1
|
Tam C, Kukimoto-Niino M, Miyata-Yabuki Y, Tsuda K, Mishima-Tsumagari C, Ihara K, Inoue M, Yonemochi M, Hanada K, Matsumoto T, Shirouzu M, Zhang KYJ. Targeting Ras-binding domain of ELMO1 by computational nanobody design. Commun Biol 2023; 6:284. [PMID: 36932164 PMCID: PMC10023680 DOI: 10.1038/s42003-023-04657-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 03/02/2023] [Indexed: 03/19/2023] Open
Abstract
The control of cell movement through manipulation of cytoskeletal structure has therapeutic prospects notably in the development of novel anti-metastatic drugs. In this study, we determine the structure of Ras-binding domain (RBD) of ELMO1, a protein involved in cytoskeletal regulation, both alone and in complex with the activator RhoG and verify its targetability through computational nanobody design. Using our dock-and-design approach optimized with native-like initial pose selection, we obtain Nb01, a detectable binder from scratch in the first-round design. An affinity maturation step guided by structure-activity relationship at the interface generates 23 Nb01 sequence variants and 17 of them show enhanced binding to ELMO1-RBD and are modeled to form major spatial overlaps with RhoG. The best binder, Nb29, inhibited ELMO1-RBD/RhoG interaction. Molecular dynamics simulation of the flexibility of CDR2 and CDR3 of Nb29 reveal the design of stabilizing mutations at the CDR-framework junctions potentially confers the affinity enhancement.
Collapse
Affiliation(s)
- Chunlai Tam
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - Mutsuko Kukimoto-Niino
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| | - Yukako Miyata-Yabuki
- Drug Discovery Structural Biology Platform Unit, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kengo Tsuda
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Chiemi Mishima-Tsumagari
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kentaro Ihara
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Mio Inoue
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Mayumi Yonemochi
- Drug Discovery Structural Biology Platform Unit, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kazuharu Hanada
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Takehisa Matsumoto
- Drug Discovery Structural Biology Platform Unit, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Drug Discovery Structural Biology Platform Unit, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan.
| |
Collapse
|
2
|
Jenkins NW, Kundrotas PJ, Vakser IA. Size of the protein-protein energy funnel in crowded environment. Front Mol Biosci 2022; 9:1031225. [PMID: 36425657 PMCID: PMC9679368 DOI: 10.3389/fmolb.2022.1031225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
Association of proteins to a significant extent is determined by their geometric complementarity. Large-scale recognition factors, which directly relate to the funnel-like intermolecular energy landscape, provide important insights into the basic rules of protein recognition. Previously, we showed that simple energy functions and coarse-grained models reveal major characteristics of the energy landscape. As new computational approaches increasingly address structural modeling of a whole cell at the molecular level, it becomes important to account for the crowded environment inside the cell. The crowded environment drastically changes protein recognition properties, and thus significantly alters the underlying energy landscape. In this study, we addressed the effect of crowding on the protein binding funnel, focusing on the size of the funnel. As crowders occupy the funnel volume, they make it less accessible to the ligands. Thus, the funnel size, which can be defined by ligand occupancy, is generally reduced with the increase of the crowders concentration. This study quantifies this reduction for different concentration of crowders and correlates this dependence with the structural details of the interacting proteins. The results provide a better understanding of the rules of protein association in the crowded environment.
Collapse
Affiliation(s)
- Nathan W. Jenkins
- Computational Biology Program, The University of Kansas, Lawrence, KS, United States
| | - Petras J. Kundrotas
- Computational Biology Program, The University of Kansas, Lawrence, KS, United States
- *Correspondence: Petras J. Kundrotas, ; Ilya A. Vakser,
| | - Ilya A. Vakser
- Computational Biology Program, The University of Kansas, Lawrence, KS, United States
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS, United States
- *Correspondence: Petras J. Kundrotas, ; Ilya A. Vakser,
| |
Collapse
|
3
|
Vakser IA, Grudinin S, Jenkins NW, Kundrotas PJ, Deeds EJ. Docking-based long timescale simulation of cell-size protein systems at atomic resolution. Proc Natl Acad Sci U S A 2022; 119:e2210249119. [PMID: 36191203 PMCID: PMC9565162 DOI: 10.1073/pnas.2210249119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/02/2022] [Indexed: 01/03/2023] Open
Abstract
Computational methodologies are increasingly addressing modeling of the whole cell at the molecular level. Proteins and their interactions are the key component of cellular processes. Techniques for modeling protein interactions, thus far, have included protein docking and molecular simulation. The latter approaches account for the dynamics of the interactions but are relatively slow, if carried out at all-atom resolution, or are significantly coarse grained. Protein docking algorithms are far more efficient in sampling spatial coordinates. However, they do not account for the kinetics of the association (i.e., they do not involve the time coordinate). Our proof-of-concept study bridges the two modeling approaches, developing an approach that can reach unprecedented simulation timescales at all-atom resolution. The global intermolecular energy landscape of a large system of proteins was mapped by the pairwise fast Fourier transform docking and sampled in space and time by Monte Carlo simulations. The simulation protocol was parametrized on existing data and validated on a number of observations from experiments and molecular dynamics simulations. The simulation protocol performed consistently across very different systems of proteins at different protein concentrations. It recapitulated data on the previously observed protein diffusion rates and aggregation. The speed of calculation allows reaching second-long trajectories of protein systems that approach the size of the cells, at atomic resolution.
Collapse
Affiliation(s)
- Ilya A. Vakser
- Computational Biology Program, The University of Kansas, Lawrence, KS
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS
| | - Sergei Grudinin
- University of Grenoble Alpes, CNRS, Grenoble INP, LJK, Grenoble, France
| | - Nathan W. Jenkins
- Computational Biology Program, The University of Kansas, Lawrence, KS
| | | | - Eric J. Deeds
- Department of Integrative Biology and Physiology, Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA
| |
Collapse
|
7
|
Vakser IA. Protein-protein docking: from interaction to interactome. Biophys J 2015; 107:1785-1793. [PMID: 25418159 DOI: 10.1016/j.bpj.2014.08.033] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/17/2014] [Accepted: 08/27/2014] [Indexed: 12/29/2022] Open
Abstract
The protein-protein docking problem is one of the focal points of activity in computational biophysics and structural biology. The three-dimensional structure of a protein-protein complex, generally, is more difficult to determine experimentally than the structure of an individual protein. Adequate computational techniques to model protein interactions are important because of the growing number of known protein structures, particularly in the context of structural genomics. Docking offers tools for fundamental studies of protein interactions and provides a structural basis for drug design. Protein-protein docking is the prediction of the structure of the complex, given the structures of the individual proteins. In the heart of the docking methodology is the notion of steric and physicochemical complementarity at the protein-protein interface. Originally, mostly high-resolution, experimentally determined (primarily by x-ray crystallography) protein structures were considered for docking. However, more recently, the focus has been shifting toward lower-resolution modeled structures. Docking approaches have to deal with the conformational changes between unbound and bound structures, as well as the inaccuracies of the interacting modeled structures, often in a high-throughput mode needed for modeling of large networks of protein interactions. The growing number of docking developers is engaged in the community-wide assessments of predictive methodologies. The development of more powerful and adequate docking approaches is facilitated by rapidly expanding information and data resources, growing computational capabilities, and a deeper understanding of the fundamental principles of protein interactions.
Collapse
Affiliation(s)
- Ilya A Vakser
- Center for Bioinformatics and Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas.
| |
Collapse
|
8
|
Vangone A, Cavallo L, Oliva R. Using a consensus approach based on the conservation of inter-residue contacts to rank CAPRI models. Proteins 2013; 81:2210-20. [PMID: 24115176 DOI: 10.1002/prot.24423] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 09/04/2013] [Accepted: 09/10/2013] [Indexed: 01/09/2023]
Abstract
Herein we propose the use of a consensus approach, CONSRANK, for ranking CAPRI models. CONSRANK relies on the conservation of inter-residue contacts in the analyzed decoys ensemble. Models are ranked according to their ability to match the most frequently observed contacts. We applied CONSRANK to 19 CAPRI protein-protein targets, covering a wide range of prediction difficulty and involved in a variety of biological functions. CONSRANK results are consistently good, both in terms of native-like (NL) solutions ranked in the top positions and of values of the Area Under the receiver operating characteristic Curve (AUC). For targets having a percentage of NL solutions above 3%, an excellent performance is found, with AUC values approaching 1. For the difficult target T46, having only 3.4% NL solutions, the number of NL solutions in the top 5 and 10 ranked positions is enriched by a factor 30, and the AUC value is as high as 0.997. AUC values below 0.8 are only found for targets featuring a percentage of NL solutions within 1.1%. Remarkably, a false consensus emerges only in one case, T42, which happens to be an artificial protein, whose assembly details remain uncertain, based on controversial experimental data. We also show that CONSRANK still performs very well on a limited number of models, provided that more than 1 NL solution is included in the ensemble, thus extending its applicability to cases where few dozens of models are available.
Collapse
Affiliation(s)
- Anna Vangone
- Department of Chemistry and Biology, University of Salerno, Via ponte don Melillo, 84084, Fisciano (SA), Italy
| | | | | |
Collapse
|
11
|
Ruvinsky AM, Vakser IA. The ruggedness of protein-protein energy landscape and the cutoff for 1/r(n) potentials. Bioinformatics 2009; 25:1132-6. [PMID: 19237445 DOI: 10.1093/bioinformatics/btp108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Computational studies of the energetics of protein association are important for revealing the underlying fundamental principles and for designing better tools to model protein complexes. The interaction cutoff contribution to the ruggedness of protein-protein energy landscape is studied in terms of relative energy fluctuations for 1/r(n) potentials based on a simplistic model of a protein complex. This artificial ruggedness exists for short cutoffs and gradually disappears with the cutoff increase. RESULTS The critical values of the cutoff were calculated for each of 11 popular power-type potentials with n=0/9, 12 and for two thresholds of 5% and 10%. The artificial ruggedness decreases to tolerable thresholds for cutoffs larger than the critical ones. The results showed that for both thresholds the critical cutoff is a non-monotonic function of the potential power n. The functions reach the maximum at n=3/4 and then decrease with the increase of the potential power. The difference between two cutoffs for 5% and 10% artificial ruggedness becomes negligible for potentials decreasing faster than 1/r(12). The analytical results obtained for the simple model of protein complexes agree with the analysis of artificial ruggedness in a dataset of 62 protein-protein complexes, with different parameterizations of soft Lennard-Jones potential and two types of protein representations: all-atom and coarse-grained. The results suggest that cutoffs larger than the critical ones can be recommended for protein-protein potentials.
Collapse
Affiliation(s)
- Anatoly M Ruvinsky
- Center for Bioinformatics, The University of Kansas, Lawrence, KS 66047, USA
| | | |
Collapse
|