1
|
Batishchev OV, Kalutskii MA, Varlamova EA, Konstantinova AN, Makrinsky KI, Ermakov YA, Meshkov IN, Sokolov VS, Gorbunova YG. Antimicrobial activity of photosensitizers: arrangement in bacterial membrane matters. Front Mol Biosci 2023; 10:1192794. [PMID: 37255538 PMCID: PMC10226669 DOI: 10.3389/fmolb.2023.1192794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
Porphyrins are well-known photosensitizers (PSs) for antibacterial photodynamic therapy (aPDT), which is still an underestimated antibiotic-free method to kill bacteria, viruses, and fungi. In the present work, we developed a comprehensive tool for predicting the structure and assessment of the photodynamic efficacy of PS molecules for their application in aPDT. We checked it on a series of water-soluble phosphorus(V) porphyrin molecules with OH or ethoxy axial ligands and phenyl/pyridyl peripheral substituents. First, we used biophysical approaches to show the effect of PSs on membrane structure and their photodynamic activity in the lipid environment. Second, we developed a force field for studying phosphorus(V) porphyrins and performed all-atom molecular dynamics simulations of their interactions with bacterial lipid membranes. Finally, we obtained the structure-activity relationship for the antimicrobial activity of PSs and tested our predictions on two models of Gram-negative bacteria, Escherichia coli and Acinetobacter baumannii. Our approach allowed us to propose a new PS molecule, whose MIC50 values after an extremely low light dose of 5 J/cm2 (5.0 ± 0.4 μg/mL for E. coli and 4.9 ± 0.8 μg/mL for A. baumannii) exceeded those for common antibiotics, making it a prospective antimicrobial agent.
Collapse
Affiliation(s)
- Oleg V. Batishchev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maksim A. Kalutskii
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina A. Varlamova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anna N. Konstantinova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Kirill I. Makrinsky
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yury A. Ermakov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ivan N. Meshkov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Valerij S. Sokolov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yulia G. Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Firsov AM, Pfeffermann J, Benditkis AS, Rokitskaya TI, Kozlov AS, Kotova EA, Krasnovsky AA, Pohl P, Antonenko YN. Photodynamic activity rather than drilling causes membrane damage by a light-powered molecular nanomotor. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 239:112633. [PMID: 36608401 DOI: 10.1016/j.jphotobiol.2022.112633] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The chase toward endowing chemical compounds with machine-like functions mimicking those of biological molecular machineries has yielded a variety of artificial molecular motors (AMMs). Pharmaceutical applications of photoexcited monomolecular unidirectionally-rotating AMMs have been envisioned in view of their ability to permeabilize biological membranes. Nonetheless, the mechanical properties of lipid membranes render the proposed drilling activity of AMMs doubtful. Here, we show that singlet oxygen released by a photoexcited "molecular drill" oxidized unsaturated lipids composing giant unilamellar vesicles. In contrast, giant liposomes built of saturated lipids were inert to AMM photoactuation. The AMM did not mechanically destroy gramicidin A ion channels in planar bilayer lipid membranes but instead photoinactivated them. Sodium azide, a singlet oxygen quencher, reduced both AMM-mediated light-induced dye release from unsaturated large unilamellar vesicles and protected gramicidin A from photoinactivation. Upon additional consideration of the underlying bilayer mechanics, we conclude that AMMs' envisioned therapeutic and pharmaceutical applications rely on their photodynamic activity rather than their nanomechanical drilling abilities.
Collapse
Affiliation(s)
- Alexander M Firsov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Juergen Pfeffermann
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria
| | - Anton S Benditkis
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia
| | - Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Anton S Kozlov
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia
| | - Elena A Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander A Krasnovsky
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria.
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
| |
Collapse
|
3
|
de Matos AM, Blázquez-Sánchez MT, Sousa C, Oliveira MC, de Almeida RFM, Rauter AP. C-Glucosylation as a tool for the prevention of PAINS-induced membrane dipole potential alterations. Sci Rep 2021; 11:4443. [PMID: 33627687 PMCID: PMC7904931 DOI: 10.1038/s41598-021-83032-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
The concept of Pan-Assay Interference Compounds (PAINS) is regarded as a threat to the recognition of the broad bioactivity of natural products. Based on the established relationship between altered membrane dipole potential and transmembrane protein conformation and function, we investigate here polyphenols' ability to induce changes in cell membrane dipole potential. Ultimately, we are interested in finding a tool to prevent polyphenol PAINS-type behavior and produce compounds less prone to untargeted and promiscuous interactions with the cell membrane. Di-8-ANEPPS fluorescence ratiometric measurements suggest that planar lipophilic polyphenols-phloretin, genistein and resveratrol-act by decreasing membrane dipole potential, especially in cholesterol-rich domains such as lipid rafts, which play a role in important cellular processes. These results provide a mechanism for their labelling as PAINS through their ability to disrupt cell membrane homeostasis. Aiming to explore the role of C-glucosylation in PAINS membrane-interfering behavior, we disclose herein the first synthesis of 4-glucosylresveratrol, starting from 5-hydroxymethylbenzene-1,3-diol, via C-glucosylation, oxidation and Horner-Wadsworth-Emmons olefination, and resynthesize phloretin and genistein C-glucosides. We show that C-glucosylation generates compounds which are no longer able to modify membrane dipole potential. Therefore, it can be devised as a strategy to generate bioactive natural product derivatives that no longer act as membrane dipole potential modifiers. Our results offer a new technology towards rescuing bioactive polyphenols from their PAINS danger label through C-C ligation of sugars.
Collapse
Affiliation(s)
- Ana Marta de Matos
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016, Lisboa, Portugal
| | - Maria Teresa Blázquez-Sánchez
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016, Lisboa, Portugal
- Facultad de Ciencias y Artes, Universidad Católica Santa Teresa de Jesús de Ávila (UCAV), 05005, Avila, Spain
| | - Carla Sousa
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016, Lisboa, Portugal
| | - Maria Conceição Oliveira
- Centro de Química Estrutural, Instituto Superior Técnico, Mass Spectrometry Facility, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Rodrigo F M de Almeida
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016, Lisboa, Portugal.
| | - Amélia P Rauter
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016, Lisboa, Portugal.
| |
Collapse
|
4
|
Dubbert J, Höing A, Riek N, Knauer SK, Voskuhl J. Supramolecular subphthalocyanine complexes-cellular uptake and phototoxicity. Chem Commun (Camb) 2020; 56:7653-7656. [PMID: 32520022 DOI: 10.1039/d0cc03065a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this communication we report on the synthesis and application of axially functionalized boron-subphthalocyanines (SubPC) which are able to form host-guest complexes with cyclodextrins. Here, a tert-butylphenyl substituted SubPC was investigated concerning its complexation with β-cyclodextrin (β-CD) and a β-cyclodextrin polymer. NMR-titrations showed the formation of a 1 : 1 complex with β-CD. These assemblies were analyzed for their cellular distribution as well as their phototoxicity towards HeLa cells.
Collapse
Affiliation(s)
- Justin Dubbert
- Institute of Organic Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany.
| | - Alexander Höing
- Department of Molecular Biology II, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, D-45117 Essen, Germany
| | - Nathalie Riek
- Institute of Organic Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany.
| | - Shirley K Knauer
- Department of Molecular Biology II, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, D-45117 Essen, Germany
| | - Jens Voskuhl
- Institute of Organic Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany.
| |
Collapse
|
5
|
Jiménez-Munguía I, Fedorov AK, Abdulaeva IA, Birin KP, Ermakov YA, Batishchev OV, Gorbunova YG, Sokolov VS. Lipid Membrane Adsorption Determines Photodynamic Efficiency of β-Imidazolyl-Substituted Porphyrins. Biomolecules 2019; 9:E853. [PMID: 31835568 PMCID: PMC6995582 DOI: 10.3390/biom9120853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/04/2019] [Accepted: 12/07/2019] [Indexed: 11/16/2022] Open
Abstract
Photosensitizers (PSs) represent a group of molecules capable of generating reactive oxygen species (ROS), such as singlet oxygen (SO); thus, they are considered to be promising agents for anti-cancer therapy. The enhancement of the photodynamic efficiency of these compounds requires increasing the PS activity in the cancer cell milieu and exactly at the target cells. In the present work, we report the synthesis, lipid membrane binding and photodynamic activity of three novel cationic PSs based on β-imidazolyl-substituted porphyrin and its Zn(II) and In(III) complexes (1H2, 1Zn and 1In). Comparison of the behavior of the investigated porphyrins at the bilayer lipid membrane (BLM) demonstrated the highest adsorption for the 1In complex and the lowest one for 1Zn. The photodynamic efficiency of these porphyrins was evaluated by determining the oxidation rate of the styryl dye, di-4-ANEPPS, incorporated into the lipid membrane. These rates were proportional to the surface density (SD) of the porphyrin molecules at the BLM and were roughly the same for all three porphyrins. This indicates that the adsorption of these porphyrins at the BLM determines their photodynamic efficiency rather than the extinction or quantum yield of singlet oxygen.
Collapse
Affiliation(s)
- Irene Jiménez-Munguía
- National University of Science and Technology “MISiS”, 4 Leninskiy pr. 119049 Moscow, Russia
| | - Arseniy K. Fedorov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy pr. 119071 Moscow, Russia; (A.K.F.); (I.A.A.); (K.P.B.); (Y.A.E.); (O.V.B.); (V.S.S.)
| | - Inna A. Abdulaeva
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy pr. 119071 Moscow, Russia; (A.K.F.); (I.A.A.); (K.P.B.); (Y.A.E.); (O.V.B.); (V.S.S.)
| | - Kirill P. Birin
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy pr. 119071 Moscow, Russia; (A.K.F.); (I.A.A.); (K.P.B.); (Y.A.E.); (O.V.B.); (V.S.S.)
| | - Yury A. Ermakov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy pr. 119071 Moscow, Russia; (A.K.F.); (I.A.A.); (K.P.B.); (Y.A.E.); (O.V.B.); (V.S.S.)
| | - Oleg V. Batishchev
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy pr. 119071 Moscow, Russia; (A.K.F.); (I.A.A.); (K.P.B.); (Y.A.E.); (O.V.B.); (V.S.S.)
- Moscow Institute of Physics and Technology, 9 Institutskiy Lane, Dolgoprudniy, 141700 Moscow Region, Russia
| | - Yulia G. Gorbunova
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy pr. 119071 Moscow, Russia; (A.K.F.); (I.A.A.); (K.P.B.); (Y.A.E.); (O.V.B.); (V.S.S.)
- N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninskiy pr. 119119 Moscow, Russia
| | - Valerij S. Sokolov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy pr. 119071 Moscow, Russia; (A.K.F.); (I.A.A.); (K.P.B.); (Y.A.E.); (O.V.B.); (V.S.S.)
| |
Collapse
|
6
|
Hu Y, Zhao T, Zou L, Wang X, Zhang Y. Molecular dynamics simulations of membrane properties affected by plasma ROS based on the GROMOS force field. Biophys Chem 2019; 253:106214. [PMID: 31272076 DOI: 10.1016/j.bpc.2019.106214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 12/22/2022]
Abstract
Cold atmospheric plasma (CAP) has attracted substantial attention in the field of medical disinfection because its main components, reactive oxygen species (ROS), have a strong destructive effect on various cell components. The cell membrane plays an important role in maintaining proper cellular function by blocking harmful substances such as ROS. In this paper, we used molecular dynamics simulations to study the behaviour of different ROS at the membrane-water interface. The results showed that the cell membrane presented a weak barrier to hydrophobic ROS (O2) but effectively prevented hydrophilic ROS (OH, HO2, H2O2) from entering the cell. The plasma treatment significantly enhanced the permeability of the cell membrane to HO2, while the energetic barrier to other types of ROS changed only slightly. O2 very likely stopped in the centre of the lipid bilayer when crossing the membrane and there attacked the unsaturated region of the phospholipid. Cholesterol was most likely oxidized by HO2, causing a condensing effect that destroyed the integrity and fluidity of the cell membrane. The study also found that large amounts of ROS decreased the thickness of the cell membrane, and the phospholipid arrangement became disordered.
Collapse
Affiliation(s)
- Yujia Hu
- School of Electrical Engineering, Shandong University, Ji'nan, Shandong 250061, People's Republic of China
| | - Tong Zhao
- School of Electrical Engineering, Shandong University, Ji'nan, Shandong 250061, People's Republic of China.
| | - Liang Zou
- School of Electrical Engineering, Shandong University, Ji'nan, Shandong 250061, People's Republic of China
| | - Xiaolong Wang
- School of Electrical Engineering, Shandong University, Ji'nan, Shandong 250061, People's Republic of China
| | - Yuantao Zhang
- School of Electrical Engineering, Shandong University, Ji'nan, Shandong 250061, People's Republic of China
| |
Collapse
|
7
|
Widomska J, Welc R, Gruszecki WI. The effect of carotenoids on the concentration of singlet oxygen in lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:845-851. [PMID: 30689980 DOI: 10.1016/j.bbamem.2019.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/20/2019] [Accepted: 01/23/2019] [Indexed: 10/27/2022]
Abstract
An effect of β-carotene and its polar derivative, zeaxanthin, on a concentration of singlet oxygen in lipid membranes was studied in a model system. The carotenoids were incorporated into the membranes of small unilamellar liposomes at a concentration of 0.15 mol% with respect to lipid. Singlet oxygen was generated in a liposome suspension via photosensitization of toluidine blue, and its concentration in a membrane was detected with application of a specific fluorescence probe (singlet oxygen sensor green reagent) located in the lipid bilayer. The results show the carotenoid-dependent decrease in the concentration of singlet oxygen in the membranes formed with unsaturated lipids (egg yolk phosphatidylcholine and digalactosyldiacylglycerol) but not in the case of the membranes formed with a saturated lipid (dimyristoylphosphatidylcholine). The effect of carotenoids was about twice as high as in the case of cholesterol present in liposomes at the same concentration. The results suggest that carotenoids protect membranes formed with unsaturated lipids against singlet oxygen through combined activity of different mechanisms: modification of structural properties of the lipid bilayers, physical quenching of singlet oxygen and chemical reactions leading to the pigment oxidation. The latter conclusion is based on the analysis of the absorption spectra of liposomes before and after light exposure. An importance of the different modes of protection by carotenoids against single oxygen toxicity towards biomembranes is discussed.
Collapse
Affiliation(s)
- Justyna Widomska
- Department of Biophysics, Medical University of Lublin, Lublin, Poland.
| | - Renata Welc
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, Lublin, Poland
| | - Wieslaw I Gruszecki
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, Lublin, Poland
| |
Collapse
|
8
|
Konstantinova AN, Sokolov VS, Jiménez-Munguía I, Finogenova OA, Ermakov YA, Gorbunova YG. Adsorption and photodynamic efficiency of meso-tetrakis(p-sulfonatophenyl)porphyrin on the surface of bilayer lipid membranes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 189:74-80. [PMID: 30316028 DOI: 10.1016/j.jphotobiol.2018.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 10/28/2022]
Abstract
The adsorption and photodynamic efficiency of 5,10,15,20-tetrakis(p-sulfonatophenyl)porphyrin (H2TPPS4) on bilayer lipid membranes (BLM) have been studied. The adsorption of H2TPPS4 on BLM leads to rising of the potential drop on the membrane/water interface which has been detected either by the intramembrane field compensation (IFC) method, or as ζ-potential of liposomes measured by the dynamic light scattering method. The dependence of this potential on the concentration of H2TPPS4 and KCl in the solution can be described in the frame of Gouy-Chapman model of diffuse double layer assuming that the molecules of H2TPPS4 adsorb on the surface of BLM as an anions with four charged groups. The potential disappeared when the pH of solution decreased from 6 to 3 allowing the conclusion that the protonated forms of H2TPPS4 can not adsorb on the BLM probably due to change of conformation or aggregation of the molecules. The photodynamic efficiency of H2TPPS4 was evaluated by measuring the rate of damage of the targets - molecules of styryl dye (di-4-ANEPPS) by singlet oxygen generated under illumination on the surface of BLM. This rate was proportional to the surface density of H2TPPS4 molecules on the membrane which was determined from the change of surface charge of the membrane due to adsorption of the H2TPPS4. These results indicate that the di-4-ANEPPS molecules are damaged by singlet oxygen generated by monomers of H2TPPS4 molecules adsorbed on the membrane. The rate of oxidation of di-4-ANEPPS molecules adsorbed on the same (cis) side of the membrane together with the H2TPPS4 molecules was either the same or higher than that when di-4-ANEPPS molecules were adsorbed on opposite (trans) side. It indicates that the quenching of singlet oxygen by the di-4-ANEPPS molecules at cis side of the membrane was negligible, in contrast to our earlier study when singlet oxygen was generated by aluminum(III) phthalocyanines with one or two peripheral sulfo groups. The difference between these phthalocyanines and H2TPPS4 was explained by their different adsorption depth in the membrane.
Collapse
Affiliation(s)
- A N Konstantinova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Leninskiy pr., 31, bldg.4, Moscow 119071, Russia
| | - V S Sokolov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Leninskiy pr., 31, bldg.4, Moscow 119071, Russia.
| | - I Jiménez-Munguía
- National University of Science and Technology MISiS, Leninskiy pr., 4, Moscow 119049, Russia
| | - O A Finogenova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Leninskiy pr., 31, bldg.4, Moscow 119071, Russia
| | - Yu A Ermakov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Leninskiy pr., 31, bldg.4, Moscow 119071, Russia
| | - Yu G Gorbunova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Leninskiy pr., 31, bldg.4, Moscow 119071, Russia; N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Science, Leninskiy pr., 31, Moscow 119991, Russia
| |
Collapse
|
9
|
Abstract
The concept of cell signaling in the context of nonenzyme-assisted protein modifications by reactive electrophilic and oxidative species, broadly known as redox signaling, is a uniquely complex topic that has been approached from numerous different and multidisciplinary angles. Our Review reflects on five aspects critical for understanding how nature harnesses these noncanonical post-translational modifications to coordinate distinct cellular activities: (1) specific players and their generation, (2) physicochemical properties, (3) mechanisms of action, (4) methods of interrogation, and (5) functional roles in health and disease. Emphasis is primarily placed on the latest progress in the field, but several aspects of classical work likely forgotten/lost are also recollected. For researchers with interests in getting into the field, our Review is anticipated to function as a primer. For the expert, we aim to stimulate thought and discussion about fundamentals of redox signaling mechanisms and nuances of specificity/selectivity and timing in this sophisticated yet fascinating arena at the crossroads of chemistry and biology.
Collapse
Affiliation(s)
- Saba Parvez
- Department of Pharmacology and Toxicology, College of
Pharmacy, University of Utah, Salt Lake City, Utah, 84112, USA
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Marcus J. C. Long
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Jesse R. Poganik
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Yimon Aye
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
- Department of Biochemistry, Weill Cornell Medicine, New
York, New York, 10065, USA
| |
Collapse
|
10
|
Abstract
Photodynamic therapy uses photosensitizers (PS) to kill cancer cells by generating reactive oxygen species – like singlet oxygen (SO) - upon illumination with visible light. PS membrane anchoring augments local SO concentration, which in turn increases photodynamic efficiency. The latter may suffer from SO’s escape into the aqueous solution or premature quenching. Here we determined the time constants of SO escape and quenching by target molecules to be in the nanosecond range, the former being threefold longer. We confined PS and dipolar target molecules either to different membrane monolayers or to the same leaflet and assessed their abundance by fluorescence correlation spectroscopy or membrane surface potential measurements. The rate at which the contribution of the dipolar target molecules to membrane dipole potential vanished, served as a measure of the photo-oxidation rate. The solution of the reaction–diffusion equations did not indicate diffusional rate limitations. Nevertheless, reducing the PS-target distance increased photodynamic efficiency by preventing other SO susceptible moieties from protecting the target. Importantly, our analytical model revealed a fourfold difference between SO generation rates per molecule of the two used PSs. Such analysis of PS quantum yield in a membrane environment may help in designing better PSs.
Collapse
|
11
|
Liu XC, Du HH, Fu LM, Han RM, Wang P, Ai XC, Zhang JP, Skibsted LH. Integrity of Membrane Structures in Giant Unilamellar Vesicles as Assay for Antioxidants and Prooxidants. Anal Chem 2018; 90:2126-2133. [PMID: 29298041 DOI: 10.1021/acs.analchem.7b04383] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We have attempted to evaluate, on the basis of optical microscopy for a single giant unilamellar vesicle (GUV), the potency of antioxidants in protecting GUV membranes from oxidative destruction. Photosensitized membrane budding of GUVs prepared from soybean phosphatidylcholine with chlorophyll a (Chl a) and β-carotene (β-Car) as photosensitizer and protector, respectively, were followed by microscopic imaging. A dimensionless entropy parameter, ΔE, as derived from the time-resolved microscopic images, was employed to describe the evolution of morphological variation of GUVs. As an indication of membrane instability, the budding process showed three successive temporal regimes as a common feature: a lag phase prior to the initiation of budding characterized by LP (in s), a budding phase when ΔE increased with a rate of kΔE (in s-1), and an ending phase with morphology stabilized at a constant ΔEend (dimensionless). We show that the phase-associated parameters can be objectively obtained by fitting the ΔE-t kinetics curves to a Boltzmann function and that all of the parameters are rather sensitive to β-Car concentration. As for the efficacy of these parameters in quantifying the protection potency of β-Car, kΔE is shown to be most sensitive for β-Car in a concentration regime of biological significance of <1 × 10-7 M, whereas LP and ΔEend are more sensitive for β-Car concentrations exceeding 1 × 10-7 M. Furthermore, based on the results of GUV imaging and fluorescence and Raman spectroscopies, we have revealed for different phases the mechanistic interplay among 1O2* diffusion, PC-OOH accumulation, Chl a and/or β-Car consumption, and the morphological variation. The developed assay should be valuable for characterizing the potency of antioxidants or prooxidants in the protection or destruction of the membrane integrity of GUVs.
Collapse
Affiliation(s)
- Xiao-Chen Liu
- Department of Chemistry, Renmin University of China , Beijing 100872, China
| | - Hui-Hui Du
- Department of Chemistry, Renmin University of China , Beijing 100872, China
| | - Li-Min Fu
- Department of Chemistry, Renmin University of China , Beijing 100872, China
| | - Rui-Min Han
- Department of Chemistry, Renmin University of China , Beijing 100872, China
| | - Peng Wang
- Department of Chemistry, Renmin University of China , Beijing 100872, China
| | - Xi-Cheng Ai
- Department of Chemistry, Renmin University of China , Beijing 100872, China
| | - Jian-Ping Zhang
- Department of Chemistry, Renmin University of China , Beijing 100872, China
| | - Leif H Skibsted
- Department of Food Science, University of Copenhagen , Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| |
Collapse
|
12
|
Sokolov VS, Shcherbakov AA, Tashkin VY, Gavril’chik AN, Chizmadzhev YA, Pohl P. Oxidation and lateral diffusion of styryl dyes on the surface of a bilayer lipid membrane. RUSS J ELECTROCHEM+ 2017. [DOI: 10.1134/s1023193517090130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Chekashkina KV, Galimzyanov TR, Kuzmin PI, Akimov SA, Romanov SA, Pozmogova GE, Klinov DV, Bashkirov PV. Detection of DNA molecules in a lipid nanotube channel in the low ion strength conditions. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2017. [DOI: 10.1134/s1990747817030047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Sokolov VS, Gavrilchik AN, Kulagina AO, Meshkov IN, Pohl P, Gorbunova YG. Voltage-sensitive styryl dyes as singlet oxygen targets on the surface of bilayer lipid membrane. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 161:162-9. [PMID: 27236238 DOI: 10.1016/j.jphotobiol.2016.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/18/2016] [Indexed: 11/30/2022]
Abstract
Photosensitizers are widely used as photodynamic therapeutic agents killing cancer cells by photooxidation of their components. Development of new effective photosensitive molecules requires profound knowledge of possible targets for reactive oxygen species, especially for its singlet form. Here we studied photooxidation of voltage-sensitive styryl dyes (di-4-ANEPPS, di-8-ANEPPS, RH-421 and RH-237) by singlet oxygen on the surface of bilayer lipid membranes commonly used as cell membrane models. Oxidation was induced by irradiation of a photosensitizer (aluminum phthalocyanine tetrasulfonate) and monitored by the change of dipole potential on the surface of the membrane. We studied the drop of the dipole potential both in the case when the dye molecules were adsorbed on the same side of the lipid bilayer as the photosensitizer (cis-configuration) and in the case when they were adsorbed on the opposite side (trans-configuration). Based on a simple model, we determined the rate of oxidation of the dyes from the kinetics of change of the potential during and after irradiation. This rate is proportional to steady-state concentration of singlet oxygen in the membrane under irradiation. Comparison of the oxidation rates of various dyes reveals that compounds of ANEPPS series are more sensitive to singlet oxygen than RH type dyes, indicating that naphthalene group is primarily responsible for their oxidation.
Collapse
Affiliation(s)
- V S Sokolov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Moscow, Russia.
| | - A N Gavrilchik
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Moscow, Russia
| | - A O Kulagina
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Moscow, Russia
| | - I N Meshkov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Moscow, Russia
| | - P Pohl
- Institute of Biophysics, Johannes Kepler University Linz, Austria
| | - Yu G Gorbunova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Moscow, Russia; N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Science, Moscow, Russia
| |
Collapse
|
15
|
pH-Dependent Formation and Disintegration of the Influenza A Virus Protein Scaffold To Provide Tension for Membrane Fusion. J Virol 2015; 90:575-85. [PMID: 26468548 DOI: 10.1128/jvi.01539-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/05/2015] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED Influenza virus is taken up from a pH-neutral extracellular milieu into an endosome, whose contents then acidify, causing changes in the viral matrix protein (M1) that coats the inner monolayer of the viral lipid envelope. At a pH of ~6, M1 interacts with the viral ribonucleoprotein (RNP) in a putative priming stage; at this stage, the interactions of the M1 scaffold coating the lipid envelope are intact. The M1 coat disintegrates as acidification continues to a pH of ~5 to clear a physical path for the viral genome to transit from the viral interior to the cytoplasm. Here we investigated the physicochemical mechanism of M1's pH-dependent disintegration. In neutral media, the adsorption of M1 protein on the lipid bilayer was electrostatic in nature and reversible. The energy of the interaction of M1 molecules with each other in M1 dimers was about 10 times as weak as that of the interaction of M1 molecules with the lipid bilayer. Acidification drives conformational changes in M1 molecules due to changes in the M1 charge, leading to alterations in their electrostatic interactions. Dropping the pH from 7.1 to 6.0 did not disturb the M1 layer; dropping it lower partially desorbed M1 because of increased repulsion between M1 monomers still stuck to the membrane. Lipid vesicles coated with M1 demonstrated pH-dependent rupture of the vesicle membrane, presumably because of the tension generated by this repulsive force. Thus, the disruption of the vesicles coincident with M1 protein scaffold disintegration at pH 5 likely stretches the lipid membrane to the point of rupture, promoting fusion pore widening for RNP release. IMPORTANCE Influenza remains a top killer of human beings throughout the world, in part because of the influenza virus's rapid binding to cells and its uptake into compartments hidden from the immune system. To attack the influenza virus during this time of hiding, we need to understand the physical forces that allow the internalized virus to infect the cell. In particular, we need to know how the protective coat of protein inside the viral surface reacts to the changes in acid that come soon after internalization. We found that acid makes the molecules of the protein coat push each other while they are still stuck to the virus, so that they would like to rip the membrane apart. This ripping force is known to promote membrane fusion, the process by which infection actually occurs.
Collapse
|
16
|
Rokitskaya TI, Firsov AM, Kotova EA, Antonenko YN. Photodynamic inactivation of gramicidin channels in bilayer lipid membranes: Protective efficacy of singlet oxygen quenchers depends on photosensitizer location. BIOCHEMISTRY (MOSCOW) 2015; 80:745-51. [DOI: 10.1134/s0006297915060097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Cordeiro RM. Reactive oxygen species at phospholipid bilayers: distribution, mobility and permeation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:438-44. [PMID: 24095673 DOI: 10.1016/j.bbamem.2013.09.016] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/12/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022]
Abstract
Reactive oxygen species (ROS) are involved in biochemical processes such as redox signaling, aging, carcinogenesis and neurodegeneration. Although biomembranes are targets for reactive oxygen species attack, little is known about the role of their specific interactions. Here, molecular dynamics simulations were employed to determine the distribution, mobility and residence times of various reactive oxygen species at the membrane-water interface. Simulations showed that molecular oxygen (O2) accumulated at the membrane interior. The applicability of this result to singlet oxygen ((1)O2) was discussed. Conversely, superoxide (O2(-)) radicals and hydrogen peroxide (H2O2) remained at the aqueous phase. Both hydroxyl (HO) and hydroperoxyl (HO2) radicals were able to penetrate deep into the lipid headgroups region. Due to membrane fluidity and disorder, these radicals had access to potential peroxidation sites along the lipid hydrocarbon chains, without having to overcome the permeation free energy barrier. Strikingly, HO2 radicals were an order of magnitude more concentrated in the headgroups region than in water, implying a large shift in the acid-base equilibrium between HO2 and O2(-). In comparison with O2, both HO and HO2 radicals had lower lateral mobility at the membrane. Simulations revealed that there were intermittent interruptions in the H-bond network around the HO radicals at the headgroups region. This effect is expected to be unfavorable for the H-transfer mechanism involved in HO diffusion. The implications for lipid peroxidation and for the effectiveness of membrane antioxidants were evaluated.
Collapse
Affiliation(s)
- Rodrigo M Cordeiro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia 166, CEP 09210-170, Santo André (SP), Brazil.
| |
Collapse
|
18
|
Wong JP, MacRobert AJ, Cheema U, Brown RA. Mechanical anisotropy in compressed collagen produced by localised photodynamic cross-linking. J Mech Behav Biomed Mater 2013; 18:132-9. [DOI: 10.1016/j.jmbbm.2012.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 11/06/2012] [Accepted: 11/09/2012] [Indexed: 11/16/2022]
|
19
|
Electrostatically induced recruitment of membrane peptides into clusters requires ligand binding at both interfaces. PLoS One 2012; 7:e52839. [PMID: 23285199 PMCID: PMC3528705 DOI: 10.1371/journal.pone.0052839] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 11/23/2012] [Indexed: 02/01/2023] Open
Abstract
Protein recruitment to specific membrane locations may be governed or facilitated by electrostatic attraction, which originates from a multivalent ligand. Here we explored the energetics of a model system in which this simple electrostatic recruitment mechanism failed. That is, basic poly-L-lysine binding to one leaflet of a planar lipid bilayer did not recruit the triply-charged peptide (O-Pyromellitylgramicidin). Clustering was only observed in cases where PLL was bound to both channel ends. Clustering was indicated (i) by the decreased diffusional PLL mobility DPLL and (ii) by an increased lifetime τPLL of the clustered channels. In contrast, if PLL was bound to only one leaflet, neither DPLL nor τP changed. Simple calculations suggest that electrostatic repulsion of the unbound ends prevented neighboring OPg dimers from approaching each other. We believe that a similar mechanism may also operate in cell signaling and that it may e.g. contribute to the controversial results obtained for the ligand driven dimerization of G protein-coupled receptors.
Collapse
|
20
|
Boron WF, Endeward V, Gros G, Musa-Aziz R, Pohl P. Intrinsic CO2 permeability of cell membranes and potential biological relevance of CO2 channels. Chemphyschem 2011; 12:1017-9. [PMID: 21384488 DOI: 10.1002/cphc.201100034] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Abstract
Hydrogen sulfide (H(2)S) has emerged as a new and important member in the group of gaseous signaling molecules. However, the molecular transport mechanism has not yet been identified. Because of structural similarities with H(2)O, it was hypothesized that aquaporins may facilitate H(2)S transport across cell membranes. We tested this hypothesis by reconstituting the archeal aquaporin AfAQP from sulfide reducing bacteria Archaeoglobus fulgidus into planar membranes and by monitoring the resulting facilitation of osmotic water flow and H(2)S flux. To measure H(2)O and H(2)S fluxes, respectively, sodium ion dilution and buffer acidification by proton release (H(2)S left arrow over right arrow H(+) + HS(-)) were recorded in the immediate membrane vicinity. Both sodium ion concentration and pH were measured by scanning ion-selective microelectrodes. A lower limit of lipid bilayer permeability to H(2)S, P(M,H(2)S) >or = 0.5 +/- 0.4 cm/s was calculated by numerically solving the complete system of differential reaction diffusion equations and fitting the theoretical pH distribution to experimental pH profiles. Even though reconstitution of AfAQP significantly increased water permeability through planar lipid bilayers, P(M,H(2)S) remained unchanged. These results indicate that lipid membranes may well act as a barrier to water transport although they do not oppose a significant resistance to H(2)S diffusion. The fact that cholesterol and sphingomyelin reconstitution did not turn these membranes into an H(2)S barrier indicates that H(2)S transport through epithelial barriers, endothelial barriers, and membrane rafts also occurs by simple diffusion and does not require facilitation by membrane channels.
Collapse
|
22
|
Missner A, Pohl P. 110 years of the Meyer-Overton rule: predicting membrane permeability of gases and other small compounds. Chemphyschem 2009; 10:1405-14. [PMID: 19514034 PMCID: PMC3045804 DOI: 10.1002/cphc.200900270] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Indexed: 01/04/2023]
Abstract
The transport of gaseous compounds across biological membranes is essential in all forms of life. Although it was generally accepted that gases freely penetrate the lipid matrix of biological membranes, a number of studies challenged this doctrine as they found biological membranes to have extremely low gas-permeability values. These observations led to the identification of several membrane-embedded "gas" channels, which facilitate the transport of biological active gases, such as carbon dioxide, nitric oxide, and ammonia. However, some of these findings are in contrast to the well-established solubility-diffusion model (also known as the Meyer-Overton rule), which predicts membrane permeabilities from the molecule's oil-water partition coefficient. Herein, we discuss recently reported violations of the Meyer-Overton rule for small molecules, including carboxylic acids and gases, and show that Meyer and Overton continue to rule.
Collapse
Affiliation(s)
- Andreas Missner
- Institut für Biophysik, Johannes Kepler Universität, Altenberger Str. 69, 4040 Linz (Austria), Fax: (+43) 732-2468-9270
| | - Peter Pohl
- Institut für Biophysik, Johannes Kepler Universität, Altenberger Str. 69, 4040 Linz (Austria), Fax: (+43) 732-2468-9270
| |
Collapse
|