1
|
Walker AR, Sloneker JR, Garno JC. Molecular-level studies of extracellular matrix proteins conducted using atomic force microscopy. Biointerphases 2024; 19:050801. [PMID: 39269167 DOI: 10.1116/6.0003789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Extracellular matrix (ECM) proteins provide anchorage and structural strength to cells and tissues in the body and, thus, are fundamental molecular components for processes of cell proliferation, growth, and function. Atomic force microscopy (AFM) has increasingly become a valuable approach for studying biological molecules such as ECM proteins at the level of individual molecules. Operational modes of AFM can be used to acquire the measurements of the physical, electronic, and mechanical properties of samples, as well as for viewing the intricate details of the surface chemistry of samples. Investigations of the morphology and properties of biomolecules at the nanoscale can be useful for understanding the interactions between ECM proteins and biological molecules such as cells, DNA, and other proteins. Methods for preparing protein samples for AFM studies require only basic steps, such as the immersion of a substrate in a dilute solution or protein, or the deposition of liquid droplets of protein suspensions on a flat, clean surface. Protocols of nanolithography have been used to define the arrangement of proteins for AFM studies. Using AFM, mechanical and force measurements with tips that are coated with ECM proteins can be captured in ambient or aqueous environments. In this review, representative examples of AFM studies are described for molecular-level investigations of the structure, surface assembly, protein-cell interactions, and mechanical properties of ECM proteins (collagen, elastin, fibronectin, and laminin). Methods used for sample preparation as well as characterization with modes of AFM will be discussed.
Collapse
Affiliation(s)
- Ashley R Walker
- Chemistry Department, Louisiana State University, 232 Choppin Hall, Baton Rouge, Los Angeles 70803
| | - Jonathan R Sloneker
- Chemistry Department, Louisiana State University, 232 Choppin Hall, Baton Rouge, Los Angeles 70803
| | - Jayne C Garno
- Chemistry Department, Louisiana State University, 232 Choppin Hall, Baton Rouge, Los Angeles 70803
| |
Collapse
|
2
|
Goncalves KE, Phillips S, Shah DSH, Athey D, Przyborski SA. Application of biomimetic surfaces and 3D culture technology to study the role of extracellular matrix interactions in neurite outgrowth and inhibition. BIOMATERIALS ADVANCES 2022; 144:213204. [PMID: 36434926 DOI: 10.1016/j.bioadv.2022.213204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
The microenvironment that cells experience during in vitro culture can often be far removed from the native environment they are exposed to in vivo. To recreate the physiological environment that developing neurites experience in vivo, we combine a well-established model of human neurite development with, functionalisation of both 2D and 3D growth substrates with specific extracellular matrix (ECM) derived motifs displayed on engineered scaffold proteins. Functionalisation of growth substrates provides biochemical signals more reminiscent of the in vivo environment and the combination of this technology with 3D cell culture techniques, further recapitulates the native cellular environment by providing a more physiologically relevant geometry for neurites to develop. This biomaterials approach was used to study interactions between the ECM and developing neurites, along with the identification of specific motifs able to enhance neuritogenesis within this model. Furthermore, this technology was employed to study the process of neurite inhibition that has a detrimental effect on neuronal connectivity following injury to the central nervous system (CNS). Growth substrates were functionalised with inhibitory peptides released from damaged myelin within the injured spinal cord (Nogo & OMgp). This model was then utilised to study the underlying molecular mechanisms that govern neurite inhibition in addition to potential mechanisms of recovery.
Collapse
Affiliation(s)
- K E Goncalves
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - S Phillips
- Orla Protein Technologies Ltd, (now part of Porvair Sciences Ltd), 73 Clywedog Road East, Wrexham Industrial Estate, Wrexham LL13 9XS, UK
| | - D S H Shah
- Orla Protein Technologies Ltd, (now part of Porvair Sciences Ltd), 73 Clywedog Road East, Wrexham Industrial Estate, Wrexham LL13 9XS, UK
| | - D Athey
- Orla Protein Technologies Ltd, (now part of Porvair Sciences Ltd), 73 Clywedog Road East, Wrexham Industrial Estate, Wrexham LL13 9XS, UK
| | - S A Przyborski
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; Reprocell Europe Ltd, NETPark Incubator, Thomas Wright Way, Sedgefield TS21 3FD, UK.
| |
Collapse
|
3
|
Effect of electrochemical oxidation and reduction on cell de-adhesion at the conducting polymer–live cell interface as revealed by single cell force spectroscopy. Biointerphases 2018; 13:041004. [DOI: 10.1116/1.5022713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
4
|
Castner DG. Biomedical surface analysis: Evolution and future directions (Review). Biointerphases 2017; 12:02C301. [PMID: 28438024 PMCID: PMC5403738 DOI: 10.1116/1.4982169] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 04/03/2017] [Accepted: 04/10/2017] [Indexed: 01/22/2023] Open
Abstract
This review describes some of the major advances made in biomedical surface analysis over the past 30-40 years. Starting from a single technique analysis of homogeneous surfaces, it has been developed into a complementary, multitechnique approach for obtaining detailed, comprehensive information about a wide range of surfaces and interfaces of interest to the biomedical community. Significant advances have been made in each surface analysis technique, as well as how the techniques are combined to provide detailed information about biological surfaces and interfaces. The driving force for these advances has been that the surface of a biomaterial is the interface between the biological environment and the biomaterial, and so, the state-of-the-art in instrumentation, experimental protocols, and data analysis methods need to be developed so that the detailed surface structure and composition of biomedical devices can be determined and related to their biological performance. Examples of these advances, as well as areas for future developments, are described for immobilized proteins, complex biomedical surfaces, nanoparticles, and 2D/3D imaging of biological materials.
Collapse
Affiliation(s)
- David G Castner
- National ESCA and Surface Analysis Center for Biomedical Problems, Molecular Engineering and Sciences Institute, Departments of Bioengineering and Chemical Engineering, University of Washington, Box 351653, Seattle, Washington 98195-1653
| |
Collapse
|
5
|
Foster RN, Harrison ET, Castner DG. ToF-SIMS and XPS Characterization of Protein Films Adsorbed onto Bare and Sodium Styrenesulfonate-Grafted Gold Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3207-16. [PMID: 26977542 PMCID: PMC4821661 DOI: 10.1021/acs.langmuir.5b04743] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The adsorption of single-component bovine serum albumin (BSA), bovine fibrinogen (Fgn), and bovine immunoglobulin G (IgG) films as well as multicomponent bovine plasma films onto bare and sodium styrenesulfonate (NaSS)-grafted gold substrates was characterized. The adsorption isotherms, measured via X-ray photoelectron spectroscopy, showed that at low solution concentrations all three single-component proteins adsorb with higher affinity onto gold surfaces compared to NaSS surfaces. However, at higher concentrations, NaSS surfaces adsorb the same or more total protein than gold surfaces. This may be because proteins that adsorb onto NaSS undergo structural rearrangements, resulting in a larger fraction of irreversibly adsorbed species over time. Still, with the possible exception of BSA adsorbed onto gold, neither surface appeared to have saturated at the highest protein solution concentration studied. Principal component (PC) analysis of amino acid mass fragments from time-of-flight secondary ion mass spectra distinguished between the same protein adsorbed onto NaSS and gold surfaces, suggesting that proteins adsorb differently on NaSS and gold surfaces. Explored further using peak ratios for buried/surface amino acids for each protein, we found that proteins denature more on NaSS surfaces than on gold surfaces. Also, using peak ratios for asymmetrically distributed amino acids, potential structural differences were postulated for BSA and IgG adsorbed onto NaSS and gold surfaces. PC modeling, used to track changes in plasma adsorption with time, suggests that plasma films on NaSS and Au surfaces become more Fgn-like with increasing adsorption time. However, the PC models included only three proteins, where plasma is composed of hundreds of proteins. Therefore, while both gold and NaSS appear to adsorb more Fgn with time, further study is required to confirm that this is representative of the final state of the plasma films.
Collapse
Affiliation(s)
- Rami N. Foster
- National ESCA and Surface Analysis Center for Biomedical Problems, Department of Chemical Engineering, University of Washington – Seattle, Seattle, WA 98195
| | - Elisa T. Harrison
- National ESCA and Surface Analysis Center for Biomedical Problems, Department of Chemical Engineering, University of Washington – Seattle, Seattle, WA 98195
| | - David G. Castner
- National ESCA and Surface Analysis Center for Biomedical Problems, Department of Chemical Engineering, University of Washington – Seattle, Seattle, WA 98195
- National ESCA and Surface Analysis Center for Biomedical Problems, Department of Bioengineering, University of Washington – Seattle, Seattle, WA 98195
| |
Collapse
|
6
|
Herranz-Diez C, Li Q, Lamprecht C, Mas-Moruno C, Neubauer S, Kessler H, Manero J, Guillem-Martí J, Selhuber-Unkel C. Bioactive compounds immobilized on Ti and TiNbHf: AFM-based investigations of biofunctionalization efficiency and cell adhesion. Colloids Surf B Biointerfaces 2015; 136:704-11. [DOI: 10.1016/j.colsurfb.2015.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/20/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
|
7
|
Abstract
Interactions between ligands and receptors and subsequent "locking" must involve some resistance to unbinding, manifesting itself as an interaction force. At body temperature, spontaneous unbinding will occur, however, external forces are required to accelerate this process. Bearing in mind the potential forces that the receptor-ligand complex is likely to be subjected to in a biological environment, it might be hypothesised that there is some mechanical matching between the receptor and ligand. To test this hypothesis, various receptor and ligand pairs were unfolded in their entirety in order to determine their total unfolding force. In this way, the total force to unfold the protein could be determined, allowing a comparison between ligand and receptor pairs. The interest of this work is to examine the interaction between five proteins and a mica surface by AFM without any modification to preserve the natural elastic properties of the protein molecules during the force measurements. The results showed a mechanical matching between GP120 (ligand) and CD4 (receptor) when analysing the total force required to unfold the same number of domains or events shown by the force distance curves of these proteins.
Collapse
Affiliation(s)
- Ana Peñaherrera
- Department of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
| |
Collapse
|
8
|
Wu F, Lin DDW, Chang JH, Fischbach C, Estroff LA, Gourdon D. Effect of the Materials Properties of Hydroxyapatite Nanoparticles on Fibronectin Deposition and Conformation. CRYSTAL GROWTH & DESIGN 2015; 15:2452-2460. [PMID: 26257585 PMCID: PMC4527546 DOI: 10.1021/acs.cgd.5b00231] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 04/12/2015] [Indexed: 05/29/2023]
Abstract
Hydroxyapatite (HAP, Ca10(PO4)6(OH)2) nanoparticles with controlled materials properties have been synthesized through a two-step hydrothermal aging method to investigate fibronectin (Fn) adsorption. Two distinct populations of HAP nanoparticles have been generated: HAP1 particles had smaller size, plate-like shape, lower crystallinity, and more negative ζ potential than HAP2 particles. We then developed two-dimensional platforms containing HAP and Fn and analyzed both the amount and the conformation of Fn via Förster resonance energy transfer (FRET) at various HAP concentrations. Our FRET analysis reveals that larger amounts of more compact Fn molecules were adsorbed onto HAP1 than onto HAP2 particles. Additionally, our data show that the amount of compact Fn adsorbed increased with increasing HAP concentration due to the formation of nanoparticle agglomerates. We propose that both the surface chemistry of single nanoparticles and the size and morphology of HAP agglomerates play significant roles in the interaction of Fn with HAP. Collectively, our findings suggest that the HAP-induced conformational changes of Fn, a critical mechanotransducer protein involved in the communication of cells with their environment, will ultimately affect downstream cellular behaviors. These results have important implications for our understanding of organic-inorganic interactions in physiological and pathological biomineralization processes such as HAP-related inflammation.
Collapse
Affiliation(s)
- Fei Wu
- Department
of Materials Science and Engineering, Cornell
University, Ithaca, New York 14853 United
States
| | - Debra D. W. Lin
- Department
of Materials Science and Engineering, Cornell
University, Ithaca, New York 14853 United
States
| | - Jin Ho Chang
- Department
of Biomedical Engineering, Cornell University, Ithaca, New York 14853 United States
| | - Claudia Fischbach
- Department
of Biomedical Engineering, Cornell University, Ithaca, New York 14853 United States
- Kavli
Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, United States
| | - Lara A. Estroff
- Department
of Materials Science and Engineering, Cornell
University, Ithaca, New York 14853 United
States
- Kavli
Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, United States
| | - Delphine Gourdon
- Department
of Materials Science and Engineering, Cornell
University, Ithaca, New York 14853 United
States
- Department
of Biomedical Engineering, Cornell University, Ithaca, New York 14853 United States
| |
Collapse
|
9
|
Javadpour F, Amrein M, Jeje A. Multiscale Experimental Study of Selective Blood-Cell Filtration in Fibrous Porous Media. Transp Porous Media 2012. [DOI: 10.1007/s11242-011-9880-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Cooke MJ, Zahir T, Phillips SR, Shah DSH, Athey D, Lakey JH, Shoichet MS, Przyborski SA. Neural differentiation regulated by biomimetic surfaces presenting motifs of extracellular matrix proteins. J Biomed Mater Res A 2010; 93:824-32. [PMID: 19653304 DOI: 10.1002/jbm.a.32585] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The interaction between cells and the extracellular matrix (ECM) is essential during development. To elucidate the function of ECM proteins on cell differentiation, we developed biomimetic surfaces that display specific ECM peptide motifs in a controlled manner. Presentation of ECM domains for collagen, fibronectin, and laminin influenced the formation of neurites by differentiating PC12 cells. The effect of these peptide sequences was also tested on the development of adult neural stem/progenitor cells. In this system, collagen I and fibronectin induced the formation of beta-III-tubulin positive cells, whereas collagen IV reduced such differentiation. Biomimetic surfaces composed of multiple peptide types enabled the combinatorial effects of various ECM motifs to be studied. Surfaces displaying combined motifs were often predictable as a result of the synergistic effects of ECM peptides studied in isolation. For example, the additive effects of fibronectin and laminin resulted in greater expression of beta-III-tubulin positive cells, whereas the negative effect of the collagen IV domain was canceled out by coexpression of collagen I. However, simultaneous expression of certain ECM domains was less predictable. These data highlight the complexity of the cellular response to combined ECM signals and the need to study the function of ECM domains individually and in combination.
Collapse
Affiliation(s)
- M J Cooke
- North East England Stem Cell Institute (NESCI), School of Biological and Biomedical Science, University of Durham, South Road, Durham DH1 3LE, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Feinberg AW, Parker KK. Surface-initiated assembly of protein nanofabrics. NANO LETTERS 2010; 10:2184-2191. [PMID: 20486679 DOI: 10.1021/nl100998p] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cells and tissues are self-organized within an extracellular matrix (ECM) composed of multifunctional, nano- to micrometer scale protein fibrils. We have developed a cell-free, surface-initiated assembly technique to rebuild this ECM structure in vitro. The matrix proteins fibronectin, laminin, fibrinogen, collagen type I, and collagen type IV are micropatterned onto thermosensitive surfaces as 1 to 10 nm thick, micrometer to centimeter wide networks, and released as flexible, free-standing nanofabrics. Independent control of microstructure and protein composition enables us to engineer the mechanical and chemical anisotropy. Fibronectin nanofabrics are highly extensible (>4-fold) and serve as scaffolds for engineering synchronously contracting, cardiac muscle; demonstrating biofunctionality comparable to cell-generated ECM.
Collapse
Affiliation(s)
- Adam W Feinberg
- Disease Biophysics Group, Wyss Institute for Biologically-Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
12
|
Kowalczyńska HM, Kołos R, Nowak-Wyrzykowska M, Dobkowski J, Elbaum D, Szczepankiewicz A, Kamiński J. Atomic force microscopy evidence for conformational changes of fibronectin adsorbed on unmodified and sulfonated polystyrene surfaces. J Biomed Mater Res A 2010; 91:1239-51. [PMID: 19358257 DOI: 10.1002/jbm.a.32473] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The effect of polystyrene surface polarity on the conformation of adsorbed fibronectin (FN) has been studied with atomic force microscopy. We demonstrated that bare sulfonated and nonsulfonated polystyrene surfaces featured similar topographies. After the FN adsorption, direct comparison of both types of substrata revealed drastically different topographies, roughness values, and also cell-adhesive properties. This was interpreted in terms of FN conformational changes induced by the surface polarity. At high-solute FN concentrations the multilayer FN adsorption took place resulting, for the sulfonated substratum, in an increase of surface roughness, whereas for the nonsulfonated one the roughness was approximately stable. Conversely, the FN conformation characteristic for the first saturative layer tended to be conserved in the consecutive layers, as evidenced by height histograms. The height of individual FN molecules indicated, consonantly with the derived thickness of the adsorbed protein layer (the latter value being 1.4 nm and 0.6 nm, respectively, for an unmodified and sulfonated polystyrene surface), that molecules are flattened on polar surfaces and more compact on nonsulfonated ones. It was also demonstrated that the FN adsorption and conformation on polymeric substrata, and hence the resultant cell-adhesive properties, depended on the chemistry of the original surface rather than on its topography. Our results also demonstrated the ability of surface polarity to influence the protein conformation and its associated biological activity.
Collapse
Affiliation(s)
- Hanna M Kowalczyńska
- Department of Biophysics, Medical Centre for Postgraduate Education, ul Marymoncka 99, 01-813 Warszawa, Poland
| | | | | | | | | | | | | |
Collapse
|
13
|
Hull JR, Tamura GS, Castner DG. Interactions of the streptococcal C5a peptidase with human fibronectin. Acta Biomater 2008; 4:504-13. [PMID: 18313373 DOI: 10.1016/j.actbio.2008.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 01/04/2008] [Accepted: 01/15/2008] [Indexed: 11/26/2022]
Abstract
Group B Streptococci (GBS) is a leading cause of sepsis and meningitis in neonates and immunocompromised adults in western countries. GBS do not bind to fibronectin (Fn) in solution, but will bind to Fn adsorbed onto a solid surface. The reason for the specificity of this binding is unknown. Single molecule force spectroscopy was used to test the hypothesis that GBS, through streptococcal C5a peptidase (ScpB) molecules present on the surface of the bacteria, binds to a motif created by the juxtaposition of multiple adjacent Fn molecules. Atomic force microscopy (AFM) topographical images of adsorbed Fn deposited from various Fn coating concentrations were used to determine the Fn surface concentration. ScpB was tethered to an AFM tip with all surface modifications characterized by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. At the lowest Fn coverages the probability of observing a ScpB-Fn binding event increased linearly with Fn surface coverage. As an Fn monolayer was reached the probability of a ScpB-Fn binding event occurring increased markedly ( approximately 50 fold), with a concomitant increase in the rupture force from 17 pN to 33 pN. These results are consistent with the hypothesis that ScpB binds to a motif created by the juxtaposition of multiple Fn molecules.
Collapse
|