1
|
Yu Y, Bovenhuis H, Wu Z, Laport K, Groenen MAM, Crooijmans RPMA. Deleterious Mutations in the TPO Gene Associated with Familial Thyroid Follicular Cell Carcinoma in Dutch German Longhaired Pointers. Genes (Basel) 2021; 12:997. [PMID: 34209805 PMCID: PMC8306087 DOI: 10.3390/genes12070997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 12/26/2022] Open
Abstract
Familial thyroid cancer originating from follicular cells accounts for 5-15% of all the thyroid carcinoma cases in humans. Previously, we described thyroid follicular cell carcinomas in a large number of the Dutch German longhaired pointers (GLPs) with a likely autosomal recessive inheritance pattern. Here, we investigated the genetic causes of the disease using a combined approach of genome-wide association study and runs of homozygosity (ROH) analysis based on 170k SNP array genotype data and whole-genome sequences. A region 0-5 Mb on chromosome 17 was identified to be associated with the disease. Whole-genome sequencing revealed many mutations fitting the recessive inheritance pattern in this region including two deleterious mutations in the TPO gene, chr17:800788G>A (686F>V) and chr17:805276C>T (845T>M). These two SNP were subsequently genotyped in 186 GLPs (59 affected and 127 unaffected) and confirmed to be highly associated with the disease. The recessive genotypes had higher relative risks of 16.94 and 16.64 compared to homozygous genotypes for the reference alleles, respectively. This study provides novel insight into the genetic causes leading to the familial thyroid follicular cell carcinoma, and we were able to develop a genetic test to screen susceptible dogs.
Collapse
Affiliation(s)
| | | | | | | | | | - Richard P. M. A. Crooijmans
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (Y.Y.); (H.B.); (Z.W.); (K.L.); (M.A.M.G.)
| |
Collapse
|
2
|
Figlioli G, Elisei R, Romei C, Melaiu O, Cipollini M, Bambi F, Chen B, Köhler A, Cristaudo A, Hemminki K, Gemignani F, Försti A, Landi S. A Comprehensive Meta-analysis of Case-Control Association Studies to Evaluate Polymorphisms Associated with the Risk of Differentiated Thyroid Carcinoma. Cancer Epidemiol Biomarkers Prev 2016; 25:700-13. [PMID: 26843521 DOI: 10.1158/1055-9965.epi-15-0652] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 01/23/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Linkage analyses and association studies suggested that inherited genetic variations play a role in the development of differentiated thyroid carcinoma (DTC). METHODS We combined the results from a genome-wide association study (GWAS) performed by our group and from published studies on DTC. With a first approach, we evaluated whether a SNP published as associated with the risk of DTC could replicate in our GWAS (using FDR as adjustment for multiple comparisons). With the second approach, meta-analyses were performed between literature and GWAS when both sources suggested an association, increasing the statistical power of the analysis. RESULTS rs1799814 (CYP1A1), rs1121980 (FTO), and 3 SNPs within 9q22 (rs965513, rs7048394, and rs894673) replicated the associations described in the literature. In addition, the meta-analyses between literature and GWAS revealed 10 more SNPs within 9q22, six within FTO, two within SOD1, and single variations within HUS1, WDR3, UGT2B7, ALOX12, TICAM1, ATG16L1, HDAC4, PIK3CA, SULF1, IL11RA, VEGFA, and 1p31.3, 2q35, 8p12, and 14q13. CONCLUSION This analysis confirmed several published risk loci that could be involved in DTC predisposition. IMPACT These findings provide evidence for the role of germline variants in DTC etiology and are consistent with a polygenic model of the disease. Cancer Epidemiol Biomarkers Prev; 25(4); 700-13. ©2016 AACR.
Collapse
Affiliation(s)
- Gisella Figlioli
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. Department of Biology, University of Pisa, Pisa, Italy
| | - Rossella Elisei
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - Cristina Romei
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | | | | | - Franco Bambi
- Blood Centre, Azienda Ospedaliero Universitaria A. Meyer, Firenze, Italy
| | - Bowang Chen
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aleksandra Köhler
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. II Medizinische Klinik, Gastrologie, Onkologie und Palliativmedizin, St.Agnes-Hospital Bocholt, Bocholt, Germany
| | - Alfonso Cristaudo
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - Kari Hemminki
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. Center for Primary Health Care Research, Clinical Research Center, Lund University, Malmö, Sweden
| | | | - Asta Försti
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. Center for Primary Health Care Research, Clinical Research Center, Lund University, Malmö, Sweden.
| | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy.
| |
Collapse
|
3
|
Handkiewicz-Junak D, Swierniak M, Rusinek D, Oczko-Wojciechowska M, Dom G, Maenhaut C, Unger K, Detours V, Bogdanova T, Thomas G, Likhtarov I, Jaksik R, Kowalska M, Chmielik E, Jarzab M, Swierniak A, Jarzab B. Gene signature of the post-Chernobyl papillary thyroid cancer. Eur J Nucl Med Mol Imaging 2016; 43:1267-77. [PMID: 26810418 PMCID: PMC4869750 DOI: 10.1007/s00259-015-3303-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/29/2015] [Indexed: 11/29/2022]
Abstract
Purpose Following the nuclear accidents in Chernobyl and later in Fukushima, the nuclear community has been faced with important issues concerning how to search for and diagnose biological consequences of low-dose internal radiation contamination. Although after the Chernobyl accident an increase in childhood papillary thyroid cancer (PTC) was observed, it is still not clear whether the molecular biology of PTCs associated with low-dose radiation exposure differs from that of sporadic PTC. Methods We investigated tissue samples from 65 children/young adults with PTC using DNA microarray (Affymetrix, Human Genome U133 2.0 Plus) with the aim of identifying molecular differences between radiation-induced (exposed to Chernobyl radiation, ECR) and sporadic PTC. All participants were resident in the same region so that confounding factors related to genetics or environment were minimized. Results There were small but significant differences in the gene expression profiles between ECR and non-ECR PTC (global test, p < 0.01), with 300 differently expressed probe sets (p < 0.001) corresponding to 239 genes. Multifactorial analysis of variance showed that besides radiation exposure history, the BRAF mutation exhibited independent effects on the PTC expression profile; the histological subset and patient age at diagnosis had negligible effects. Ten genes (PPME1, HDAC11, SOCS7, CIC, THRA, ERBB2, PPP1R9A, HDGF, RAD51AP1, and CDK1) from the 19 investigated with quantitative RT-PCR were confirmed as being associated with radiation exposure in an independent, validation set of samples. Conclusion Significant, but subtle, differences in gene expression in the post-Chernobyl PTC are associated with previous low-dose radiation exposure. Electronic supplementary material The online version of this article (doi:10.1007/s00259-015-3303-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daria Handkiewicz-Junak
- Department of Nuclear Medicine and Endocrine Oncology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Michal Swierniak
- Department of Nuclear Medicine and Endocrine Oncology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-101, Gliwice, Poland.,Genomic Medicine, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Dagmara Rusinek
- Department of Nuclear Medicine and Endocrine Oncology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Małgorzata Oczko-Wojciechowska
- Department of Nuclear Medicine and Endocrine Oncology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Genevieve Dom
- Institute of Interdisciplinary Research, Université libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Carine Maenhaut
- Institute of Interdisciplinary Research, Université libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Kristian Unger
- Human Cancer Studies Group, Division of Surgery and Cancer, Imperial College London Hammersmith Hospital, London, UK.,Research Unit Radiation Cytogenetics, Helmholtz-Zentrum, Munich, Germany
| | - Vincent Detours
- Institute of Interdisciplinary Research, Université libre de Bruxelles (ULB), Bruxelles, Belgium
| | | | - Geraldine Thomas
- Human Cancer Studies Group, Division of Surgery and Cancer, Imperial College London Hammersmith Hospital, London, UK
| | - Ilya Likhtarov
- Radiation Protection Institute, Academy of Technological Sciences of Ukraine, Kiev, Ukraine
| | - Roman Jaksik
- Systems Engineering Group, Faculty of Automatic Control, Electronics and Informatics, Silesian University of Technology, Gliwice, Poland
| | - Malgorzata Kowalska
- Department of Nuclear Medicine and Endocrine Oncology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Ewa Chmielik
- Department of Tumour Pathology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Michal Jarzab
- IIIrd Department of Radiation Therapy, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Andrzej Swierniak
- Department of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Barbara Jarzab
- Department of Nuclear Medicine and Endocrine Oncology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-101, Gliwice, Poland.
| |
Collapse
|
4
|
Cipollini M, Pastor S, Gemignani F, Castell J, Garritano S, Bonotti A, Biarnés J, Figlioli G, Romei C, Marcos R, Cristaudo A, Elisei R, Landi S, Velázquez A. TPO genetic variants and risk of differentiated thyroid carcinoma in two European populations. Int J Cancer 2013; 133:2843-51. [PMID: 23754668 DOI: 10.1002/ijc.28317] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/17/2013] [Indexed: 12/20/2022]
Abstract
Thyroid cancer risk involves the interaction of genetic and environmental factors. The thyroperoxidase (TPO) has a key role in the iodine metabolism, being essential for the thyroid function. Mutations in the TPO gene are common in congenital hypothyroidism, and there are also signs of the implication of TPO in thyroid cancer. We performed a case-control association study of genetic variants in TPO and differentiated thyroid carcinoma (DTC) in 1,586 DTC patients and 1,769 controls including two European populations (Italy: 1,190 DTC and 1,290 controls; Spain: 396 DTC and 479 controls). Multivariate logistic regression analyses were performed separately for each population and each single-nucleotide polymorphism (SNP). From the three studied polymorphisms, significant associations were detected between DTC and rs2048722 and rs732609 in both populations (p < 0.05). In the Italian population, both SNPs showed a negative association (rs2048722, odds ratio [OR] = 0.79, 95% confidence interval [CI] = 0.63-1.00, p = 0.045; rs732609, OR = 0.72, 95% CI = 0.55-0.94, p = 0.016), whereas in the Spanish population, these SNPs showed a positive association (rs2048722, OR = 1.39, 95% CI = 1.03-1.89, p = 0.033; rs732609, OR = 1.41, 95% CI = 1.06-1.87, p = 0.018). The corresponding associations for papillary or follicular thyroid cancer were similar to those for all DTC, within population. No association was detected for the third TPO polymorphism in the Italian and the Spanish populations. Our results, for the first time, point to TPO as a gene involved in the risk of DTC, and suggest the importance of interactions between TPO variants and other unidentified population-specific factors in determining thyroid cancer risk.
Collapse
|