1
|
Tang L, Xu H, Wu T, Wu W, Lu Y, Gu J, Wang X, Zhou M, Chen Q, Sun X, Cai H. Advances in tumor microenvironment and underlying molecular mechanisms of bladder cancer: a systematic review. Discov Oncol 2024; 15:111. [PMID: 38602556 PMCID: PMC11009183 DOI: 10.1007/s12672-024-00902-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/21/2024] [Indexed: 04/12/2024] Open
Abstract
Bladder cancer is one of the most frequent malignant tumors of the urinary system. The prevalence of bladder cancer among men and women is roughly 5:2, and both its incidence and death have been rising steadily over the past few years. At the moment, metastasis and recurrence of advanced bladder cancer-which are believed to be connected to the malfunction of multigene and multilevel cell signaling network-remain the leading causes of bladder cancer-related death. The therapeutic treatment of bladder cancer will be greatly aided by the elucidation of these mechanisms. New concepts for the treatment of bladder cancer have been made possible by the advancement of research technologies and a number of new treatment options, including immunotherapy and targeted therapy. In this paper, we will extensively review the development of the tumor microenvironment and the possible molecular mechanisms of bladder cancer.
Collapse
Affiliation(s)
- Liu Tang
- Department of Nursing, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Haifei Xu
- Department of Urology, Nantong Tumor Hospital and Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Tong Wu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Wenhao Wu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Yuhao Lu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Jijia Gu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Xiaoling Wang
- Department of Urology, Nantong Tumor Hospital and Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Mei Zhou
- Department of Nursing, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.
| | - Qiuyang Chen
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China.
| | - Xuan Sun
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China.
| | - Hongzhou Cai
- Department of Urology, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Sundi D, Collier KA, Yang Y, Diaz DA, Pohar KS, Singer EA, Gupta S, Carson WE, Clinton SK, Li Z, Messing EM. Roles of Androgen Receptor Signaling in Urothelial Carcinoma. Cancers (Basel) 2024; 16:746. [PMID: 38398136 PMCID: PMC10886823 DOI: 10.3390/cancers16040746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Preclinical and clinical data suggest that androgen receptor signaling strongly contributes to bladder cancer development. The roles of the androgen receptor in bladder carcinogenesis have obvious implications for understanding the strong male sex bias in this disease and for potential therapeutic strategies as well. In this review, we summarize what is known about androgen receptor signaling in urothelial carcinoma as well as in tumor-infiltrating immune cells, reviewing preclinical and clinical data. We also highlight clinical trial efforts in this area.
Collapse
Affiliation(s)
- Debasish Sundi
- Department of Urology, Division of Urologic Oncology, Pelotonia Institute for Immuno-Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Katharine A. Collier
- Department of Internal Medicine, Division of Medical Oncology, Pelotonia Institute for Immuno-Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Yuanquan Yang
- Department of Internal Medicine, Division of Medical Oncology, Pelotonia Institute for Immuno-Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Dayssy Alexandra Diaz
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Kamal S. Pohar
- Department of Urology, Division of Urologic Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA (E.A.S.)
| | - Eric A. Singer
- Department of Urology, Division of Urologic Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA (E.A.S.)
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University School of Medicine, The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA;
| | - William E. Carson
- Department of Surgery, Division of Surgical Oncology, Pelotonia Institute for Immuno-Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Steven K. Clinton
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Zihai Li
- Department of Internal Medicine, Division of Medical Oncology, Pelotonia Institute for Immuno-Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Edward M. Messing
- Departments of Urology, Oncology, and Pathology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
3
|
Chahdi A, Jorgez C, Seth A. Regulation of androgen receptor stability by the β 1 Pix/STUB1 complex. FASEB J 2024; 38:e23408. [PMID: 38197270 DOI: 10.1096/fj.202301100r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024]
Abstract
The androgen receptor (AR) is essential in the development and differentiation of testes and male genitalia. AR expression is tightly regulated at the translational and posttranslational levels. AR posttranscriptional regulation is a major determinant of AR availability since AR is a direct target of E3 ubiquitin ligase STUB1. Our work indicated that the Rac/Cdc42 guanosine triphosphatase guanine nucleotide exchange factor, β1 Pix, enhanced AR levels after AR stimulation in HEK293 and HeLa cells. AR stimulation decreased AR ubiquitination which is accompanied by increased β1 Pix binding to AR. Ectopic expression of β1 Pix decreased AR ubiquitination in Tm4 and HEK293 cells. We demonstrated that the formation of a multimolecular complex comprised of AR/β1 Pix/STUB1 responded in a time-dependent manner to AR stimulation. β1 Pix binding dissociated STUB1 from AR and thus prevented STUB1 from catalyzing receptor ubiquitination. β1 Pix enhanced AR transcriptional activity and increased AR target gene expression. Irrespective of treatment, immunofluorescence analysis showed a strong nuclear colocalization of endogenous AR and endogenous βPix in Tm4 cells. However, using Tm4 cell fractionation, AR stimulation decreased βPix/AR association in the cytosolic fraction and increased binding of AR to βPix in the nuclear fraction. To support the role of β1 Pix in androgen regulation, we found that individuals lacking this gene have a significant increase in genitourinary malformations associated with androgen dysfunction. Our data indicate that β1 Pix is an important modulator of AR stability and ligand-dependent AR transcriptional activity. We propose that β1 Pix could serve as a promising therapeutic target to modulate AR signaling.
Collapse
Affiliation(s)
- Ahmed Chahdi
- Department of Surgery, Nemours Children's Health, Orlando, Florida, USA
| | - Carolina Jorgez
- Scott Department of Urology, Baylor College of Medicine, Houston, Texas, USA
| | - Abhishek Seth
- Department of Surgery, Nemours Children's Health, Orlando, Florida, USA
- University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
4
|
Leo J, Dondossola E, Basham KJ, Wilson NR, Alhalabi O, Gao J, Kurnit KC, White MG, McQuade JL, Westin SN, Wellberg EA, Frigo DE. Stranger Things: New Roles and Opportunities for Androgen Receptor in Oncology Beyond Prostate Cancer. Endocrinology 2023; 164:bqad071. [PMID: 37154098 PMCID: PMC10413436 DOI: 10.1210/endocr/bqad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
The androgen receptor (AR) is one of the oldest therapeutic targets in oncology and continues to dominate the treatment landscape for advanced prostate cancer, where nearly all treatment regimens include some form of AR modulation. In this regard, AR remains the central driver of prostate cancer cell biology. Emerging preclinical and clinical data implicate key roles for AR in additional cancer types, thereby expanding the importance of this drug target beyond prostate cancer. In this mini-review, new roles for AR in other cancer types are discussed as well as their potential for treatment with AR-targeted agents. Our understanding of these additional functions for AR in oncology expand this receptor's potential as a therapeutic target and will help guide the development of new treatment approaches.
Collapse
Affiliation(s)
- Javier Leo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Eleonora Dondossola
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kaitlin J Basham
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Nathaniel R Wilson
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Omar Alhalabi
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Katherine C Kurnit
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, The University of Chicago, Chicago, IL 60637, USA
| | - Michael G White
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer L McQuade
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elizabeth A Wellberg
- Department of Pathology, Harold Hamm Diabetes Center, and Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX 77204, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
5
|
Cheng X, Yi X. RNA modification writers pattern in relation to tumor microenvironment and prognosis in prostate cancer. Front Genet 2023; 13:1065424. [PMID: 36744180 PMCID: PMC9889935 DOI: 10.3389/fgene.2022.1065424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/05/2022] [Indexed: 01/19/2023] Open
Abstract
Background: RNA modifications are important in the study of epigenetic regulatory mechanisms in immune responses and tumorigenesis. When RNA writers are mutated or disrupted in expression, the genes associated with the pathways they modify are also disrupted and can activate or repress related pathways, affecting tumorigenesis and progression. However, the potential role of RNA writers in prostate cancer is unclear. Methods: Based on data from three datasets, we describe 26 RNA writers that mediate gene expression and genetic mutation in prostate cancer and assess their expression patterns in 948 prostate cancer samples. Using principal component analysis algorithms, the RM Score was developed to quantify the RNA modification patterns of specific tumors. Results: Two different categories were determined by unsupervised clustering methods, and survival analysis showed significant differences in OS prognosis between these two categories. Differentially expressed genes between the different categories were detected and the RNA writers-mediated scoring model RM_Score were constructed based on this. Also, the RM_Score was analyzed in relation to clinical characteristics, immune infiltration level, drug response, and efficacy of chemotherapy and immunotherapy. Those results confirm that multilayer alterations in epitope-modified RNA writers are associated with patient prognosis and with immune cell infiltration characteristics. Finally, we examined differentially expressed mRNA, lncRNA and miRNA between high and low RM_Score groups, based on which a ceRNA regulatory network was constructed. Conclusion: This work is a comprehensive analysis of modified writers in prostate cancer and identified them to have a role in chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Xu Cheng
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xuanzi Yi
- Department of General Practice, The Third-Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Xuanzi Yi,
| |
Collapse
|
6
|
NEDD4L represses prostate cancer cell proliferation via modulating PHF8 through the ubiquitin-proteasome pathway. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:243-255. [PMID: 36136271 DOI: 10.1007/s12094-022-02933-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/22/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Prostate cancer (PC) is a heterogeneous malignancy that greatly threatens man's health. E3 ubiquitin-protein ligase neural precursor cell expressed developmentally downregulated 4-like (NEDD4L) imparts an regulatory role in various malignancies. This study focused on the modulatory mechanism of NEDD4L in proliferation of prostate cancer cells (PCCs) via regulating histone demethylase plant homeodomain finger protein 8 (PHF8/KDM7B) through the ubiquitin-proteasome system. METHODS The expression levels of NEDD4L, PHF8, H3 lysine 9 dimethylation (H3K9me2) and activating transcription factor 2 (ATF2) in PC tissues and cell lines were detected via real-time quantitative polymerase chain reaction and Western blotting. After transfection of pcDNA3.1-NEDD4L, pcDNA3.1-PHF8, and pcDNA3.1-ATF2 into PCCs, cell proliferation was assessed via the cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assays. Interaction between NEDD4L and PHF8 was identified via the protein immunoprecipitation. The ubiquitination level of PHF8 was determined via the ubiquitination detection. The enrichments of H3K9me2 and PHF8 in the ATF2 promotor region were detected via the chromatin-immunoprecipitation assay. RESULTS PHF8 and ATF2 were highly expressed while NEDD4L was poorly expressed in PC tissues and cells. NEDD4L overexpression reduced proliferation of PCCs. NEDD4Linduced degradation of PHF8 via ubiquitination. PHF8 limited the enrichment of H3K9me2 in the ATF2 promotor region and enhanced ATF2 transcription. Upregulation of PHF8 or ATF2 abolished the inhibitory role of NEDD4L in proliferation of PCCs. CONCLUSION NEDD4L facilitated degradation of PHF8 to limit ATF2 transcription, thereby suppressing proliferation of PCCs.
Collapse
|
7
|
Xu X, Li Y, Wu Y, Wang M, Lu Y, Fang Z, Wang H, Li Y. Increased ATF2 expression predicts poor prognosis and inhibits sorafenib-induced ferroptosis in gastric cancer. Redox Biol 2022; 59:102564. [PMID: 36473315 PMCID: PMC9723522 DOI: 10.1016/j.redox.2022.102564] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Sorafenib, a tyrosine kinase inhibitor, has an important antitumor effect as a ferroptosis inducer in multiple cancers, including gastric cancer (GC). However, the status of sorafenib as a ferroptosis inducer has recently been questioned. There is very limited information about the relationship between ferroptosis and ATF2, and the role of ATF2 in sorafenib-induced ferroptosis has not been studied. In this study, we investigated the role and underlying molecular mechanisms of ATF2 in sorafenib-induced ferroptosis in GC. We found that ATF2 was significantly upregulated in GC tissues and predicted a poor clinical prognosis. Silencing ATF2 significantly inhibited the malignant phenotype of GC cells. In addition, we observed that ATF2 was activated during sorafenib-induced ferroptosis in GC cells. ATF2 knockdown promoted sorafenib-induced ferroptosis, while ATF2 overexpression showed the opposite results in GC cells. Using ChIP-Seq and RNA-Seq, we identified HSPH1 as a target of ATF2 and further validated it by ChIP‒qPCR analysis. HSPH1 can interact with SLC7A11 (cystine/glutamate transporter) and increase its protein stability. Importantly, knockdown of HSPH1 partly reversed the effects caused by ATF2 overexpression on sorafenib-induced ferroptosis in GC cells. In addition, the results from the tumor xenograft model showed that ATF2 knockdown can effectively enhance sorafenib sensitivity in vivo. Collectively, our study reveals a novel mechanism by which sorafenib induces ferroptosis in GC.
Collapse
Affiliation(s)
- Xin Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China,Anhui Medical University, Hefei, 230022, China
| | - Yaxian Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China,Anhui Medical University, Hefei, 230022, China
| | - Youliang Wu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Mingliang Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yida Lu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China,Anhui Medical University, Hefei, 230022, China
| | - Ziqing Fang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China,Anhui Medical University, Hefei, 230022, China
| | - Huizhen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yongxiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
8
|
Xu L, Wang J, Zhang D, Song L, Wu H, Wang J, Miao J, Guo H, Fang S, Si L, Chen J, Wu Y, Wu Y, Wang L, Zhang N, Chard L, Wang Y, Cheng Z. The two-faced role of ATF2 on cisplatin response in gastric cancer depends on p53 context. Cell Biosci 2022; 12:77. [PMID: 35641966 PMCID: PMC9153165 DOI: 10.1186/s13578-022-00802-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/26/2022] [Indexed: 12/24/2022] Open
Abstract
Background Activating transcription factor-2 (ATF2) is a member of the basic leucine zipper family of DNA-binding proteins, which exhibits both oncogenic and tumor suppression activity in different tumors. However, the molecular mechanism of its dual function in cancer chemotherapy especially in gastric cancer has still not been elucidated. Methods The protein expression and location of ATF2 in gastric cancer tissues was detected with immunohistochemistry assay, and the clinical significance was analyzed using TCGA and GEO database. The activation and impact of ATF2 in cisplatin treated cells were evaluated with western blot, incucyte live cell analysis, clone formation and tumor xenografts assays. Interaction between ATF2 and p53 was confirmed with immunoprecipitation and GST-pull down. Potential molecular mechanism of ATF2 in different p53 status cells was analyzed with RNA sequencing and real-time quantitative PCR. Results ATF2 mainly located in the nucleus of cancer cells, higher ATF2 level was associated with poor five-year survival of gastric patients, especially in those undergone chemotherapy treatment. Cisplatin treatment significantly activated ATF2 in p53 mutant cells. ATF2 could interact with the trans-activation domain of p53 and enhance cisplatin sensitivity in p53 wild type cell lines, while promoted cell survival in mutant p53 cancer cells by affecting ERK1/2 pathway. Conclusions This study confirmed the effect of ATF2 on cisplatin sensitivity was associated with the functional status of p53 in gastric cancer cells. Integrated analysis of ATF2 expression and P53 status could be used to evaluate the chemotherapy sensitivity and prognosis of gastric cancer patients. Supplementary information The online version contains supplementary material available at 10.1186/s13578-022-00802-w.
Collapse
|
9
|
ATF2 loss promotes tumor invasion in colorectal cancer cells via upregulation of cancer driver TROP2. Cell Mol Life Sci 2022; 79:423. [PMID: 35838828 PMCID: PMC9287261 DOI: 10.1007/s00018-022-04445-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 12/24/2022]
Abstract
In cancer, the activating transcription factor 2 (ATF2) has pleiotropic functions in cellular responses to growth stimuli, damage, or inflammation. Due to only limited studies, the significance of ATF2 in colorectal cancer (CRC) is not well understood. We report that low ATF2 levels correlated with worse prognosis and tumor aggressiveness in CRC patients. NanoString gene expression and ChIP analysis confirmed trophoblast cell surface antigen 2 (TROP2) as a novel inhibitory ATF2 target gene. This inverse correlation was further observed in primary human tumor tissues. Immunostainings revealed that high intratumoral heterogeneity for ATF2 and TROP2 expression was sustained also in liver metastasis. Mechanistically, our in vitro data of CRISPR/Cas9-generated ATF2 knockout (KO) clones revealed that high TROP2 levels were critical for cell de-adhesion and increased cell migration without triggering EMT. TROP2 was enriched in filopodia and displaced Paxillin from adherens junctions. In vivo imaging, micro-computer tomography, and immunostainings verified that an ATF2KO/TROP2high status triggered tumor invasiveness in in vivo mouse and chicken xenograft models. In silico analysis provided direct support that ATF2low/TROP2high expression status defined high-risk CRC patients. Finally, our data demonstrate that ATF2 acts as a tumor suppressor by inhibiting the cancer driver TROP2. Therapeutic TROP2 targeting might prevent particularly the first steps in metastasis, i.e., the de-adhesion and invasion of colon cancer cells.
Collapse
|
10
|
Jiang FF, Wang RQ, Guo CY, Zheng K, Long-Liu H, Su L, Xie SS, Chen HC, Liu ZF. Phospho-proteomics identifies a critical role of ATF2 in pseudorabies virus replication. Virol Sin 2022; 37:591-600. [PMID: 35688418 PMCID: PMC9437614 DOI: 10.1016/j.virs.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 06/02/2022] [Indexed: 11/02/2022] Open
Abstract
Pseudorabies virus (PRV), an etiological agent of pseudorabies in livestock, has negatively affected the porcine industry all over the world. Epithelial cells are reported as the first site of PRV infection. However, the role of host proteins and its related signaling pathways in PRV replication is largely unclear. In this study, we performed a quantitative phosphoproteomics screening on PRV-infected porcine kidney (PK-15) epithelial cells. Totally 5723 phosphopeptides, corresponding to 2180 proteins, were obtained, and the phosphorylated states of 810 proteins were significantly different in PRV-infected cells compared with mock-infected cells (P < 0.05). GO and KEGG analysis revealed that these differentially expressed phosphorylated proteins were predominantly related to RNA transport and MAPK signaling pathways. Further functional studies of NF-κB, transcription activator factor-2 (ATF2), MAX and SOS genes in MAPK signaling pathway were analyzed using RNA interference (RNAi) knockdown. It showed that only ATF2-knockdown reduces both PRV titer and viral genome copy number. JNK pathway inhibition and CRISPR/Cas9 gene knockout showed that ATF2 was required for the effective replication of PRV, especially during the biogenesis of viral genome DNA. Subsequently, by overexpression of the ATF2 gene and point mutation of the amino acid positions 69/71 of ATF2, it was further demonstrated that the phosphorylation of ATF2 promoted PRV replication. These findings suggest that ATF2 may provide potential therapeutic target for inhibiting PRV infection. Phosphoproteomic profiling of PRV-infected PK-15 cells with iTRAQ-quantification. JNK pathway regulates ATF2 phosphorylation and PRV replication. Phosphorylation of ATF2 promotes PRV replication.
Collapse
|
11
|
Bao ZM, Yao D, Qian X, Zhang HG, Yang M, Guo YH, Qin L. Activating transcription factor 2 promotes the progression of hepatocellular carcinoma by inducing the activation of the WHSC1-mediated TOP2A/PI3K/AKT axis. Kaohsiung J Med Sci 2022; 38:662-674. [PMID: 35394699 DOI: 10.1002/kjm2.12536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 12/24/2022] Open
Abstract
Activating transcription factor 2 (ATF2) is a tumor driver gene implicated in several human malignancies. This study aimed to determine the roles of ATF2 and its related molecules in the tumorigenesis of hepatocellular carcinoma (HCC). According to the Pan-cancer bioinformatics system, ATF2 is highly expressed in HCC. An increase in the expression of ATF2 was identified in clinically collected tumor tissues and procured HCC cells. The silencing of ATF2 reduced the viability, colony formation, invasion, and death resistance of HepG2 and SNU-398 cells in vitro. ATF2 promoted the transcription of Wolf-Hirschhorn syndrome candidate 1 (WHSC1) by binding to its promoter. WHSC1 further increased the expression of DNA topoisomerase II alpha (TOP2A) in HCC by inducing the dimethylation of histone H3 lysine 36 (H3K36me2) in the TOP2A promoter region. TOP2A activated the oncogenic PI3K/AKT signaling pathway. Further overexpression of WHSC1 activated the TOP2A/PI3K/AKT axis and restored the malignant behaviors of HCC cells suppressed by ATF2 silencing in vitro. In summary, this study demonstrated that, depending on WHSC1, ATF2 can activate the TOP2A/PI3K/AKT signaling cascade to promote the tumorigenesis of HCC. ATF2, WHSC1, and TOP2A may serve as potential targets in managing HCC.
Collapse
Affiliation(s)
- Zhong-Ming Bao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China.,Department of Hepatobiliary Surgery, Huaiyin People's Hospital (Huai'an Fifth People's Hospital), Jiangsu, P. R. China
| | - Dan Yao
- Department of Gastrointestinal Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Jiangsu, P. R. China
| | - Xu Qian
- Department of Thyroid and Breast Surgery, Huai'an Second People's Hospital, Jiangsu, P. R. China
| | - Hua-Guo Zhang
- Department of Hepatobiliary Surgery, Huaiyin People's Hospital (Huai'an Fifth People's Hospital), Jiangsu, P. R. China
| | - Ming Yang
- Department of Hepatobiliary Surgery, Huaiyin People's Hospital (Huai'an Fifth People's Hospital), Jiangsu, P. R. China
| | - Yun-Hu Guo
- Department of Hepatobiliary Surgery, Huaiyin People's Hospital (Huai'an Fifth People's Hospital), Jiangsu, P. R. China
| | - Lei Qin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| |
Collapse
|
12
|
Xiao H, Huang W, Li Y, Zhang R, Yang L. Targeting Long Non-Coding RNA TTN-AS1 Suppresses Bladder Cancer Progression. Front Genet 2021; 12:704712. [PMID: 34671381 PMCID: PMC8522982 DOI: 10.3389/fgene.2021.704712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Background: To explore the biological and clinical effects of titin-antisense RNA1 (TTN-AS1) in bladder cancer (BC) and the association between TTN-AS1 and activating transcription factor 2 (ATF2) in BC. Methods: The Kaplan-Meier method was performed to analyze the association between the expression of TTN-AS1 and prognosis of BC patients from TCGA data set and our institution. Quantitative real-time PCR (RT-PCR) was conducted to explore the expression of TTN-AS1 between the patients who underwent TURBT and Re-TURBT. MTT, colony formation, and tumor formation assays were conducted to evaluate the effect of TTN-AS1 on the ability of proliferation in BC cell lines. Transwell assay was performed to evaluate the effect of TTN-AS1 on the ability of invasion in BC cell lines. Bioinfomatics and immunohistochemical staining was used to identify the relationship between TTN-AS1 and ATF2. Results: The higher expression of TTN-AS1 was related to poorer disease-free survival (DFS) in patients with BC. The expression of TTN-AS1 was higher in BC patients who underwent Re-TURBT compared with BC patients who underwent TURBT. Knocking down TTN-AS1 resulted in inhibiting the ability of proliferation and invasion of BC cells. ATF2 may serve as a downstream target of TTN-AS1 in BC, and the high expression of ATF2 is also related to adverse DFS. Conclusion: Our study reveals that TTN-AS1 serves as an oncogene by activating ATF2 in BC. The findings suggest that TTN-AS1 may act as a novel therapeutic target for patients with BC.
Collapse
Affiliation(s)
- Huiyuan Xiao
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wen Huang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yanlei Li
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Rongxin Zhang
- Department of Radiotherapy, Tianjin Medical University General Hospital, Tianjin, China
| | - Long Yang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
13
|
Ren H, Wei ZC, Sun YX, Qiu CY, Zhang WJ, Zhang W, Liu T, Che X. ATF2-Induced Overexpression of lncRNA LINC00882, as a Novel Therapeutic Target, Accelerates Hepatocellular Carcinoma Progression via Sponging miR-214-3p to Upregulate CENPM. Front Oncol 2021; 11:714264. [PMID: 34513693 PMCID: PMC8429907 DOI: 10.3389/fonc.2021.714264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/09/2021] [Indexed: 01/05/2023] Open
Abstract
Background Long intergenic non-protein coding RNA 882 (LINC00882) are abnormally expressed in several tumors. Our research aimed to uncover the functions and the potential mechanisms of LINC00882 in hepatocellular carcinoma (HCC) progression. Methods RT-qPCR was applied to identify LINC00882 and miR-214-3p levels in HCC specimens and cells. Luciferase reporter was applied for the exploration of whether activating transcription factor 2 (ATF2) could bind to the promoter region of LINC00882. Cell proliferation, invasion, and migration were evaluated. In vivo tumor xenograft models were constructed to assess tumorigenicity. RT-PCR, Western blot and Luciferase reporter assays were conducted to examine the regulatory relationships among LINC00882, miR-214-3p and ATF2. Results LINC00882 was markedly upregulated in HCC cells and clinical specimens. Additionally, ATF2 could bind directly to the LINC00882 promoter region and activate its transcription. Loss-of-function studies further demonstrated that LINC00882 knockdown inhibited proliferation, invasion, and migration of HCC cells. Mechanistically, LINC00882 adsorbed miR-214-3p, thus promoting the expressions of CENPM. Rescue assays demonstrated that functions of LINC00882 deficiency in HCC cells were reversed through suppressing miR-214-3p. Conclusion Our group identified a novel regulatory axis of ATF2/LINC00882/miR-214-3p/CENPM, which may provide potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Hua Ren
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Zhi-Cheng Wei
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Yan-Xia Sun
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chun-Yan Qiu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Wen-Jue Zhang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Wei Zhang
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Liu
- Department of Oncology Rehabilitation, Shenzhen Luohu People's Hospital, Shenzhen, China
| | - Xu Che
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.,Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Ide H, Miyamoto H. Sex Hormone Receptor Signaling in Bladder Cancer: A Potential Target for Enhancing the Efficacy of Conventional Non-Surgical Therapy. Cells 2021; 10:1169. [PMID: 34064926 PMCID: PMC8150801 DOI: 10.3390/cells10051169] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
There have been critical problems in the non-surgical treatment for bladder cancer, especially residence to intravesical pharmacotherapy, including BCG immunotherapy, cisplatin-based chemotherapy, and radiotherapy. Recent preclinical and clinical evidence has suggested a vital role of sex steroid hormone-mediated signaling in the progression of urothelial cancer. Moreover, activation of the androgen receptor and estrogen receptor pathways has been implicated in modulating sensitivity to conventional non-surgical therapy for bladder cancer. This may indicate the possibility of anti-androgenic and anti-estrogenic drugs, apart from their direct anti-tumor activity, to function as sensitizers of such conventional treatment. This article summarizes available data suggesting the involvement of sex hormone receptors, such as androgen receptor, estrogen receptor-α, and estrogen receptor-β, in the progression of urothelial cancer, focusing on their modulation for the efficacy of conventional therapy, and discusses their potential of overcoming therapeutic resistance.
Collapse
Affiliation(s)
- Hiroki Ide
- Department of Urology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| | - Hiroshi Miyamoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
15
|
The Role of Androgens and Androgen Receptor in Human Bladder Cancer. Biomolecules 2021; 11:biom11040594. [PMID: 33919565 PMCID: PMC8072960 DOI: 10.3390/biom11040594] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Bladder cancer (urothelial carcinoma) is one of the most frequently diagnosed neoplasms, with an estimated half a million new cases and 200,000 deaths per year worldwide. This pathology mainly affects men. Men have a higher risk (4:1) of developing bladder cancer than women. Cigarette smoking and exposure to chemicals such as aromatic amines, and aniline dyes have been established as risk factors for bladder cancer and may contribute to the sex disparity. Male internal genitalia, including the urothelium and prostate, are derived from urothelial sinus endoderm; both tissues express the androgen receptor (AR). Several investigations have shown evidence that the AR plays an important role in the initiation and development of different types of cancer including bladder cancer. In this article, we summarize the available data that help to explain the role of the AR in the development and progression of bladder cancer, as well as the therapies used for its treatment.
Collapse
|
16
|
Identification of BXDC2 as a Key Downstream Effector of the Androgen Receptor in Modulating Cisplatin Sensitivity in Bladder Cancer. Cancers (Basel) 2021; 13:cancers13050975. [PMID: 33652650 PMCID: PMC7956795 DOI: 10.3390/cancers13050975] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/06/2021] [Accepted: 02/19/2021] [Indexed: 01/15/2023] Open
Abstract
Simple Summary It remains unclear why chemotherapy is often ineffective in patients with bladder cancer. Meanwhile, we previously reported that male sex hormones (i.e., androgens) could considerably reduce the efficacy of cisplatin, an anti-cancer drug used as the first-line treatment against advanced bladder cancer. The present study aimed to investigate how androgen receptor signaling, which is activated by binding of androgenic hormones, modulates sensitivity to cisplatin treatment in bladder cancer, using cell line models and surgical specimens. We found that the expression levels of the androgen receptor and a molecule (BXDC2) were inversely correlated and that loss of BXDC2 was associated with cisplatin resistance. We thus provide evidence to suggest an underlying molecular mechanism responsible for androgen receptor-induced chemoresistance in bladder cancer. Abstract Underlying mechanisms for resistance to cisplatin-based chemotherapy in bladder cancer patients are largely unknown, although androgen receptor (AR) activity, as well as extracellular signal-regulated kinase (ERK) signaling, has been indicated to correlate with chemosensitivity. We also previously showed ERK activation by androgen treatment in AR-positive bladder cancer cells. Because our DNA microarray analysis in control vs. AR-knockdown bladder cancer lines identified BXDC2 as a potential downstream target of AR, we herein assessed its functional role in cisplatin sensitivity, using bladder cancer lines and surgical specimens. BXDC2 protein expression was considerably downregulated in AR-positive or cisplatin-resistant cells. BXDC2-knockdown sublines were significantly more resistant to cisplatin, compared with respective controls. Without cisplatin treatment, BXDC2-knockdown resulted in significant increases/decreases in cell proliferation/apoptosis, respectively. An ERK activator was also found to reduce BXDC2 expression. Immunohistochemistry showed downregulation of BXDC2 expression in tumor (vs. non-neoplastic urothelium), higher grade/stage tumor (vs. lower grade/stage), and AR-positive tumor (vs. AR-negative). Patients with BXDC2-positive/AR-negative muscle-invasive bladder cancer had a significantly lower risk of disease-specific mortality, compared to those with a BXDC2-negative/AR-positive tumor. Additionally, in those undergoing cisplatin-based chemotherapy, BXDC2 positivity alone (p = 0.083) or together with AR negativity (p = 0.047) was associated with favorable response. We identified BXDC2 as a key molecule in enhancing cisplatin sensitivity. AR-ERK activation may thus be associated with chemoresistance via downregulating BXDC2 expression in bladder cancer.
Collapse
|
17
|
Giannoudis A, Malki MI, Rudraraju B, Mohhamed H, Menon S, Liloglou T, Ali S, Carroll JS, Palmieri C. Activating transcription factor-2 (ATF2) is a key determinant of resistance to endocrine treatment in an in vitro model of breast cancer. Breast Cancer Res 2020; 22:126. [PMID: 33198803 PMCID: PMC7667764 DOI: 10.1186/s13058-020-01359-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Activating transcription factor-2 (ATF2), a member of the leucine zipper family of DNA binding proteins, has been implicated as a tumour suppressor in breast cancer. However, its exact role in breast cancer endocrine resistance is still unclear. We have previously shown that silencing of ATF2 leads to a loss in the growth-inhibitory effects of tamoxifen in the oestrogen receptor (ER)-positive, tamoxifen-sensitive MCF7 cell line and highlighted that this multi-faceted transcription factor is key to the effects of tamoxifen in an endocrine sensitive model. In this work, we explored further the in vitro role of ATF2 in defining the resistance to endocrine treatment. MATERIALS AND METHODS We knocked down ATF2 in TAMR, LCC2 and LCC9 tamoxifen-resistant breast cancer cell lines as well as the parental tamoxifen sensitive MCF7 cell line and investigated the effects on growth, colony formation and cell migration. We also performed a microarray gene expression profiling (Illumina Human HT12_v4) to explore alterations in gene expression between MCF7 and TAMRs after ATF2 silencing and confirmed gene expression changes by quantitative RT-PCR. RESULTS By silencing ATF2, we observed a significant growth reduction of TAMR, LCC2 and LCC9 with no such effect observed with the parental MCF7 cells. ATF2 silencing was also associated with a significant inhibition of TAMR, LCC2 and LCC9 cell migration and colony formation. Interestingly, knockdown of ATF2 enhanced the levels of ER and ER-regulated genes, TFF1, GREB1, NCOA3 and PGR, in TAMR cells both at RNA and protein levels. Microarray gene expression identified a number of genes known to mediate tamoxifen resistance, to be differentially regulated by ATF2 in TAMR in relation to the parental MCF7 cells. Moreover, differential pathway analysis confirmed enhanced ER activity after ATF2 knockdown in TAMR cells. CONCLUSION These data demonstrate that ATF2 silencing may overcome endocrine resistance and highlights further the dual role of this transcription factor that can mediate endocrine sensitivity and resistance by modulating ER expression and activity.
Collapse
Affiliation(s)
- Athina Giannoudis
- Department of Molecular and Clinical Cancer Medicine, The Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
- The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK
| | - Mohammed Imad Malki
- Department of Molecular and Clinical Cancer Medicine, The Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
| | - Bharath Rudraraju
- Department of Molecular and Clinical Cancer Medicine, The Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
- Department of Surgery and Cancer, Imperial College London, Faculty of Medicine, London, UK
| | - Hisham Mohhamed
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Knight Cancer Institute School of Medicine, Portland, USA
| | - Suraj Menon
- Cancer Research UK, Cambridge Research Institute, University of Cambridge, Cambridge, UK
| | - Triantafillos Liloglou
- Department of Molecular and Clinical Cancer Medicine, The Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, Faculty of Medicine, London, UK
| | - Jason S Carroll
- Cancer Research UK, Cambridge Research Institute, University of Cambridge, Cambridge, UK
| | - Carlo Palmieri
- Department of Molecular and Clinical Cancer Medicine, The Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK.
- The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK.
| |
Collapse
|
18
|
Zhang X, Zhang D, Wang Q, Guo X, Chen J, Jiang J, Li M, Liu W, Gao Y, Zhang Q, Bao G, Cui Z. Sprouty2 Inhibits Migration and Invasion of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis by Down-regulating ATF2 Expression and Phosphorylation. Inflammation 2020; 44:91-103. [PMID: 32789554 DOI: 10.1007/s10753-020-01311-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Activating transcription factor 2(ATF2), a transcription factor belonging to the AP-1 family, plays an important role in inflammation. However, its biological functions and underlying molecular mechanisms in rheumatoid arthritis (RA) remain unclear. Western blot and immunohistochemistry were used to identify the expression of ATF2 and Sprouty2(SPRY2) in RA synovial tissues. SW982 cells were stimulated by TNF-α to establish an in vitro RA fibroblast-like synoviocyte (RA-FLS) model. Transwell and monolayer wound-healing were used to detect cell migration and invasion. RNA interference (si-ATF2) and adenovirus vector (Ad-SPRY2) methods were employed to manipulate ATF2 or SPRY2 expression in SW982 cells. The protein expression and phosphorylation levels in SW982 cells were evaluated by western blot. ATF2 expression and phosphorylation were upregulated in the RA synovial tissues. In RA-FLS model, ATF2 expression and phosphorylation were increased in a time-dependent manner. ATF2 knockdown inhibited the migration and invasion of RA-FLS model, reducing the inflammatory factors, which was consistent with the influence on cell behaviors caused by SPRY2 overexpression. Moreover, SPRY2 overexpression inhibited the TNF-α-induced phosphorylation of ERK and ATF2 in SW982 cells. The high expression and phosphorylation of ATF2 promoted migration and invasion of RA-FLSs. SPRY2 might inhibited the inflammatory responses of RA-FLSs via suppressing ERK-ATF2 pathway.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University, No. 6 Haier Lane North Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Dongmei Zhang
- Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Qinyu Wang
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University, No. 6 Haier Lane North Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Xiaofeng Guo
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University, No. 6 Haier Lane North Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Jiajia Chen
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University, No. 6 Haier Lane North Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Jiawei Jiang
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University, No. 6 Haier Lane North Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Mengmeng Li
- Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Wei Liu
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University, No. 6 Haier Lane North Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Yingying Gao
- Department of Rheumatology, The Second Affiliated Hospital of Nantong University, 226001, Jiangsu Province, Nantong, People's Republic of China
| | - Qi Zhang
- The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Guofeng Bao
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University, No. 6 Haier Lane North Road, Nantong, 226001, Jiangsu Province, People's Republic of China.
| | - Zhiming Cui
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University, No. 6 Haier Lane North Road, Nantong, 226001, Jiangsu Province, People's Republic of China.
| |
Collapse
|
19
|
Ide H, Miyamoto H. The Role of Steroid Hormone Receptors in Urothelial Tumorigenesis. Cancers (Basel) 2020; 12:cancers12082155. [PMID: 32759680 PMCID: PMC7465876 DOI: 10.3390/cancers12082155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/28/2020] [Accepted: 08/01/2020] [Indexed: 12/18/2022] Open
Abstract
Preclinical and/or clinical evidence has indicated a potential role of steroid hormone-mediated signaling pathways in the development of various neoplastic diseases, while precise mechanisms for the functions of specific receptors remain poorly understood. Specifically, in urothelial cancer where sex-related differences particularly in its incidence are noted, activation of sex hormone receptors, such as androgen receptor and estrogen receptor-β, has been associated with the induction of tumor development. More recently, glucocorticoid receptor has been implied to function as a suppressor of urothelial tumorigenesis. This article summarizes and discusses available data suggesting that steroid hormone receptors, including androgen receptor, estrogen receptor-α, estrogen receptor-β, glucocorticoid receptor, progesterone receptor and vitamin D receptor, as well as their related signals, contribute to modulating urothelial tumorigenesis.
Collapse
Affiliation(s)
- Hiroki Ide
- Department of Urology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| | - Hiroshi Miyamoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Correspondence:
| |
Collapse
|
20
|
Huebner K, Procházka J, Monteiro AC, Mahadevan V, Schneider-Stock R. The activating transcription factor 2: an influencer of cancer progression. Mutagenesis 2020; 34:375-389. [PMID: 31799611 PMCID: PMC6923166 DOI: 10.1093/mutage/gez041] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/18/2019] [Indexed: 12/26/2022] Open
Abstract
In contrast to the continuous increase in survival rates for many cancer entities, colorectal cancer (CRC) and pancreatic cancer are predicted to be ranked among the top 3 cancer-related deaths in the European Union by 2025. Especially, fighting metastasis still constitutes an obstacle to be overcome in CRC and pancreatic cancer. As described by Fearon and Vogelstein, the development of CRC is based on sequential mutations leading to the activation of proto-oncogenes and the inactivation of tumour suppressor genes. In pancreatic cancer, genetic alterations also attribute to tumour development and progression. Recent findings have identified new potentially important transcription factors in CRC, among those the activating transcription factor 2 (ATF2). ATF2 is a basic leucine zipper protein and is involved in physiological and developmental processes, as well as in tumorigenesis. The mutation burden of ATF2 in CRC and pancreatic cancer is rather negligible; however, previous studies in other tumours indicated that ATF2 expression level and subcellular localisation impact tumour progression and patient prognosis. In a tissue- and stimulus-dependent manner, ATF2 is activated by upstream kinases, dimerises and induces target gene expression. Dependent on its dimerisation partner, ATF2 homodimers or heterodimers bind to cAMP-response elements or activator protein 1 consensus motifs. Pioneering work has been performed in melanoma in which the dual role of ATF2 is best understood. Even though there is increasing interest in ATF2 recently, only little is known about its involvement in CRC and pancreatic cancer. In this review, we summarise the current understanding of the underestimated ‘cancer gene chameleon’ ATF2 in apoptosis, epithelial-to-mesenchymal transition and microRNA regulation and highlight its functions in CRC and pancreatic cancer. We further provide a novel ATF2 3D structure with key phosphorylation sites and an updated overview of all so-far available mouse models to study ATF2 in vivo.
Collapse
Affiliation(s)
- Kerstin Huebner
- Experimental Tumorpathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Jan Procházka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | - Ana C Monteiro
- Experimental Tumorpathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Vijayalakshmi Mahadevan
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bangalore, India
| | - Regine Schneider-Stock
- Experimental Tumorpathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
21
|
Ide H, Inoue S, Mizushima T, Jiang G, Nagata Y, Goto T, Kashiwagi E, Miyamoto H. Compound A inhibits urothelial tumorigenesis via both the androgen receptor and glucocorticoid receptor signaling pathways. Am J Transl Res 2020; 12:1779-1788. [PMID: 32509176 PMCID: PMC7270017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Recent preclinical evidence has indicated that both androgen receptor (AR) inactivation and glucocorticoid receptor (GR) transrepression are associated with suppression of urothelial carcinogenesis. We therefore assessed the effect of a unique compound, 2-(4-acetoxyphenyl)-2-chloro-N-methylethylammonium chloride (Compound A; CpdA), which could function as an AR antagonist as well as a GR ligand, on urothelial tumorigenesis. Using the in vitro system with GR-positive non-neoplastic urothelial SVHUC cells stably expressing AR (SVHUC-AR), neoplastic transformation induced by a chemical carcinogen 3-methylcholanthrene (MCA) was inhibited similarly by an anti-androgen hydroxyflutamide and a glucocorticoid prednisone, and more strongly by CpdA. CpdA also prevented the neoplastic transformation of AR-negative MCA-SVHUC cells, which was diminished by a GR antagonist RU486, but failed to prevent that of GR knockdown MCA-SVHUC cells. In MCA-SVHUC-AR cells, CpdA significantly reduced the expression levels of oncogenes (c-Fos/c-Jun/c-Myc) and induced those of tumor suppressors (UGT1A/p21/p27/p53/PTEN). Additionally, a potent carcinogen N-butyl-N-(4-hydroxybutyl)nitrosamine induced bladder cancer in all of 8 mock-treated mice versus 4 (50%) of flutamide-treated (P = 0.021), 4 (50%) of prednisone-treated (P = 0.021), or 2 (25%) of CpdA-treated (P = 0.002) animals. Finally, CpdA was found to reduce AR transactivation and selectively induce GR transrepression (i.e. suppression of NF-κB transactivation and expression of its regulated genes), but not GR transactivation (i.e. activation of glucocorticoid-response element-mediated transcription and expression of its targets) in SVHUC cells. These findings suggest that CpdA suppresses urothelial tumorigenesis via both the AR and GR pathways, which may consequently provide an effective option of chemoprevention for bladder cancer, especially in patients with superficial disease following transurethral surgery.
Collapse
Affiliation(s)
- Hiroki Ide
- Department of Pathology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- James Buchanan Brady Urological Institute, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Satoshi Inoue
- Department of Pathology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- James Buchanan Brady Urological Institute, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical CenterRochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY, USA
| | - Taichi Mizushima
- Department of Pathology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- James Buchanan Brady Urological Institute, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical CenterRochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY, USA
| | - Guiyang Jiang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical CenterRochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY, USA
| | - Yujiro Nagata
- Department of Pathology and Laboratory Medicine, University of Rochester Medical CenterRochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY, USA
| | - Takuro Goto
- Department of Pathology and Laboratory Medicine, University of Rochester Medical CenterRochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY, USA
| | - Eiji Kashiwagi
- Department of Pathology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- James Buchanan Brady Urological Institute, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Hiroshi Miyamoto
- Department of Pathology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- James Buchanan Brady Urological Institute, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical CenterRochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY, USA
- Department of Urology, University of Rochester Medical CenterRochester, NY, USA
| |
Collapse
|
22
|
Quan Y, Lei H, Wahafu W, Liu Y, Ping H, Zhang X. Inhibition of autophagy enhances the anticancer effect of enzalutamide on bladder cancer. Biomed Pharmacother 2019; 120:109490. [DOI: 10.1016/j.biopha.2019.109490] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/14/2019] [Accepted: 09/22/2019] [Indexed: 10/25/2022] Open
|
23
|
Ide H, Inoue S, Mizushima T, Kashiwagi E, Zheng Y, Miyamoto H. Role of glucocorticoid signaling in urothelial tumorigenesis: Inhibition by prednisone presumably through inducing glucocorticoid receptor transrepression. Mol Carcinog 2019; 58:2297-2305. [PMID: 31535408 DOI: 10.1002/mc.23118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/31/2022]
Abstract
Glucocorticoids, including dexamethasone (DEX) and prednisone (PRED), have been prescribed in patients with neoplastic disease as cytotoxic agents or comedications. Nonetheless, it remains uncertain whether they have an impact on the development of bladder cancer. We, therefore, assessed the functional role of the glucocorticoid-mediated glucocorticoid receptor (GR) signaling in urothelial tumorigenesis. Tumor formation was significantly delayed in xenograft-bearing mice with implantation of control bladder cancer UMUC3 cells or nonneoplastic urothelial SVHUC cells undergoing malignant transformation induced by a chemical carcinogen 3-methylcholanthrene (MCA), compared with respective GR knockdown xenografts. Using the in vitro system with MCA-SVHUC cells, we screened 11 GR ligands, including DEX, and found significant inhibitory effects of PRED on their neoplastic transformation. The effects of PRED were restored by a GR antagonist RU486 in GR-positive MCA-SVHUC cells, while PRED failed to inhibit the neoplastic transformation of GR knockdown cells. Significant decreases in the expression levels of oncogenes (c-Fos/c-Jun) and significant increases in those of a tumor suppressor UGT1A were seen in MCA-SVHUC-control cells (vs GR-short hairpin RNA) or PRED-treated MCA-SVHUC-control cells (vs mock). In addition, N-butyl-N-(4-hydroxybutyl) nitrosamine induced bladder cancer in all of eight mock-treated mice vs seven (87.5%) of DEX-treated (P = .302) or four (50%) of PRED-treated (P = .021) animals. Finally, DEX was found to considerably induce both transactivation (activation of glucocorticoid-response element mediated transcription and expression of its targets) and transrepression (suppression of nuclear factor-kappa B transactivation and expression of its regulated genes) of GR in SVHUC cells, while PRED more selectively induced GR transrepression. These findings suggest that PRED could prevent urothelial tumorigenesis presumably via inducing GR transrepression.
Collapse
Affiliation(s)
- Hiroki Ide
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Satoshi Inoue
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York.,James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Taichi Mizushima
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York.,James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Eiji Kashiwagi
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yichun Zheng
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| | - Hiroshi Miyamoto
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York.,James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York.,Department of Urology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
24
|
Olea-Flores M, Zuñiga-Eulogio MD, Mendoza-Catalán MA, Rodríguez-Ruiz HA, Castañeda-Saucedo E, Ortuño-Pineda C, Padilla-Benavides T, Navarro-Tito N. Extracellular-Signal Regulated Kinase: A Central Molecule Driving Epithelial-Mesenchymal Transition in Cancer. Int J Mol Sci 2019; 20:E2885. [PMID: 31200510 PMCID: PMC6627365 DOI: 10.3390/ijms20122885] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 12/18/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a reversible cellular process, characterized by changes in gene expression and activation of proteins, favoring the trans-differentiation of the epithelial phenotype to a mesenchymal phenotype. This process increases cell migration and invasion of tumor cells, progression of the cell cycle, and resistance to apoptosis and chemotherapy, all of which support tumor progression. One of the signaling pathways involved in tumor progression is the MAPK pathway. Within this family, the ERK subfamily of proteins is known for its contributions to EMT. The ERK subfamily is divided into typical (ERK 1/2/5), and atypical (ERK 3/4/7/8) members. These kinases are overexpressed and hyperactive in various types of cancer. They regulate diverse cellular processes such as proliferation, migration, metastasis, resistance to chemotherapy, and EMT. In this context, in vitro and in vivo assays, as well as studies in human patients, have shown that ERK favors the expression, function, and subcellular relocalization of various proteins that regulate EMT, thus promoting tumor progression. In this review, we discuss the mechanistic roles of the ERK subfamily members in EMT and tumor progression in diverse biological systems.
Collapse
Affiliation(s)
- Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Miriam Daniela Zuñiga-Eulogio
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Miguel Angel Mendoza-Catalán
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Hugo Alberto Rodríguez-Ruiz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Eduardo Castañeda-Saucedo
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Carlos Ortuño-Pineda
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Teresita Padilla-Benavides
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| |
Collapse
|