anhydrase from gills of four Antarctic fish: insights into the evolution of fish carbonic anhydrase and cold adaptation. Polar Biol 2012. [DOI: 10.1007/s00300-012-1200-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Maupin CM, McKenna R, Silverman DN, Voth GA. Elucidation of the proton transport mechanism in human carbonic anhydrase II. J Am Chem Soc 2009; 131:7598-608. [PMID: 19438233 PMCID: PMC2774804 DOI: 10.1021/ja8091938] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human carbonic anhydrase II (HCA II) is one of the fastest known enzymes, which utilizes a rate-limiting proton transport (PT) step in its enzymatic reaction. To evaluate the PT event at an atomistic level, the multistate empirical valence bond (MS-EVB) method has been utilized in this work. It is observed that the PT event in HCA II exploits a transient active site water cluster to transport the excess proton between the catalytic zinc-bound water/hydroxide and the proton shuttling residue, His64. This PT event is found to be dependent on the enzyme's ability to form and stabilize the active site water cluster in addition to its ability to orient His64 in a favorable conformation. Evaluation of the PT free energy barrier for different orientations of His64 reveals this residue's vital role as a proton transporter and elucidates its direct effect on the barrier to PT through the active site water. It is suggested that the rate-limiting step oscillates between the active site water PT event to His64 and the de/protonation of His64 depending on the exogenous buffer concentration and the orientation of His64. In the absence of a PT acceptor/donor at position 64, it is found that the excess proton will utilize one of three distinct paths to enter/leave the active site. This latter result not only allows for an increased understanding of how enzymes capitalize on the protein/solvent interface to guide excess protons to/from areas of interest, it also provides valuable insight into the chemical rescue experiments on HCA II mutants.
Collapse
Affiliation(s)
- C. Mark Maupin
- Center for Biophysical Modeling and Simulation and Department of Chemistry, UniVersity of Utah, Salt Lake City, Utah 84112
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, UniVersity of Florida, GainesVille, Florida 32610
| | - David N. Silverman
- Department of Biochemistry and Molecular Biology, College of Medicine, UniVersity of Florida, GainesVille, Florida 32610
- Department of Pharmacology and Therapeutics, College of Medicine, UniVersity of Florida, GainesVille, Florida 32610
| | - Gregory A. Voth
- Center for Biophysical Modeling and Simulation and Department of Chemistry, UniVersity of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
9
|
Shinobu A, Agmon N. Mapping Proton Wires in Proteins: Carbonic Anhydrase and GFP Chromophore Biosynthesis. J Phys Chem A 2009; 113:7253-66. [DOI: 10.1021/jp8102047] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ai Shinobu
- Fritz Haber Research Center, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Noam Agmon
- Fritz Haber Research Center, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
10
|
Chiuri R, Maiorano G, Rizzello A, del Mercato LL, Cingolani R, Rinaldi R, Maffia M, Pompa PP. Exploring local flexibility/rigidity in psychrophilic and mesophilic carbonic anhydrases. Biophys J 2009; 96:1586-96. [PMID: 19217874 DOI: 10.1016/j.bpj.2008.11.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 11/10/2008] [Indexed: 11/25/2022] Open
Abstract
Molecular flexibility and rigidity are required to determine the function and specificity of protein molecules. Some psychrophilic enzymes demonstrate a higher catalytic efficiency at low temperatures, compared to the efficiency demonstrated by their meso/thermophilic homologous. The emerging picture suggests that such enzymes have an improved flexibility of the structural catalytic components, whereas other protein regions far from functional sites may be even more rigid than those of their mesophilic counterparts. To gain a deeper insight in the analysis of the activity-flexibility/rigidity relationship in protein structure, psychrophilic carbonic anhydrase of the Antarctic teleost Chionodraco hamatus has been compared with carbonic anhydrase II of Bos taurus through fluorescence studies, three-dimensional modeling, and activity analyses. Data demonstrated that the cold-adapted enzyme exhibits an increased catalytic efficiency at low and moderate temperatures and, more interestingly, a local flexibility in the region that controls the correct folding of the catalytic architecture, as well as a rigidity in the hydrophobic core. The opposite result was observed in the mesophilic counterpart. These results suggest a clear relationship between the activity and the presence of flexible and rigid protein substructures that may be useful in rational molecular and drug design of a class of enzymes playing a key role in pathologic processes.
Collapse
Affiliation(s)
- R Chiuri
- National Nanotechnology Laboratory of CNR-INFM, IIT Research Unit, Lecce, Italy
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Maupin CM, Saunders MG, Thorpe IF, McKenna R, Silverman DN, Voth GA. Origins of enhanced proton transport in the Y7F mutant of human carbonic anhydrase II. J Am Chem Soc 2008; 130:11399-408. [PMID: 18671353 PMCID: PMC2562593 DOI: 10.1021/ja802264j] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human carbonic anhydrase II (HCA II), among the fastest enzymes known, catalyzes the reversible hydration of CO 2 to HCO 3 (-). The rate-limiting step of this reaction is believed to be the formation of an intramolecular water wire and transfer of a proton across the active site cavity from a zinc-bound solvent to a proton shuttling residue (His64). X-ray crystallographic studies have shown this intramolecular water wire to be directly stabilized through hydrogen bonds via a small well-defined set of amino acids, namely, Tyr7, Asn62, Asn67, Thr199, and Thr200. Furthermore, X-ray crystallographic and kinetic studies have shown that the mutation of tyrosine 7 to phenylalanine, Y7F HCA II, has the effect of increasing the proton transfer rate by 7-fold in the dehydration direction of the enzyme reaction compared to wild-type (WT). This increase in the proton transfer rate is postulated to be linked to the formation of a more directional, less branched, water wire. To evaluate this proposal, molecular dynamics simulations have been employed to study water wire formation in both the WT and Y7F HCA II mutant. These studies reveal that the Y7F mutant enhances the probability of forming small water wires and significantly extends the water wire lifetime, which may account for the elevated proton transfer seen in the Y7F mutant. Correlation analysis of the enzyme and intramolecular water wire indicates that the Y7F mutant significantly alters the interaction of the active site waters with the enzyme while occupancy data of the water oxygens reveals that the Y7F mutant stabilizes the intramolecular water wire in a manner that maximizes smaller water wire formation. This increase in the number of smaller water wires is likely to elevate the catalytic turnover of an already very efficient enzyme.
Collapse
|