1
|
Yoshida K, Uchiyama H, Yamaguchi T. Structure and dynamical properties of hydrated F-actin investigated by X-ray scattering. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
2
|
Fujiwara S, Araki K, Matsuo T, Yagi H, Yamada T, Shibata K, Mochizuki H. Dynamical Behavior of Human α-Synuclein Studied by Quasielastic Neutron Scattering. PLoS One 2016; 11:e0151447. [PMID: 27097022 PMCID: PMC4838215 DOI: 10.1371/journal.pone.0151447] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/29/2016] [Indexed: 12/02/2022] Open
Abstract
α-synuclein (αSyn) is a protein consisting of 140 amino acid residues and is abundant in the presynaptic nerve terminals in the brain. Although its precise function is unknown, the filamentous aggregates (amyloid fibrils) of αSyn have been shown to be involved in the pathogenesis of Parkinson's disease, which is a progressive neurodegenerative disorder. To understand the pathogenesis mechanism of this disease, the mechanism of the amyloid fibril formation of αSyn must be elucidated. Purified αSyn from bacterial expression is monomeric but intrinsically disordered in solution and forms amyloid fibrils under various conditions. As a first step toward elucidating the mechanism of the fibril formation of αSyn, we investigated dynamical behavior of the purified αSyn in the monomeric state and the fibril state using quasielastic neutron scattering (QENS). We prepared the solution sample of 9.5 mg/ml purified αSyn, and that of 46 mg/ml αSyn in the fibril state, both at pD 7.4 in D2O. The QENS experiments on these samples were performed using the near-backscattering spectrometer, BL02 (DNA), at the Materials and Life Science Facility at the Japan Accelerator Research Complex, Japan. Analysis of the QENS spectra obtained shows that diffusive global motions are observed in the monomeric state but largely suppressed in the fibril state. However, the amplitude of the side chain motion is shown to be larger in the fibril state than in the monomeric state. This implies that significant solvent space exists within the fibrils, which is attributed to the αSyn molecules within the fibrils having a distribution of conformations. The larger amplitude of the side chain motion in the fibril state than in the monomeric state implies that the fibril state is entropically favorable.
Collapse
Affiliation(s)
- Satoru Fujiwara
- Quantum Beam Science Center, Japan Atomic Energy Agency, Tokai, Ibaraki, Japan
- * E-mail:
| | - Katsuya Araki
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tatsuhito Matsuo
- Quantum Beam Science Center, Japan Atomic Energy Agency, Tokai, Ibaraki, Japan
| | - Hisashi Yagi
- Center for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan
| | - Takeshi Yamada
- Research Center for Neutron Science and Technology, CROSS-Tokai, Tokai, Ibaraki, Japan
| | - Kaoru Shibata
- Neutron Science Section, J-PARC Center, Tokai, Ibaraki, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
3
|
Kardos R, Nevalainen E, Nyitrai M, Hild G. The effect of ADF/cofilin and profilin on the dynamics of monomeric actin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2010-9. [PMID: 23845993 DOI: 10.1016/j.bbapap.2013.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 05/22/2013] [Accepted: 06/13/2013] [Indexed: 11/19/2022]
Abstract
The main goal of the work was to uncover the dynamical changes in actin induced by the binding of cofilin and profilin. The change in the structure and flexibility of the small domain and its function in the thermodynamic stability of the actin monomer were examined with fluorescence spectroscopy and differential scanning calorimetry (DSC). The structure around the C-terminus of actin is slightly affected by the presence of cofilin and profilin. Temperature dependent fluorescence resonance energy transfer measurements indicated that both actin binding proteins decreased the flexibility of the protein matrix between the subdomains 1 and 2. Time resolved anisotropy decay measurements supported the idea that cofilin and profilin changed similarly the dynamics around the fluorescently labeled Cys-374 and Lys-61 residues in subdomains 1 and 2, respectively. DSC experiments indicated that the thermodynamic stability of actin increased by cofilin and decreased in the presence of profilin. Based on the information obtained it is possible to conclude that while the small domain of actin acts uniformly in the presence of cofilin and profilin the overall stability of actin changes differently in the presence of the studied actin binding proteins. The results support the idea that the small domain of actin behaves as a rigid unit during the opening and closing of the nucleotide binding pocket in the presence of profilin and cofilin as well. The structural arrangement of the nucleotide binding cleft mainly influences the global stability of actin while the dynamics of the different segments can change autonomously.
Collapse
Affiliation(s)
- Roland Kardos
- University of Pécs, Medical School, Department of Biophysics, Szigeti str. 12, Pécs H-7624, Hungary; Szentágothai Research Center, Ifjúság str. 34, Pécs H-7624, Hungary
| | | | | | | |
Collapse
|
4
|
Fujiwara S, Plazanet M, Oda T. Coupling of the hydration water dynamics and the internal dynamics of actin detected by quasielastic neutron scattering. Biochem Biophys Res Commun 2013; 431:542-6. [PMID: 23321308 DOI: 10.1016/j.bbrc.2013.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 01/07/2013] [Indexed: 11/17/2022]
Abstract
In order to characterize dynamics of water molecules around F-actin and G-actin, quasielastic neutron scattering experiments were performed on powder samples of F-actin and G-actin, hydrated either with D(2)O or H(2)O, at hydration ratios of 0.4 and 1.0. By combined analysis of the quasielastic neutron scattering spectra, the parameter values characterizing the dynamics of the water molecules in the first hydration layer and those of the water molecules outside of the first layer were obtained. The translational diffusion coefficients (D(T)) of the hydration water in the first layer were found to be 1.2×10(-5) cm(2)/s and 1.7×10(-5) cm(2)/s for F-actin and G-actin, respectively, while that for bulk water was 2.8×10(-5) cm(2)/s. The residence times were 6.6 ps and 5.0 ps for F-actin and G-actin, respectively, while that for bulk water was 0.62 ps. These differences between F-actin and G-actin, indicating that the hydration water around G-actin is more mobile than that around F-actin, are in concert with the results of the internal dynamics of F-actin and G-actin, showing that G-actin fluctuates more rapidly than F-actin. This implies that the dynamics of the hydration water is coupled to the internal dynamics of the actin molecules. The D(T) values of the water molecules outside of the first hydration layer were found to be similar to that of bulk water though the residence times are strongly affected by the first hydration layer. This supports the recent observation on intracellular water that shows bulk-like behavior.
Collapse
Affiliation(s)
- Satoru Fujiwara
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan.
| | | | | |
Collapse
|
5
|
Matsuo T, Arata T, Oda T, Fujiwara S. Difference in hydration structures between F-actin and myosin subfragment-1 detected by small-angle X-ray and neutron scattering. Biophysics (Nagoya-shi) 2013; 9:99-106. [PMID: 27493547 PMCID: PMC4629667 DOI: 10.2142/biophysics.9.99] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 06/13/2013] [Indexed: 12/01/2022] Open
Abstract
Hydration structures around F-actin and myosin subfragment-1 (S1), which play central roles as counterparts in muscle contraction, were investigated by small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS). The radius of gyration of chymotryptic S1 was evaluated to be 41.3±1.1 Å for SAXS, 40.1±3.0 Å for SANS in H2O, and 37.8±0.8 Å for SANS in D2O, respectively. The values of the cross-sectional radius of gyration of F-actin were 25.4±0.03 Å for SAXS, 23.4±2.4 Å for SANS in H2O, and 22.6 ± 0.6 Å for SANS in D2O, respectively. These differences arise from different contributions of the hydration shell to the scattering curves. Analysis by model calculations showed that the hydration shell of S1 has the average density 10–15% higher than bulk water, being the typical hydration shell. On the other hand, the hydration shell of F-actin has the average density more than 19% higher than bulk water, indicating that F-actin has a denser, unusual hydration structure. The results indicate a difference in the hydration structures around F-actin and S1. The unusual hydration structure around F-actin may have the structural property of so-called “hyper-mobile water” around F-actin.
Collapse
Affiliation(s)
- Tatsuhito Matsuo
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - Toshiaki Arata
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Toshiro Oda
- RIKEN SPring-8 Center, RIKEN Harima Institute, Sayo-gun, Hyogo 679-5148, Japan
| | - Satoru Fujiwara
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| |
Collapse
|
6
|
Bastos M, Alves N, Maia S, Gomes P, Inaba A, Miyazaki Y, Zanotti JM. Hydration water and peptide dynamics – two sides of a coin. A neutron scattering and adiabatic calorimetry study at low hydration and cryogenic temperatures. Phys Chem Chem Phys 2013; 15:16693-703. [DOI: 10.1039/c3cp51937f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Internal motions of actin characterized by quasielastic neutron scattering. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:661-71. [DOI: 10.1007/s00249-011-0669-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 12/28/2010] [Accepted: 01/03/2011] [Indexed: 10/18/2022]
|
8
|
Lee JY, Iverson TM, Dima RI. Molecular investigations into the mechanics of actin in different nucleotide states. J Phys Chem B 2010; 115:186-95. [PMID: 21141951 DOI: 10.1021/jp108249g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Actin plays crucial roles in the mechanical response of cells to applied forces. For example, during cell adhesion, under the action of forces transmitted through integrins, actin filaments (F-actin) induce intracellular mechanical movements leading to changes in the cell shape. Muscle contraction results from the interaction of F-actin with the molecular motor myosin. Thus, understanding the origin of actin's mechanical flexibility is required to understand the basis of fundamental cellular processes. F-actin results from the polymerization of globular actin (G-actin), which contains one tightly bound nucleotide (ATP or ADP). Experiments revealed that G-actin is more flexible than F-actin, but no molecular-level understanding of this differential behavior exists. To probe the basis of the mechanical behavior of actin, we study the force response of G-actin bound with ATP (G-ATP) or ADP (G-ADP). We investigate the global unfolding of G-actin under forces applied at its ends and its mechanical resistance along the actin-actin and actin-myosin bonds in F-actin. Our study reveals that the nucleotide plays an important role in the global unfolding of actin, leading to multiple unfolding scenarios which emphasize the differences between the G-ATP and G-ADP states. Furthermore, our simulations show that G-ATP is more flexible than G-ADP and that the actin-myosin interaction surface responds faster to force than the actin-actin interaction surface. The deformation of G-actin under tension revealed in our simulations correlates very well with experimental data on G-actin domain flexibility.
Collapse
Affiliation(s)
- Ji Y Lee
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | | | | |
Collapse
|
9
|
Oda T, Maéda Y. Multiple Conformations of F-actin. Structure 2010; 18:761-7. [PMID: 20637412 DOI: 10.1016/j.str.2010.05.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 05/15/2010] [Accepted: 05/20/2010] [Indexed: 11/19/2022]
Abstract
Actin works within eukaryotic cells to facilitate a variety of cellular processes, which are driven by the assembly of G-actin (monomeric form) into F-actin (fibrous form), and the disassembly of F-actin into G-actin. F-actin adopts multiple conformations, which are specified by interactions with various actin-binding proteins. Knowledge of the multiple conformations of actin is the key for understanding its cellular functions. Recently, we published a refined model for F-actin. In this review, based on this model, we discuss the origin, mechanism, and possible physiological significance of the multiple conformations of F-actin.
Collapse
Affiliation(s)
- Toshiro Oda
- X-ray Structural Analysis Team, RIKEN SPring-8 Center, RIKEN Harima Institute 1-1-1 Kouto, Sayo-gun, Hogo, Japan.
| | | |
Collapse
|