1
|
Szwalec M, Bujnowicz Ł, Sarewicz M, Osyczka A. Unexpected Heme Redox Potential Values Implicate an Uphill Step in Cytochrome b6f. J Phys Chem B 2022; 126:9771-9780. [PMID: 36399615 PMCID: PMC9720722 DOI: 10.1021/acs.jpcb.2c05729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytochromes bc, key enzymes of respiration and photosynthesis, contain a highly conserved two-heme motif supporting cross-membrane electron transport (ET) that connects the two catalytic quinone-binding sites (Qn and Qp). Typically, this ET occurs from the low- to high-potential heme b, but in photosynthetic cytochrome b6f, the redox midpoint potentials (Ems) of these hemes remain uncertain. Our systematic redox titration analysis based on three independent and comprehensive low-temperature spectroscopies (continuous wave and pulse electron paramagnetic resonance (EPR) and optical spectroscopies) allowed for unambiguous assignment of spectral components of hemes in cytochrome b6f and revealed that Em of heme bn is unexpectedly low. Consequently, the cross-membrane ET occurs from the high- to low-potential heme introducing an uphill step in the energy landscape for the catalytic reaction. This slows down the ET through a low-potential chain, which can influence the mechanisms of reactions taking place at both Qp and Qn sites and modulate the efficiency of cyclic and linear ET in photosynthesis.
Collapse
|
2
|
Giannoulis A, Ackermann K, Spindler PE, Higgins C, Cordes DB, Slawin AMZ, Prisner TF, Bode BE. Nitroxide–nitroxide and nitroxide–metal distance measurements in transition metal complexes with two or three paramagnetic centres give access to thermodynamic and kinetic stabilities. Phys Chem Chem Phys 2018; 20:11196-11205. [DOI: 10.1039/c8cp01611a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Broadband and highly resolved EPR distance measurements reveal multimers and their kinetic stabilities.
Collapse
Affiliation(s)
- A. Giannoulis
- Biomedical Sciences Research Complex and Centre of Magnetic Resonance University of St Andrews
- St Andrews KY16 9ST
- UK
- EaStCHEM School of Chemistry
- University of St Andrews
| | - K. Ackermann
- Biomedical Sciences Research Complex and Centre of Magnetic Resonance University of St Andrews
- St Andrews KY16 9ST
- UK
- EaStCHEM School of Chemistry
- University of St Andrews
| | - P. E. Spindler
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance
- Goethe-University Frankfurt am Main
- D-60438 Frankfurt am Main
- Germany
| | - C. Higgins
- EaStCHEM School of Chemistry
- University of St Andrews
- St Andrews KY16 9ST
- UK
| | - D. B. Cordes
- EaStCHEM School of Chemistry
- University of St Andrews
- St Andrews KY16 9ST
- UK
| | - A. M. Z. Slawin
- EaStCHEM School of Chemistry
- University of St Andrews
- St Andrews KY16 9ST
- UK
| | - T. F. Prisner
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance
- Goethe-University Frankfurt am Main
- D-60438 Frankfurt am Main
- Germany
| | - B. E. Bode
- Biomedical Sciences Research Complex and Centre of Magnetic Resonance University of St Andrews
- St Andrews KY16 9ST
- UK
- EaStCHEM School of Chemistry
- University of St Andrews
| |
Collapse
|
3
|
Pietras R, Sarewicz M, Osyczka A. Distinct properties of semiquinone species detected at the ubiquinol oxidation Qo site of cytochrome bc1 and their mechanistic implications. J R Soc Interface 2017; 13:rsif.2016.0133. [PMID: 27194483 PMCID: PMC4892266 DOI: 10.1098/rsif.2016.0133] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/18/2016] [Indexed: 12/23/2022] Open
Abstract
The two-electron ubiquinol oxidation or ubiquinone reduction typically involves semiquinone (SQ) intermediates. Natural engineering of ubiquinone binding sites of bioenergetic enzymes secures that SQ is sufficiently stabilized, so that it does not leave the site to membranous environment before full oxidation/reduction is completed. The ubiquinol oxidation Qo site of cytochrome bc1 (mitochondrial complex III, cytochrome b6f in plants) has been considered an exception with catalytic reactions assumed to involve highly unstable SQ or not to involve any SQ intermediate. This view seemed consistent with long-standing difficulty in detecting any reaction intermediates at the Qo site. New perspective on this issue is now offered by recent, independent reports on detection of SQ in this site. Each of the described SQs seems to have different spectroscopic properties leaving space for various interpretations and mechanistic considerations. Here, we comparatively reflect on those properties and their consequences on the SQ stabilization, the involvement of SQ in catalytic reactions, including proton transfers, and the reactivity of SQ with oxygen associated with superoxide generation activity of the Qo site.
Collapse
Affiliation(s)
- Rafał Pietras
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Marcin Sarewicz
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
4
|
Shepard EM, Byer AS, Aggarwal P, Betz JN, Scott AG, Shisler KA, Usselman RJ, Eaton GR, Eaton SS, Broderick JB. Electron Spin Relaxation and Biochemical Characterization of the Hydrogenase Maturase HydF: Insights into [2Fe-2S] and [4Fe-4S] Cluster Communication and Hydrogenase Activation. Biochemistry 2017; 56:3234-3247. [PMID: 28525271 PMCID: PMC5490485 DOI: 10.1021/acs.biochem.7b00169] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nature utilizes [FeFe]-hydrogenase enzymes to catalyze the interconversion between H2 and protons and electrons. Catalysis occurs at the H-cluster, a carbon monoxide-, cyanide-, and dithiomethylamine-coordinated 2Fe subcluster bridged via a cysteine to a [4Fe-4S] cluster. Biosynthesis of this unique metallocofactor is accomplished by three maturase enzymes denoted HydE, HydF, and HydG. HydE and HydG belong to the radical S-adenosylmethionine superfamily of enzymes and synthesize the nonprotein ligands of the H-cluster. These enzymes interact with HydF, a GTPase that acts as a scaffold or carrier protein during 2Fe subcluster assembly. Prior characterization of HydF demonstrated the protein exists in both dimeric and tetrameric states and coordinates both [4Fe-4S]2+/+ and [2Fe-2S]2+/+ clusters [Shepard, E. M., Byer, A. S., Betz, J. N., Peters, J. W., and Broderick, J. B. (2016) Biochemistry 55, 3514-3527]. Herein, electron paramagnetic resonance (EPR) is utilized to characterize the [2Fe-2S]+ and [4Fe-4S]+ clusters bound to HydF. Examination of spin relaxation times using pulsed EPR in HydF samples exhibiting both [4Fe-4S]+ and [2Fe-2S]+ cluster EPR signals supports a model in which the two cluster types either are bound to widely separated sites on HydF or are not simultaneously bound to a single HydF species. Gel filtration chromatographic analyses of HydF spectroscopic samples strongly suggest the [2Fe-2S]+ and [4Fe-4S]+ clusters are coordinated to the dimeric form of the protein. Lastly, we examined the 2Fe subcluster-loaded form of HydF and showed the dimeric state is responsible for [FeFe]-hydrogenase activation. Together, the results indicate a specific role for the HydF dimer in the H-cluster biosynthesis pathway.
Collapse
Affiliation(s)
- Eric M Shepard
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Amanda S Byer
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Priyanka Aggarwal
- Department of Chemistry and Biochemistry, University of Denver , Denver, Colorado 80208, United States
| | - Jeremiah N Betz
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Anna G Scott
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Krista A Shisler
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Robert J Usselman
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver , Denver, Colorado 80208, United States
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver , Denver, Colorado 80208, United States
| | - Joan B Broderick
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| |
Collapse
|
5
|
|
6
|
Yang Z, Jiménez-Osés G, López CJ, Bridges MD, Houk KN, Hubbell WL. Long-range distance measurements in proteins at physiological temperatures using saturation recovery EPR spectroscopy. J Am Chem Soc 2014; 136:15356-65. [PMID: 25290172 PMCID: PMC4227719 DOI: 10.1021/ja5083206] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Indexed: 11/28/2022]
Abstract
Site-directed spin labeling in combination with EPR is a powerful method for providing distances on the nm scale in biological systems. The most popular strategy, double electron-electron resonance (DEER), is carried out at cryogenic temperatures (50-80 K) to increase the short spin-spin relaxation time (T2) upon which the technique relies. A challenge is to measure long-range distances (20-60 Å) in proteins near physiological temperatures. Toward this goal we are investigating an alternative approach based on the distance-dependent enhancement of spin-lattice relaxation rate (T1(-1)) of a nitroxide spin label by a paramagnetic metal. With a commonly used nitroxide side chain (R1) and Cu(2+), it has been found that interspin distances ≤25 Å can be determined in this way (Jun et al. Biochemistry 2006, 45, 11666). Here, the upper limit of the accessible distance is extended to ≈40 Å using spin labels with long T1, a high-affinity 5-residue Cu(2+) binding loop inserted into the protein sequence, and pulsed saturation recovery to measure relaxation enhancement. Time-domain Cu(2+) electron paramagnetic resonance, quantum mechanical calculations, and molecular dynamics simulations provide information on the structure and geometry of the Cu(2+) loop and indicate that the metal ion is well-localized in the protein. An important aspect of these studies is that both Cu(2+)/nitroxide DEER at cryogenic temperatures and T1 relaxation measurements at room temperature can be carried out on the same sample, allowing both validation of the relaxation method and assessment of the effect of freezing on protein structure.
Collapse
Affiliation(s)
- Zhongyu Yang
- Jules Stein Eye Institute and Department of
Chemistry and Biochemistry, University of
California, Los Angeles, California 90095, United States
| | - Gonzalo Jiménez-Osés
- Jules Stein Eye Institute and Department of
Chemistry and Biochemistry, University of
California, Los Angeles, California 90095, United States
| | - Carlos J. López
- Jules Stein Eye Institute and Department of
Chemistry and Biochemistry, University of
California, Los Angeles, California 90095, United States
| | | | - K. N. Houk
- Jules Stein Eye Institute and Department of
Chemistry and Biochemistry, University of
California, Los Angeles, California 90095, United States
| | - Wayne L. Hubbell
- Jules Stein Eye Institute and Department of
Chemistry and Biochemistry, University of
California, Los Angeles, California 90095, United States
| |
Collapse
|
7
|
Pietras R, Sarewicz M, Osyczka A. Molecular organization of cytochrome c2 near the binding domain of cytochrome bc1 studied by electron spin-lattice relaxation enhancement. J Phys Chem B 2014; 118:6634-43. [PMID: 24845964 PMCID: PMC4065165 DOI: 10.1021/jp503339g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
Measurements
of specific interactions between proteins are challenging.
In redox systems, interactions involve surfaces near the attachment
sites of cofactors engaged in interprotein electron transfer (ET).
Here we analyzed binding of cytochrome c2 to cytochrome bc1 by measuring paramagnetic
relaxation enhancement (PRE) of spin label (SL) attached to cytochrome c2. PRE was exclusively induced by the iron atom
of heme c1 of cytochrome bc1, which guaranteed that only the configurations with
SL to heme c1 distances up to ∼30
Å were detected. Changes in PRE were used to qualitatively and
quantitatively characterize the binding. Our data suggest that at
low ionic strength and under an excess of cytochrome c2 over cytochrome bc1, several
cytochrome c2 molecules gather near the
binding domain forming a “cloud” of molecules. When
the cytochrome bc1 concentration increases,
the cloud disperses to populate additional available binding domains.
An increase in ionic strength weakens the attractive forces and the
average distance between cytochrome c2 and cytochrome bc1 increases. The spatial
arrangement of the protein complex at various ionic strengths is different.
Above 150 mM NaCl the lifetime of the complexes becomes so short that
they are undetectable. All together the results indicate that cytochrome c2 molecules, over the range of salt concentration
encompassing physiological ionic strength, do not form stable, long-lived
complexes but rather constantly collide with the surface of cytochrome bc1 and ET takes place coincidentally with one
of these collisions.
Collapse
Affiliation(s)
- Rafał Pietras
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , 30-387 Kraków, Poland
| | | | | |
Collapse
|
8
|
Vennam PR, Fisher N, Krzyaniak MD, Kramer DM, Bowman MK. A caged, destabilized, free radical intermediate in the q-cycle. Chembiochem 2013; 14:1745-53. [PMID: 24009094 PMCID: PMC3951126 DOI: 10.1002/cbic.201300265] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Indexed: 11/12/2022]
Abstract
The Rieske/cytochrome b complexes, also known as cytochrome bc complexes, catalyze a unique oxidant-induced reduction reaction at their quinol oxidase (Qo ) sites, in which substrate hydroquinone reduces two distinct electron transfer chains, one through a series of high-potential electron carriers, the second through low-potential cytochrome b. This reaction is a critical step in energy storage by the Q-cycle. The semiquinone intermediate in this reaction can reduce O2 to produce deleterious superoxide. It is yet unknown how the enzyme controls this reaction, though numerous models have been proposed. In previous work, we trapped a Q-cycle semiquinone anion intermediate, termed SQo , in bacterial cytochrome bc1 by rapid freeze-quenching. In this work, we apply pulsed-EPR techniques to determine the location and properties of SQo in the mitochondrial complex. In contrast to semiquinone intermediates in other enzymes, SQo is not thermodynamically stabilized, and can even be destabilized with respect to solution. It is trapped in Qo at a site that is distinct from previously described inhibitor-binding sites, yet sufficiently close to cytochrome bL to allow rapid electron transfer. The binding site and EPR analyses show that SQo is not stabilized by hydrogen bonds to proteins. The formation of SQo involves "stripping" of both substrate -OH protons during the initial oxidation step, as well as conformational changes of the semiquinone and Qo proteins. The resulting charged radical is kinetically trapped, rather than thermodynamically stabilized (as in most enzymatic semiquinone species), conserving redox energy to drive electron transfer to cytochrome bL while minimizing certain Q-cycle bypass reactions, including oxidation of prereduced cytochrome b and reduction of O2 .
Collapse
Affiliation(s)
- Preethi R. Vennam
- Chemistry Department University of Alabama Box 870336, Tuscaloosa, AL 35487, United States
| | - Nicholas Fisher
- Biochemistry and Molecular Biology and the MSU-DOE Plant Research Laboratory Michigan State University East Lansing, MI 48824, United States
| | - Matthew D. Krzyaniak
- Chemistry Department University of Alabama Box 870336, Tuscaloosa, AL 35487, United States
| | - David M. Kramer
- Biochemistry and Molecular Biology and the MSU-DOE Plant Research Laboratory Michigan State University East Lansing, MI 48824, United States
| | - Michael K. Bowman
- Chemistry Department University of Alabama Box 870336, Tuscaloosa, AL 35487, United States
| |
Collapse
|
9
|
Razzaghi S, Brooks EK, Bordignon E, Hubbell WL, Yulikov M, Jeschke G. EPR relaxation-enhancement-based distance measurements on orthogonally spin-labeled T4-lysozyme. Chembiochem 2013; 14:1883-90. [PMID: 23775845 PMCID: PMC3804414 DOI: 10.1002/cbic.201300165] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Indexed: 12/20/2022]
Abstract
Lanthanide-induced enhancement of the longitudinal relaxation of nitroxide radicals in combination with orthogonal site-directed spin labeling is presented as a systematic distance measurement method intended for studies of bio-macromolecules and bio-macromolecular complexes. The approach is tested on a water-soluble protein (T4-lysozyme) for two different commercially available lanthanide labels, and complemented by previously reported data on a membrane-inserted polypeptide. Single temperature measurements are shown to be sufficient for reliable distance determination, with an upper measurable distance limit of about 5-6 nm. The extracted averaged distances represent the closest approach in Ln(III) -nitroxide distance distributions. Studies of conformational changes and of bio-macromolecule association-dissociation are proposed as possible application area of the relaxation-enhancement-based distance measurements.
Collapse
Affiliation(s)
| | - Evan K. Brooks
- Jules Stein Eye Institute and the Department of Chemistry and Biochemistry, University of California, Los Angeles, USA
| | | | - Wayne L. Hubbell
- Jules Stein Eye Institute and the Department of Chemistry and Biochemistry, University of California, Los Angeles, USA
| | - Maxim Yulikov
- Laboratory of Physical Chemistry, ETH Zurich, Switzerland
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, ETH Zurich, Switzerland
| |
Collapse
|
10
|
Lueders P, Jäger H, Hemminga MA, Jeschke G, Yulikov M. Multiple Pathway Relaxation Enhancement in the System Composed of Three Paramagnetic Species: Nitroxide Radical-Ln(3+)-O2. J Phys Chem Lett 2012; 3:1336-1340. [PMID: 26286779 DOI: 10.1021/jz300316q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Longitudinal relaxation of nitroxide spin-labels has been measured for a membrane-incorporated α-helical polypeptide in the presence and absence of residual amounts of membrane-dissolved O2 and paramagnetic Dy(3+) ions. Such a model system, containing three different types of paramagnetic species, provides an important example of nonadditivity of two different relaxation channels for the nitroxide spins.
Collapse
Affiliation(s)
- Petra Lueders
- †Laboratory of Physical Chemistry, ETH, Zurich, Switzerland
| | - Heidrun Jäger
- ‡Laboratory of Biophysics,Wageningen University, Wageningen, The Netherlands
| | - Marcus A Hemminga
- ‡Laboratory of Biophysics,Wageningen University, Wageningen, The Netherlands
| | - Gunnar Jeschke
- †Laboratory of Physical Chemistry, ETH, Zurich, Switzerland
| | - Maxim Yulikov
- †Laboratory of Physical Chemistry, ETH, Zurich, Switzerland
| |
Collapse
|
11
|
Kveder M, Jokić M, Rakvin B. Fast motion in molecular solids at low temperatures: Evidence from a pulsed electron paramagnetic resonance study of nitroxyl radical relaxation. J Chem Phys 2011; 134:044531. [DOI: 10.1063/1.3533798] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Milikisyants S, Scarpelli F, Finiguerra MG, Ubbink M, Huber M. A pulsed EPR method to determine distances between paramagnetic centers with strong spectral anisotropy and radicals: the dead-time free RIDME sequence. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2009; 201:48-56. [PMID: 19758831 DOI: 10.1016/j.jmr.2009.08.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 07/15/2009] [Accepted: 08/07/2009] [Indexed: 05/09/2023]
Abstract
Methods to determine distances between paramagnetic metal centers and radicals are scarce. This is unfortunate because paramagnetic metal centers are frequent in biological systems and so far have not been employed much as distance markers. Successful pulse sequences that directly target the dipolar interactions cannot be applied to paramagnetic metal centers with fast relaxation rates and large g-anisotropy, if no echos can be detected and the excitation bandwidth is not sufficient to cover a sufficiently large part of the spectrum. The RIDME method Kulik et al. (2002) [20] circumvents this problem by making use of the T(1)-induced spin-flip of the transition-metal ion. Designed to measure distance between such a fast relaxing metal center and a radical, it suffers from a dead time problem. We show that this is severe because the anisotropy of the metal center broadens the dipolar curves, which therefore, only can be analyzed if the full curve is known. Here, we introduce five-pulse RIDME (5p-RIDME) that is intrinsically dead-time free. Proper functioning of the sequence is demonstrated on a nitroxide biradical. The distance between a low-spin Fe(III) center and a spin label in spin-labeled cytochrome f shows the complete dipolar trace of a transition-metal ion center and a spin label, yielding the distance expected from the structure.
Collapse
Affiliation(s)
- Sergey Milikisyants
- Department of Molecular Physics, Huygens Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
13
|
Sarewicz M, Dutka M, Froncisz W, Osyczka A. Magnetic interactions sense changes in distance between heme b(L) and the iron-sulfur cluster in cytochrome bc(1). Biochemistry 2009; 48:5708-20. [PMID: 19415898 PMCID: PMC2697599 DOI: 10.1021/bi900511b] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
During the operation of cytochrome bc1, a key enzyme of biological energy conversion, the iron−sulfur head domain of one of the subunits of the catalytic core undergoes a large-scale movement from the catalytic quinone oxidation Qo site to cytochrome c1. This changes a distance between the two iron−two sulfur (FeS) cluster and other cofactors of the redox chains. Although the role and the mechanism of this movement have been intensely studied, they both remain poorly understood, partly because the movement itself is not easily traceable experimentally. Here, we take advantage of magnetic interactions between the reduced FeS cluster and oxidized heme bL to use dipolar enhancement of phase relaxation of the FeS cluster as a spectroscopic parameter which with a unique clarity and specificity senses changes in the distance between those two cofactors. The dipolar relaxation curves measured by EPR at Q-band in a glass state of frozen solution (i.e., under the conditions trapping a dynamic distribution of FeS positions that existed in a liquid phase) of isolated cytochrome bc1 were compared with the curves calculated for the FeS cluster occupying distinct positions in various crystals of cytochrome bc1. This comparison revealed the existence of a broad distribution of the FeS positions in noninhibited cytochrome bc1 and demonstrated that the average equilibrium position is modifiable by inhibitors or mutations. To explain the results, we assume that changes in the equilibrium distribution of the FeS positions are the result of modifications of the orienting potential gradient in which the diffusion of the FeS head domain takes place. The measured changes in the phase relaxation enhancement provide the first direct experimental description of changes in the strength of dipolar coupling between the FeS cluster and heme bL.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| | | | | | | |
Collapse
|