1
|
Zamora-Bello I, Martínez A, Beltrán-Parrazal L, Santiago-Roque I, Juárez-Aguilar E, López-Meraz ML. Evaluation of the anticonvulsant and neuroprotective effect of intracerebral administration of growth hormone in rats. Neurologia 2024; 39:1-9. [PMID: 38161069 DOI: 10.1016/j.nrleng.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/01/2021] [Indexed: 01/03/2024] Open
Abstract
INTRODUCTION The growth hormone (GH) has been reported as a crucial neuronal survival factor in the hippocampus against insults of diverse nature. Status epilepticus (SE) is a prolonged seizure that produces extensive neuronal cell death. The goal of this study was to evaluate the effect of intracerebroventricular administration of GH on seizure severity and SE-induced hippocampal neurodegeneration. METHODOLOGY Adult male rats were implanted with a guide cannula in the left ventricle and different amounts of GH (70, 120 or 220ng/3μl) were microinjected for 5 days; artificial cerebrospinal fluid was used as the vehicle. Seizures were induced by the lithium-pilocarpine model (3mEq/kg LiCl and 30mg/kg pilocarpine hydrochloride) one day after the last GH administration. Neuronal injury was assessed by Fluoro-Jade B (F-JB) staining. RESULTS Rats injected with 120ng of GH did not had SE after 30mg/kg pilocarpine, they required a higher number of pilocarpine injections to develop SE than the rats pretreated with the vehicle, 70ng or 220ng GH. Prefrontal and parietal cortex EEG recordings confirmed that latency to generalized seizures and SE was also significantly higher in the 120ng group when compared with all the experimental groups. FJ-B positive cells were detected in the hippocampus after SE in all rats, and no significant differences in the number of F-JB cells in the CA1 area and the hilus was observed between experimental groups. CONCLUSION Our results indicate that, although GH has an anticonvulsive effect in the lithium-pilocarpine model of SE, it does not exert hippocampal neuroprotection after SE.
Collapse
Affiliation(s)
- I Zamora-Bello
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque Xalapa, Veracruz C.P. 91010, Mexico
| | - A Martínez
- Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México Xochimilco No. 101, Col. San Lorenzo Huipulco, Tlalpan, Ciudad de México C.P. 14370, Mexico
| | - L Beltrán-Parrazal
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque Xalapa, Veracruz C.P. 91010, Mexico
| | - I Santiago-Roque
- Laboratorio de Neurotoxicología, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque Xalapa, Xalapa, Veracruz C.P. 91010, Mexico
| | - E Juárez-Aguilar
- Instituto de Ciencias de la Salud, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Col. Industrial Animas, Xalapa, Veracruz C.P. 91190, Mexico
| | - M L López-Meraz
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque Xalapa, Veracruz C.P. 91010, Mexico.
| |
Collapse
|
2
|
Zamora-Bello I, Martínez A, Beltrán-Parrazal L, Santiago-Roque I, Juárez-Aguilar E, López-Meraz ML. Evaluation of the anticonvulsant and neuroprotective effect of intracerebral administration of growth hormone in rats. Neurologia 2021; 39:S0213-4853(21)00074-8. [PMID: 34030900 DOI: 10.1016/j.nrl.2021.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION The growth hormone (GH) has been reported as a crucial neuronal survival factor in the hippocampus against insults of diverse nature. Status epilepticus (SE) is a prolonged seizure that produces extensive neuronal cell death. The goal of this study was to evaluate the effect of intracerebroventricular administration of GH on seizure severity and SE-induced hippocampal neurodegeneration. METHODOLOGY Adult male rats were implanted with a guide cannula in the left ventricle and different amounts of GH (70, 120 or 220ng/3μl) were microinjected for 5 days; artificial cerebrospinal fluid was used as the vehicle. Seizures were induced by the lithium-pilocarpine model (3mEq/kg LiCl and 30mg/kg pilocarpine hydrochloride) one day after the last GH administration. Neuronal injury was assessed by Fluoro-Jade B (F-JB) staining. RESULTS Rats injected with 120ng of GH did not had SE after 30mg/kg pilocarpine, they required a higher number of pilocarpine injections to develop SE than the rats pretreated with the vehicle, 70ng or 220ng GH. Prefrontal and parietal cortex EEG recordings confirmed that latency to generalized seizures and SE was also significantly higher in the 120ng group when compared with all the experimental groups. FJ-B positive cells were detected in the hippocampus after SE in all rats, and no significant differences in the number of F-JB cells in the CA1 area and the hilus was observed between experimental groups. CONCLUSION Our results indicate that, although GH has an anticonvulsive effect in the lithium-pilocarpine model of SE, it does not exert hippocampal neuroprotection after SE.
Collapse
Affiliation(s)
- I Zamora-Bello
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque Xalapa, Veracruz C.P. 91010, Mexico
| | - A Martínez
- Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México Xochimilco No. 101, Col. San Lorenzo Huipulco, Tlalpan, Ciudad de México C.P. 14370, Mexico
| | - L Beltrán-Parrazal
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque Xalapa, Veracruz C.P. 91010, Mexico
| | - I Santiago-Roque
- Laboratorio de Neurotoxicología, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque Xalapa, Xalapa, Veracruz C.P. 91010, Mexico
| | - E Juárez-Aguilar
- Instituto de Ciencias de la Salud, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Col. Industrial Animas, Xalapa, Veracruz C.P. 91190, Mexico
| | - M L López-Meraz
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque Xalapa, Veracruz C.P. 91010, Mexico.
| |
Collapse
|
3
|
Baltazar-Lara R, Ávila-Mendoza J, Martínez-Moreno CG, Carranza M, Pech-Pool S, Vázquez-Martínez O, Díaz-Muñoz M, Luna M, Arámburo C. Neuroprotective Effects of Growth Hormone (GH) and Insulin-Like Growth Factor Type 1 (IGF-1) after Hypoxic-Ischemic Injury in Chicken Cerebellar Cell Cultures. Int J Mol Sci 2020; 22:ijms22010256. [PMID: 33383827 PMCID: PMC7795313 DOI: 10.3390/ijms22010256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
It has been reported that growth hormone (GH) and insulin-like growth factor 1 (IGF-1) exert protective and regenerative actions in response to neural damage. It is also known that these peptides are expressed locally in nervous tissues. When the central nervous system (CNS) is exposed to hypoxia-ischemia (HI), both GH and IGF-1 are upregulated in several brain areas. In this study, we explored the neuroprotective effects of GH and IGF-1 administration as well as the involvement of these endogenously expressed hormones in embryonic chicken cerebellar cell cultures exposed to an acute HI injury. To induce neural damage, primary cultures were first incubated under hypoxic-ischemic (<5% O2, 1g/L glucose) conditions for 12 h (HI), and then incubated under normal oxygenation and glucose conditions (HI + Ox) for another 24 h. GH and IGF-1 were added either during or after HI, and their effect upon cell viability, apoptosis, or necrosis was evaluated. In comparison with normal controls (Nx, 100%), a significant decrease of cell viability (54.1 ± 2.1%) and substantial increases in caspase-3 activity (178.6 ± 8.7%) and LDH release (538.7 ± 87.8%) were observed in the HI + Ox group. On the other hand, both GH and IGF-1 treatments after injury (HI + Ox) significantly increased cell viability (77.2 ± 4.3% and 72.3 ± 3.9%, respectively) and decreased both caspase-3 activity (118.2 ± 3.8% and 127.5 ± 6.6%, respectively) and LDH release (180.3 ± 21.8% and 261.6 ± 33.9%, respectively). Incubation under HI + Ox conditions provoked an important increase in the local expression of GH (3.2-fold) and IGF-1 (2.5-fold) mRNAs. However, GH gene silencing with a specific small-interfering RNAs (siRNAs) decreased both GH and IGF-1 mRNA expression (1.7-fold and 0.9-fold, respectively) in the HI + Ox group, indicating that GH regulates IGF-1 expression under these incubation conditions. In addition, GH knockdown significantly reduced cell viability (35.9 ± 2.1%) and substantially increased necrosis, as determined by LDH release (1011 ± 276.6%). In contrast, treatments with GH and IGF-1 stimulated a partial recovery of cell viability (45.2 ± 3.7% and 53.7 ± 3.2%) and significantly diminished the release of LDH (320.1 ± 25.4% and 421.7 ± 62.2%), respectively. Our results show that GH, either exogenously administered and/or locally expressed, can act as a neuroprotective factor in response to hypoxic-ischemic injury, and that this effect may be mediated, at least partially, through IGF-1 expression.
Collapse
Affiliation(s)
- Rosario Baltazar-Lara
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (R.B.-L.); (J.Á.-M.); (C.G.M.-M.); (M.C.); (S.P.-P.); (O.V.-M.); (M.D.-M.)
| | - José Ávila-Mendoza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (R.B.-L.); (J.Á.-M.); (C.G.M.-M.); (M.C.); (S.P.-P.); (O.V.-M.); (M.D.-M.)
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Carlos G. Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (R.B.-L.); (J.Á.-M.); (C.G.M.-M.); (M.C.); (S.P.-P.); (O.V.-M.); (M.D.-M.)
| | - Martha Carranza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (R.B.-L.); (J.Á.-M.); (C.G.M.-M.); (M.C.); (S.P.-P.); (O.V.-M.); (M.D.-M.)
| | - Santiago Pech-Pool
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (R.B.-L.); (J.Á.-M.); (C.G.M.-M.); (M.C.); (S.P.-P.); (O.V.-M.); (M.D.-M.)
| | - Olivia Vázquez-Martínez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (R.B.-L.); (J.Á.-M.); (C.G.M.-M.); (M.C.); (S.P.-P.); (O.V.-M.); (M.D.-M.)
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (R.B.-L.); (J.Á.-M.); (C.G.M.-M.); (M.C.); (S.P.-P.); (O.V.-M.); (M.D.-M.)
| | - Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (R.B.-L.); (J.Á.-M.); (C.G.M.-M.); (M.C.); (S.P.-P.); (O.V.-M.); (M.D.-M.)
- Correspondence: (M.L.); (C.A.); Tel.: +52-55-5623-4066 (M.L.); +52-55-5623-4065 (C.A.); Fax: +52-55-5623-4005 (M.L. & C.A.)
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (R.B.-L.); (J.Á.-M.); (C.G.M.-M.); (M.C.); (S.P.-P.); (O.V.-M.); (M.D.-M.)
- Correspondence: (M.L.); (C.A.); Tel.: +52-55-5623-4066 (M.L.); +52-55-5623-4065 (C.A.); Fax: +52-55-5623-4005 (M.L. & C.A.)
| |
Collapse
|
4
|
Md Zemberi NFN, Ismail MM, Abdullah MFIL. Exercise Interventions as the Primary Treatment for Depression: Evidence from a Narrative Review. Malays J Med Sci 2020; 27:5-23. [PMID: 33154698 PMCID: PMC7605827 DOI: 10.21315/mjms2020.27.5.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/09/2020] [Indexed: 02/06/2023] Open
Abstract
There is an increasing evidence supporting the efficacy of exercise interventions in the treatment of depression, which is a growing global health concern. However, data on the efficacy of exercise as the primary treatment for depression are scarce. This narrative review explored the efficacy of exercise interventions as the primary treatment for depressive disorders. A comprehensive search for English-language literature published between January 1965 and November 2019 was conducted via PubMed, Google Scholar, Scopus, Web of Science, PsycINFO, EMBASE, Cochrane database and Medline. Thirteen randomised control trials (RCTs) were included in the final analysis. Their results indicated that supervised aerobic exercise and high-intensity progressive resistance training (PRT) were effective in ameliorating depressive symptoms as the primary treatment compared with control groups, but they were not superior to other active treatments, such as antidepressants and cognitive behavioural therapy. Aerobic exercise and high-intensity PRT may be a promising primary treatment for depression as they may induce biopsychosocial effects (effects on neurotrophic factor, pro-inflammatory cytokines, monoamine, the hypothalamic-pituitary-adrenal axis, self-efficacy, mastery experience, adaptive coping and social interaction), which may ameliorate the severity of depressive symptoms. However, future RCTs with more comprehensive and well-designed methodologies are warranted to confirm our findings.
Collapse
Affiliation(s)
- Nur Fatin Nabilah Md Zemberi
- Lifestyle Science Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, Malaysia
| | - Muhammad Mokhzani Ismail
- Lifestyle Science Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, Malaysia
| | | |
Collapse
|
5
|
Toriz CG, Melo AI, Solano-Agama C, Gómez-Domínguez EG, Martínez-Muñoz MDLA, Castañeda-Obeso J, Vera-Aguilar E, Aguirre-Benítez EL, Romero-Aguilar L, González-del Pliego M, Jiménez-Estrada I, Luna M, Pardo JP, Camacho J, Mendoza-Garrido ME. Physiological changes of growth hormone during lactation in pup rats artificially reared. PLoS One 2019; 14:e0220853. [PMID: 31408482 PMCID: PMC6692037 DOI: 10.1371/journal.pone.0220853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 07/24/2019] [Indexed: 12/19/2022] Open
Abstract
During the lactation period, rat pups are fed by the dam, and the patterns of mother-pup interaction change during this period. Additionally, there are changes in feeding; first, mother´s milk is the only food needed for sustenance, and later, it is combined with solid food and water. GH serum concentrations depend on both maternal-pup interaction and energy metabolism. In the artificial rearing (AR) procedure, pups are deprived of mother-pup interaction, and the feeding pattern is controlled. This rearing paradigm has been used in rats to analyze the effects of maternal deprivation on social behavior. In the present study, we analyzed the variation in GH, acylated ghrelin and IGF-1 serum concentrations throughout the lactation period in AR pups. At pnd7, the maternal rearing (MR) pups responded to a 4 h fast with a drop in GH serum concentration, which is a well-known response to maternal deprivation. GH serum levels in the AR pups did not change, suggesting an adaptation phenomenon. A dopamine inhibitory effect of GH secretion was observed in pnd7 cultured somatotropes, suggesting dopamine regulation of GH secretion at this age. Acylated ghrelin serum levels in the AR pups showed an inverted pattern compared to that in the MR pups, which was related to the artificial feeding pattern. IGF-1 serum levels were lower in the AR pups than in MR pups, which was associated with hepatic GH resistance and with low Igf1 mRNA expression at pnd7. Interestingly, at pnd14, both pup groups showed high hepatic Igf1 mRNA expression but low IGF-1 serum levels, and this was inverted at pnd21. However, serum glucose levels were lower in the AR pups at pnd14 but reached the same levels as the MR pups at pnd21. Moreover, hepatomegaly and higher hepatic GH-receptor levels were observed in the AR pups at pnd21, which was in agreement with an absence of a solid food meal. During AR, the pups lost the maternal interaction-stimulated GH secretion, which correlated with lower IGF-1 serum levels during the first week of postnatal development. Later, the AR pups exhibited hepatic responses, in order to satisfy the metabolic demand for the normal weaning, with low carbohydrates levels in their meal.
Collapse
Affiliation(s)
- Cesar G. Toriz
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Angel I. Melo
- Centro de Investigación en Reproducción Animal, CINVESTAV-IPN ‐Universidad Autónoma de Tlaxcala, Ixtacuixtla, Tlaxcala, Mexico
| | - Carmen Solano-Agama
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Edgar Giovanhi Gómez-Domínguez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | | | - Jorge Castañeda-Obeso
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | | | - Elsa Liliana Aguirre-Benítez
- Departamento de Embriología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | - Margarita González-del Pliego
- Departamento de Embriología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Ismael Jiménez-Estrada
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Maricela Luna
- Instituto de Neurobiología, UNAM, Neurobiología Celular y Molecular, Juriquilla, Queretaro, Mexico
| | - Juan Pablo Pardo
- Departamento de Bioquímica, Facultad de Medicina, UNAM, Mexico City, Mexico
| | - Javier Camacho
- Departamento de Farmacología, CINVESTAV-IPN, Mexico City, Mexico
| | - Maria Eugenia Mendoza-Garrido
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
- * E-mail:
| |
Collapse
|
6
|
Dobolyi A, Lékó AH. The insulin-like growth factor-1 system in the adult mammalian brain and its implications in central maternal adaptation. Front Neuroendocrinol 2019; 52:181-194. [PMID: 30552909 DOI: 10.1016/j.yfrne.2018.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/04/2018] [Accepted: 12/11/2018] [Indexed: 12/15/2022]
Abstract
Our knowledge on the bioavailability and actions of insulin-like growth factor-1 (IGF-1) has markedly expanded in recent years as novel mechanisms were discovered on IGF binding proteins (IGFBPs) and their ability to release IGF-1. The new discoveries allowed a better understanding of the endogenous physiological actions of IGF-1 and also its applicability in therapeutics. The focus of the present review is to summarize novel findings on the neuronal, neuroendocrine and neuroplastic actions of IGF-1 in the adult brain. As most of the new regulatory mechanisms were described in the periphery, their implications on brain IGF system will also be covered. In addition, novel findings on the effects of IGF-1 on lactation and maternal behavior are described. Based on the enormous neuroplastic changes related to the peripartum period, IGF-1 has great but largely unexplored potential in maternal adaptation of the brain, which is highlighted in the present review.
Collapse
Affiliation(s)
- Arpád Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary.
| | - András H Lékó
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary; Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary; Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
7
|
Martínez-Moreno CG, Calderón-Vallejo D, Harvey S, Arámburo C, Quintanar JL. Growth Hormone (GH) and Gonadotropin-Releasing Hormone (GnRH) in the Central Nervous System: A Potential Neurological Combinatory Therapy? Int J Mol Sci 2018; 19:E375. [PMID: 29373545 PMCID: PMC5855597 DOI: 10.3390/ijms19020375] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/21/2018] [Accepted: 01/23/2018] [Indexed: 12/15/2022] Open
Abstract
This brief review of the neurological effects of growth hormone (GH) and gonadotropin-releasing hormone (GnRH) in the brain, particularly in the cerebral cortex, hypothalamus, hippocampus, cerebellum, spinal cord, neural retina, and brain tumors, summarizes recent information about their therapeutic potential as treatments for different neuropathologies and neurodegenerative processes. The effect of GH and GnRH (by independent administration) has been associated with beneficial impacts in patients with brain trauma and spinal cord injuries. Both GH and GnRH have demonstrated potent neurotrophic, neuroprotective, and neuroregenerative action. Positive behavioral and cognitive effects are also associated with GH and GnRH administration. Increasing evidence suggests the possibility of a multifactorial therapy that includes both GH and GnRH.
Collapse
Affiliation(s)
- Carlos G Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico.
| | - Denisse Calderón-Vallejo
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes 20131, Mexico.
| | - Steve Harvey
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico.
| | - José Luis Quintanar
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes 20131, Mexico.
| |
Collapse
|