1
|
Ghosh B, Layek S, Bhattacharyya D, Sengupta N. Base pair compositional variability influences DNA structural stability and tunes hydration thermodynamics and dynamics. J Chem Phys 2023; 159:095101. [PMID: 37655772 DOI: 10.1063/5.0154977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/10/2023] [Indexed: 09/02/2023] Open
Abstract
DNA deformability and differential hydration are crucial determinants of biological processes ranging from genetic material packaging to gene expression; their associative details, however, remain inadequately understood. Herein, we report investigations of the dynamic and thermodynamic responses of the local hydration of a variety of base pair sequences. Leveraging in silico sampling and our in-house analyses, we first report the local conformational propensity of sequences that are either predisposed toward the canonical A- or B-conformations or are restrained to potential transitory pathways. It is observed that the transition from the unrestrained A-form to the B-form leads to lengthwise structural deformation. The insertion of intermittent -(CG)- base pairs in otherwise homogeneous -(AT)- sequences bears dynamical consequences for the vicinal hydration layer. Calculation of the excess (pair) entropy suggests substantially higher values of hydration water surrounding A conformations over the B- conformations. Applying the Rosenfeld approximation, we project that the diffusivity of water molecules proximal to canonical B conformation is least for the minor groove of the canonical B-conformation. We determine that structure, composition, and conformation specific groove dimension together influence the local hydration characteristics and, therefore, are expected to be important determinants of biological processes.
Collapse
Affiliation(s)
- Brataraj Ghosh
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Sarbajit Layek
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Dhananjay Bhattacharyya
- Computational Science Division, Saha Institute of Nuclear Physics, Bidhannagar, Kolkata, West Bengal 700064, India
| | - Neelanjana Sengupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
2
|
Fleming PJ, Correia JJ, Fleming KG. Revisiting macromolecular hydration with HullRadSAS. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:215-224. [PMID: 36602579 DOI: 10.1007/s00249-022-01627-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023]
Abstract
Hydration of biological macromolecules is important for their stability and function. Historically, attempts have been made to describe the degree of macromolecular hydration using a single parameter over a narrow range of values. Here, we describe a method to calculate two types of hydration: surface shell water and entrained water. A consideration of these two types of hydration helps to explain the "hydration problem" in hydrodynamics. The combination of these two types of hydration allows accurate calculation of hydrodynamic volume and related macromolecular properties such as sedimentation and diffusion coefficients, intrinsic viscosities, and the concentration-dependent non-ideality identified with sedimentation velocity experiments.
Collapse
Affiliation(s)
- Patrick J Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - John J Correia
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Karen G Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
3
|
Ghosh B, Sengupta N. The protein hydration layer in high glucose concentration: Dynamical responses in folded and intrinsically disordered dimeric states. Biochem Biophys Res Commun 2021; 577:124-129. [PMID: 34509724 DOI: 10.1016/j.bbrc.2021.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
This exposition reveals the effect of glucose as a molecular crowder on the solvent environment in proximity of the protein surface in putative folded (Ubiquitin) and intrinsically disordered (dimeric Amyloid beta) states. Atomistic simulations reveal markedly higher structural perturbation in the disordered systems due to crowding effects, while the folded state retains overall structural fidelity. Key hydrophobic contacts in the disordered dimer are lost. However, glucose induced crowding results in elevated hydration on surfaces of both protein systems. Despite evident differences in their structural responses, the hydration layer of both the folded and disordered states display a distinct enhancement in lifetimes of mean residence and rotational relaxation under the hyperglycemic conditions. The results are crucial in the light of emergent co-solvent induced biological phenomena in crowded media.
Collapse
Affiliation(s)
- Brataraj Ghosh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741 246, India
| | - Neelanjana Sengupta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741 246, India.
| |
Collapse
|
4
|
Roy P, Sengupta N. Hydration of a small protein under carbon nanotube confinement: Adsorbed substates induce selective separation of the dynamical response. J Chem Phys 2021; 154:204702. [PMID: 34241160 DOI: 10.1063/5.0047078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The co-involvement of biological molecules and nanomaterials has increasingly come to the fore in modern-day applications. While the "bio-nano" (BN) interface presents physico-chemical characteristics that are manifestly different from those observed in isotropic bulk conditions, the underlying molecular reasons remain little understood; this is especially true of anomalies in interfacial hydration. In this paper, we leverage atomistic simulations to study differential adsorption characteristics of a small protein on the inner (concave) surface of a single-walled carbon nanotube whose diameter exceeds dimensions conducive to single-file water movement. Our findings indicate that the extent of adsorption is decided by the degree of foldedness of the protein conformational substate. Importantly, we find that partially folded substates, but not the natively folded one, induce reorganization of the protein hydration layer into an inner layer water closer to the nanotube axis and an outer layer water in the interstitial space near the nanotube walls. Further analyses reveal sharp dynamical differences between water molecules in the two layers as observed in the onset of increased heterogeneity in rotational relaxation and the enhanced deviation from Fickian behavior. The vibrational density of states reveals that the dynamical distinctions are correlated with differences in crucial bands in the power spectra. The current results set the stage for further systematic studies of various BN interfaces vis-à-vis control of hydration properties.
Collapse
Affiliation(s)
- Priti Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Neelanjana Sengupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
5
|
Shiraga K, Urabe M, Matsui T, Kikuchi S, Ogawa Y. Highly precise characterization of the hydration state upon thermal denaturation of human serum albumin using a 65 GHz dielectric sensor. Phys Chem Chem Phys 2020; 22:19468-19479. [PMID: 32761010 DOI: 10.1039/d0cp02265a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The biological functions of proteins depend on harmonization with hydration water surrounding them. Indeed, the dynamical transition of proteins, such as thermal denaturation, is dependent on the changes in the mobility of hydration water. However, the role of hydration water during dynamical transition is yet to be fully understood due to technical limitations in precisely characterizing the amount of hydration water. A state-of-the-art CMOS dielectric sensor consisting of 65 GHz LC resonators addressed this issue by utilizing the feature that oscillation frequency sensitively shifts in response to the complex dielectric constant at 65 GHz with extremely high precision. This study aimed to establish an analytical algorithm to derive the hydration number from the measured frequency shift and to demonstrate the transition of hydration number upon the thermal denaturation of human serum albumin. The determined hydration number in the native state drew a "global" hydration picture beyond the first solvation shell, with substantially reduced uncertainty of the hydration number (about ±1%). This allowed the detection of a rapid increase in the hydration number at about 55 °C during the heating process, which was in excellent phase with the irreversible rupture of the α-helical structure into solvent-exposed extended chains, whereas the hydration number did not trace the forward path in the subsequent cooling process. Our result indicates that the weakening of water hydrogen bonds trigger the unfolding of the protein structure first, followed by the changes in the number of hydration water as a consequence of thermal denaturation.
Collapse
Affiliation(s)
- Keiichiro Shiraga
- RIKEN Center for Integrative Medical Sciences (IMS), Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| | | | | | | | | |
Collapse
|
6
|
Mechanical Unfolding of Spectrin Repeats Induces Water-Molecule Ordering. Biophys J 2020; 118:1076-1089. [PMID: 32027822 DOI: 10.1016/j.bpj.2020.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/24/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Mechanical processes are involved at many stages of the development of living cells, and often external forces applied to a biomolecule result in its unfolding. Although our knowledge of the unfolding mechanisms and the magnitude of the forces involved has evolved, the role that water molecules play in the mechanical unfolding of biomolecules has not yet been fully elucidated. To this end, we investigated with steered molecular dynamics simulations the mechanical unfolding of dystrophin's spectrin repeat 1 and related the changes in the protein's structure to the ordering of the surrounding water molecules. Our results indicate that upon mechanically induced unfolding of the protein, the solvent molecules become more ordered and increase their average number of hydrogen bonds. In addition, the unfolded structures originating from mechanical pulling expose an increasing amount of the hydrophobic residues to the solvent molecules, and the uncoiled regions adapt a convex surface with a small radius of curvature. As a result, the solvent molecules reorganize around the protein's small protrusions in structurally ordered waters that are characteristic of the so-called "small-molecule regime," which allows water to maintain a high hydrogen bond count at the expense of an increased structural order. We also determined that the response of water to structural changes in the protein is localized to the specific regions of the protein that undergo unfolding. These results indicate that water plays an important role in the mechanically induced unfolding of biomolecules. Our findings may prove relevant to the ever-growing interest in understanding macromolecular crowding in living cells and their effects on protein folding, and suggest that the hydration layer may be exploited as a means for short-range allosteric communication.
Collapse
|
7
|
Abstract
Terahertz time-domain spectroscopy (THz-TDS) is a non-invasive, non-contact and label-free technique for biological and chemical sensing as THz-spectra are less energetic and lie in the characteristic vibration frequency regime of proteins and DNA molecules. However, THz-TDS is less sensitive for the detection of micro-organisms of size equal to or less than λ/100 (where, λ is the wavelength of the incident THz wave), and molecules in extremely low concentration solutions (like, a few femtomolar). After successful high-throughput fabrication of nanostructures, nanoantennas were found to be indispensable in enhancing the sensitivity of conventional THz-TDS. These nanostructures lead to strong THz field enhancement when in resonance with the absorption spectrum of absorptive molecules, causing significant changes in the magnitude of the transmission spectrum, therefore, enhancing the sensitivity and allowing the detection of molecules and biomaterials in extremely low concentration solutions. Herein, we review the recent developments in ultra-sensitive and selective nanogap biosensors. We have also provided an in-depth review of various high-throughput nanofabrication techniques. We also discussed the physics behind the field enhancements in the sub-skin depth as well as sub-nanometer sized nanogaps. We introduce finite-difference time-domain (FDTD) and molecular dynamics (MD) simulation tools to study THz biomolecular interactions. Finally, we provide a comprehensive account of nanoantenna enhanced sensing of viruses (like, H1N1) and biomolecules such as artificial sweeteners which are addictive and carcinogenic.
Collapse
Affiliation(s)
- Subham Adak
- Department of Physics, Birla Institute of Technology, Mesra, Ranchi - 835215, Jharkhand, India.
| | | |
Collapse
|
8
|
Karathanou K, Bondar AN. Using Graphs of Dynamic Hydrogen-Bond Networks To Dissect Conformational Coupling in a Protein Motor. J Chem Inf Model 2019; 59:1882-1896. [PMID: 31038944 DOI: 10.1021/acs.jcim.8b00979] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DExD/H-box proteins are soluble enzymes that couple binding and hydrolysis of adenosine triphosphate (ATP) with reactions involving RNA metabolism or bind and push newly synthesized proteins across bacterial cell membranes. Knowledge of the reaction mechanism of these enzymes could help the development of new therapeutics. In order to explore the mechanism of long-distance conformational coupling in SecA, the DEAD-box motor of the Sec protein secretion in bacteria, we implemented algorithms that provide simplified graph representations of the protein's dynamic hydrogen-bond networks. We find that mutations near the nucleotide-binding site or changes of the nucleotide-binding state of SecA associate with altered dynamics at the preprotein binding domain and identify extended networks of hydrogen bonds that connect the active site of SecA to the region where SecA binds newly synthesized secretory proteins. Water molecules participate in hydrogen-bonded water chains that bridge functional domains of SecA and could contribute to long-distance conformational coupling.
Collapse
Affiliation(s)
- Konstantina Karathanou
- Freie Universität Berlin , Department of Physics, Theoretical Molecular Biophysics Group , Arnimallee 14 , D-14195 Berlin , Germany
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin , Department of Physics, Theoretical Molecular Biophysics Group , Arnimallee 14 , D-14195 Berlin , Germany
| |
Collapse
|
9
|
Kemmler L, Ibrahim M, Dobbek H, Zouni A, Bondar AN. Dynamic water bridging and proton transfer at a surface carboxylate cluster of photosystem II. Phys Chem Chem Phys 2019; 21:25449-25466. [DOI: 10.1039/c9cp03926k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A hydrogen-bond cluster at a negatively-charged protein interface with a bound protein and long-lived waters might be a proton storage site.
Collapse
Affiliation(s)
- Lukas Kemmler
- Freie Universität Berlin
- Department of Physics
- Theoretical Molecular Biophysics Group
- D-14195 Berlin
- Germany
| | - Mohamed Ibrahim
- Humboldt Universtät zu Berlin
- Institute for Biology, Structural Biology and Biochemistry
- Berlin
- Germany
| | - Holger Dobbek
- Humboldt Universtät zu Berlin
- Institute for Biology, Structural Biology and Biochemistry
- Berlin
- Germany
| | - Athina Zouni
- Humboldt Universtät zu Berlin
- Institute for Biology, Biophysics of Photosynthesis
- Berlin
- Germany
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin
- Department of Physics
- Theoretical Molecular Biophysics Group
- D-14195 Berlin
- Germany
| |
Collapse
|
10
|
Dynamic Water Hydrogen-Bond Networks at the Interface of a Lipid Membrane Containing Palmitoyl-Oleoyl Phosphatidylglycerol. J Membr Biol 2018. [DOI: 10.1007/s00232-018-0023-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Gupta M, Khatua P, Chakravarty C, Bandyopadhyay S. Hydration Behavior along the Folding Pathways of Trpzip4, Trpzip5 and Trpzip6. J Phys Chem B 2018; 122:1560-1572. [DOI: 10.1021/acs.jpcb.7b10135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Madhulika Gupta
- Department
of Chemistry, Indian Institute of Technology-Delhi, New Delhi 110016, India
| | - Prabir Khatua
- Molecular
Modeling Laboratory, Department of Chemistry, Indian Institute of Technology-Kharagpur, Kharagpur 721302, India
| | - Charusita Chakravarty
- Department
of Chemistry, Indian Institute of Technology-Delhi, New Delhi 110016, India
| | - Sanjoy Bandyopadhyay
- Molecular
Modeling Laboratory, Department of Chemistry, Indian Institute of Technology-Kharagpur, Kharagpur 721302, India
| |
Collapse
|
12
|
Pal S, Chakraborty K, Khatua P, Bandyopadhyay S. Microscopic dynamics of water around unfolded structures of barstar at room temperature. J Chem Phys 2016; 142:055102. [PMID: 25662668 DOI: 10.1063/1.4907007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The breaking of the native structure of a protein and its influences on the dynamic response of the surrounding solvent is an important issue in protein folding. In this work, we have carried out atomistic molecular dynamics simulations to unfold the protein barstar at two different temperatures (400 K and 450 K). The two unfolded forms obtained at such high temperatures are further studied at room temperature to explore the effects of nonuniform unfolding of the protein secondary structures along two different pathways on the microscopic dynamical properties of the surface water molecules. It is demonstrated that though the structural transition of the protein in general results in less restricted water motions around its segments, but there are evidences of formation of new conformational motifs upon unfolding with increasingly confined environment around them, thereby resulting in further restricted water mobility in their hydration layers. Moreover, it is noticed that the effects of nonuniform unfolding of the protein segments on the relaxation times of the protein-water (PW) and the water-water (WW) hydrogen bonds are correlated with hindered hydration water motions. However, the kinetics of breaking and reformation of such hydrogen bonds are found to be influenced differently at the interface. It is observed that while the effects of unfolding on the PW hydrogen bond kinetics seem to be minimum, but the kinetics involving the WW hydrogen bonds around the protein segments exhibit noticeably heterogeneous characteristics. We believe that this is an important observation, which can provide valuable insights on the origin of heterogeneous influence of unfolding of a protein on the microscopic properties of its hydration water.
Collapse
Affiliation(s)
- Somedatta Pal
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Kaushik Chakraborty
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Prabir Khatua
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
13
|
Chatterjee P, Sengupta N. Signatures of protein thermal denaturation and local hydrophobicity in domain specific hydration behavior: a comparative molecular dynamics study. MOLECULAR BIOSYSTEMS 2016; 12:1139-50. [PMID: 26876051 DOI: 10.1039/c6mb00017g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We investigate, using atomistic molecular dynamics simulations, the association of surface hydration accompanying local unfolding in the mesophilic protein Yfh1 under a series of thermal conditions spanning its cold and heat denaturation temperatures. The results are benchmarked against the thermally stable protein, Ubq, and behavior at the maximum stability temperature. Local unfolding in Yfh1, predominantly in the beta sheet regions, is in qualitative agreement with recent solution NMR studies; the corresponding Ubq unfolding is not observed. Interestingly, all domains, except for the beta sheet domains of Yfh1, show increased effective surface hydrophobicity with increase in temperature, as reflected by the density fluctuations of the hydration layer. Velocity autocorrelation functions (VACF) of oxygen atoms of water within the hydration layers and the corresponding vibrational density of states (VDOS) are used to characterize alteration in dynamical behavior accompanying the temperature dependent local unfolding. Enhanced caging effects accompanying transverse oscillations of the water molecules are found to occur with the increase in temperature preferentially for the beta sheet domains of Yfh1. Helical domains of both proteins exhibit similar trends in VDOS with changes in temperature. This work demonstrates the existence of key signatures of the local onset of protein thermal denaturation in solvent dynamical behavior.
Collapse
Affiliation(s)
- Prathit Chatterjee
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India.
| | | |
Collapse
|
14
|
Rani P, Biswas P. Diffusion of Hydration Water around Intrinsically Disordered Proteins. J Phys Chem B 2015; 119:13262-70. [PMID: 26418258 DOI: 10.1021/acs.jpcb.5b07248] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydration water dynamics around globular proteins have attracted considerable attention in the past decades. This work investigates the hydration water dynamics around partially/fully intrinsically disordered proteins and compares it to that of the globular proteins via molecular dynamics simulations. The translational diffusion of the hydration water is examined by evaluating the mean-square displacement and the velocity autocorrelation function, while the rotational diffusion is probed through the dipole-dipole time correlation function. The results reveal that the translational and rotational motions of water molecules at the surface of intrinsically disordered proteins/regions are less restricted as compared to those around globular proteins/ordered regions, which is reflected in their higher diffusion coefficient and lower orientational relaxation time. The restricted mobility of hydration water in the vicinity of the protein leads to a sublinear diffusion in a heterogeneous interface. A positive correlation between the mean number of hydrogen bonds and the diffusion coefficient of hydration water implies higher mobility of water molecules at the surface of disordered proteins, which is due to their higher number of hydrogen bonds. Enhanced hydration water mobility around disordered proteins/regions is also related to their higher hydration capacity, low hydrophobicity, and increased internal protein motions. Thus, we generalize that the intrinsically disordered proteins/regions are associated with higher hydration water mobility as compared to globular protein/ordered regions, which may help to elucidate their varied functional specificity.
Collapse
Affiliation(s)
- Pooja Rani
- Department of Chemistry, University of Delhi , Delhi 110007, India
| | - Parbati Biswas
- Department of Chemistry, University of Delhi , Delhi 110007, India
| |
Collapse
|
15
|
Lorch S, Capponi S, Pieront F, Bondar AN. Dynamic Carboxylate/Water Networks on the Surface of the PsbO Subunit of Photosystem II. J Phys Chem B 2015; 119:12172-81. [DOI: 10.1021/acs.jpcb.5b06594] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sebastian Lorch
- Theoretical
Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Sara Capponi
- Department
of Physiology and Biophysics, University of California at Irvine, Medical Sciences I, Irvine, California 92697, United States
| | - Florian Pieront
- Theoretical
Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Ana-Nicoleta Bondar
- Theoretical
Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| |
Collapse
|
16
|
Abstract
The heterotrimeric SecY translocon complex is required for the cotranslational assembly of membrane proteins in bacteria and archaea. The insertion of transmembrane (TM) segments during nascent-chain passage through the translocon is generally viewed as a simple partitioning process between the water-filled translocon and membrane lipid bilayer, suggesting that partitioning is driven by the hydrophobic effect. Indeed, the apparent free energy of partitioning of unnatural aliphatic amino acids on TM segments is proportional to accessible surface area, which is a hallmark of the hydrophobic effect [Öjemalm K, et al. (2011) Proc Natl Acad Sci USA 108(31):E359-E364]. However, the apparent partitioning solvation parameter is less than one-half the value expected for simple bulk partitioning, suggesting that the water in the translocon departs from bulk behavior. To examine the state of water in a SecY translocon complex embedded in a lipid bilayer, we carried out all-atom molecular-dynamics simulations of the Pyrococcus furiosus SecYE, which was determined to be in a "primed" open state [Egea PF, Stroud RM (2010) Proc Natl Acad Sci USA 107(40):17182-17187]. Remarkably, SecYE remained in this state throughout our 450-ns simulation. Water molecules within SecY exhibited anomalous diffusion, had highly retarded rotational dynamics, and aligned their dipoles along the SecY transmembrane axis. The translocon is therefore not a simple water-filled pore, which raises the question of how anomalous water behavior affects the mechanism of translocon function and, more generally, the partitioning of hydrophobic molecules. Because large water-filled cavities are found in many membrane proteins, our findings may have broader implications.
Collapse
|
17
|
Chatterjee P, Bagchi S, Sengupta N. The non-uniform early structural response of globular proteins to cold denaturing conditions: a case study with Yfh1. J Chem Phys 2014; 141:205103. [PMID: 25429964 DOI: 10.1063/1.4901897] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The mechanism of cold denaturation in proteins is often incompletely understood due to limitations in accessing the denatured states at extremely low temperatures. Using atomistic molecular dynamics simulations, we have compared early (nanosecond timescale) structural and solvation properties of yeast frataxin (Yfh1) at its temperature of maximum stability, 292 K (Ts), and the experimentally observed temperature of complete unfolding, 268 K (Tc). Within the simulated timescales, discernible "global" level structural loss at Tc is correlated with a distinct increase in surface hydration. However, the hydration and the unfolding events do not occur uniformly over the entire protein surface, but are sensitive to local structural propensity and hydrophobicity. Calculated infrared absorption spectra in the amide-I region of the whole protein show a distinct red shift at Tc in comparison to Ts. Domain specific calculations of IR spectra indicate that the red shift primarily arises from the beta strands. This is commensurate with a marked increase in solvent accessible surface area per residue for the beta-sheets at Tc. Detailed analyses of structure and dynamics of hydration water around the hydrophobic residues of the beta-sheets show a more bulk water like behavior at Tc due to preferential disruption of the hydrophobic effects around these domains. Our results indicate that in this protein, the surface exposed beta-sheet domains are more susceptible to cold denaturing conditions, in qualitative agreement with solution NMR experimental results.
Collapse
Affiliation(s)
- Prathit Chatterjee
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Sayan Bagchi
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Neelanjana Sengupta
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| |
Collapse
|
18
|
Jose JC, Khatua P, Bansal N, Sengupta N, Bandyopadhyay S. Microscopic Hydration Properties of the Aβ1–42 Peptide Monomer and the Globular Protein Ubiquitin: A Comparative Molecular Dynamics Study. J Phys Chem B 2014; 118:11591-604. [DOI: 10.1021/jp505629q] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jaya C. Jose
- Physical Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhaba Road, Pune 411008, India
| | - Prabir Khatua
- Molecular
Modeling
Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Nupur Bansal
- Physical Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhaba Road, Pune 411008, India
| | - Neelanjana Sengupta
- Physical Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhaba Road, Pune 411008, India
| | - Sanjoy Bandyopadhyay
- Molecular
Modeling
Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
19
|
Pal S, Bandyopadhyay S. Thermal unfolding of barstar and the properties of interfacial water around the unfolded forms. J Chem Phys 2013; 139:235101. [DOI: 10.1063/1.4844255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Sushko O, Dubrovka R, Donnan RS. Terahertz Spectral Domain Computational Analysis of Hydration Shell of Proteins with Increasingly Complex Tertiary Structure. J Phys Chem B 2013; 117:16486-92. [DOI: 10.1021/jp407580y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Oleksandr Sushko
- School
of Electronic Engineering
and Computer Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Rostyslav Dubrovka
- School
of Electronic Engineering
and Computer Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Robert S. Donnan
- School
of Electronic Engineering
and Computer Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
21
|
Heyden M, Tobias DJ. Spatial dependence of protein-water collective hydrogen-bond dynamics. PHYSICAL REVIEW LETTERS 2013; 111:218101. [PMID: 24313531 DOI: 10.1103/physrevlett.111.218101] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 05/10/2013] [Indexed: 05/22/2023]
Abstract
Using molecular dynamics simulations, we analyze collective vibrations in the hydration water of a small globular protein. We develop tools that allow spatial resolution of correlated protein and water motion, and use them to reveal correlated vibrations that extend up to 10 Å from the protein surface at far-infrared/THz frequencies that are sensitive to the chemical properties of the protein surface. Our results provide the first detailed description of long-range effects on protein hydration water dynamics and highlight the differences between single particle and collective dynamics, which are relevant in interpreting experimental observations.
Collapse
Affiliation(s)
- Matthias Heyden
- Department of Chemistry, University of California, Irvine, California 92697-2025, USA
| | | |
Collapse
|
22
|
Halle B, Persson F. Analysis of Protein Dynamics Simulations by a Stochastic Point Process Approach. J Chem Theory Comput 2013; 9:2838-48. [DOI: 10.1021/ct400161u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bertil Halle
- Biophysical Chemistry, Lund University, POB 124, SE-22100 Lund, Sweden
| | - Filip Persson
- Biophysical Chemistry, Lund University, POB 124, SE-22100 Lund, Sweden
| |
Collapse
|
23
|
Heyden M, Tobias DJ, Matyushov DV. Terahertz absorption of dilute aqueous solutions. J Chem Phys 2012; 137:235103. [DOI: 10.1063/1.4772000] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
24
|
Adrover M, Martorell G, Martin SR, Urosev D, Konarev PV, Svergun DI, Daura X, Temussi P, Pastore A. The role of hydration in protein stability: comparison of the cold and heat unfolded states of Yfh1. J Mol Biol 2012; 417:413-24. [PMID: 22342930 DOI: 10.1016/j.jmb.2012.02.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/01/2012] [Indexed: 12/21/2022]
Abstract
Protein unfolding occurs at both low and high temperatures, although in most cases, only the high-temperature transition can be experimentally studied. A pressing question is how much the low- and high-temperature denatured states, although thermodynamically equivalent, are structurally and kinetically similar. We have combined experimental and computational approaches to compare the high- and low-temperature unfolded states of Yfh1, a natural protein that, at physiologic pH, undergoes cold and heat denaturation around 0 °C and 40 °C without the help of ad hoc destabilization. We observe that the two denatured states have similar but not identical residual secondary structures, different kinetics and compactness and a remarkably different degree of hydration. We use molecular dynamics simulations to rationalize the role of solvation and its effect on protein stability.
Collapse
Affiliation(s)
- Miquel Adrover
- National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sinha SK, Bandyopadhyay S. Local heterogeneous dynamics of water around lysozyme: a computer simulation study. Phys Chem Chem Phys 2012; 14:899-913. [DOI: 10.1039/c1cp22575h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Heyden M, Havenith M. Combining THz spectroscopy and MD simulations to study protein-hydration coupling. Methods 2010; 52:74-83. [PMID: 20685393 DOI: 10.1016/j.ymeth.2010.05.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 05/17/2010] [Accepted: 05/20/2010] [Indexed: 10/19/2022] Open
Abstract
THz spectroscopy is combined with MD simulations to study the dynamical properties of water in the solvation shell of proteins. The solvation dynamics is found to be influenced on length-scales of several hydration layers which is significantly more than what is found for static properties. Our experiments show that the properties of this dynamical solvation shell depend on the folding state of the protein. Kinetic THz absorption studies allow us to observe the formation of the dynamical solvation shell of the native protein upon folding. The experimental results can be reproduced using MD simulations which helps to develop a molecular understanding in terms of retardation of water dynamics.
Collapse
Affiliation(s)
- Matthias Heyden
- Physikalische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | |
Collapse
|
27
|
Ponomarev SY, Putkaradze V, Bishop TC. Relaxation dynamics of nucleosomal DNA. Phys Chem Chem Phys 2009; 11:10633-43. [PMID: 20145808 DOI: 10.1039/b910937b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent experimental and theoretical evidence demonstrates that proteins and water in the hydration layer can follow complex stretched exponential or power law relaxation dynamics. Here, we report on a 50 ns all atom molecular dynamics (MD) simulation of the yeast nucleosome, where the interactions between DNA, histones, surrounding water and ions are explicitly included. DNA interacts with the histone core in 14 locations, approximately every 10.4 base pairs. We demonstrate that all sites of interaction exhibit anomalously slow power law relaxation, extending up to 10 ns, while fast exponential relaxation dynamics of hundreds of picoseconds applies to DNA regions outside these locations. The appearance of 1/f(alpha) noise or pink noise in DNA dynamics is ubiquitous. For histone-bound nucleotide dynamics alpha --> 1 and is a signature of complexity of the protein-DNA interactions. For control purposes two additional DNA simulations free of protein are conducted. Both utilize the same sequence of DNA, as found the in the nucleosome. In one simulation the initial conformation of the double helix is a straight B-form. In the other, the initial conformation is super helical. Neither of these simulations exhibits the variation of alpha as a function of position, the measure of power law for dynamical behavior, which we observe in the nucleosome simulation. The unique correspondence (high alpha to DNA-histone interaction sites, low alpha to free DNA sites), suggests that alpha may be an important and new quantification of protein-DNA interactions for future experiments.
Collapse
Affiliation(s)
- Sergei Y Ponomarev
- Tulane University, Center for Computational Science, Lindy Boggs Center Suite, 500 New Orleans, LA 70118, USA.
| | | | | |
Collapse
|