1
|
Khare VS, Huda F, Misra S, Amulya KR, Raj N, Karn S, Basu S. Male Breast Cancer: An Updated Review of Patient Characteristics, Genetics, and Outcome. Int J Breast Cancer 2024; 2024:9003572. [PMID: 38559438 PMCID: PMC10981544 DOI: 10.1155/2024/9003572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Male breast cancer (MBC) is a rare entity, underrepresented in population studies and clinical trials, resulting in management of MBC to be informed by current research on female breast cancer (FBC). A literature review was conducted by accessing relevant articles on 2 databases, by searching keywords "male breast cancer". A total of 29 articles from year 2011 to 2022 were selected for this review. The authors found that male breast cancer generally occurs later in life with higher stage, higher grade, and more estrogen receptor (ER) positive tumours. Most of the studies noted the mean age for MBCs at the time of presentation as >60 years. Risk factors for male breast cancer include family history, obesity, lower physical activity, and syndromes like the Klinefelter syndrome. Positive family history is much higher in MBC compared to FBC (30.9 vs. 18.4%). BRCA 2 cancers constitute a higher proportion compared to FBCs. A lot of genetic mutations have been observed. Some show promise to assess disease-specific survival and proliferative rate like TWIST1 and RUNX3, among others. MBCs usually present with a palpable lump in central region, with a bigger size and chance of nodal involvement and metastasis compared to FBCs. They are mostly infiltrating ductal type and hormone receptor positive, with worse histological grade. Treatment usually follows the same principles as FBCs (systemic therapy, surgical excision, and radiotherapy), with poorer prognosis to same treatment approach, possibly owing to its advanced stage at presentation. This is a rare entity which requires further research to ascertain need for different management approach than FBCs.
Collapse
Affiliation(s)
- Vidhu Shekhar Khare
- Department of General Surgery, All India Institute of Medical Sciences, 249203, Rishikesh, India
| | - Farhanul Huda
- Department of General Surgery, All India Institute of Medical Sciences, 249203, Rishikesh, India
| | - Subhasis Misra
- Department of Surgical Oncology, BayCare Health System, Department of Medical Education, University of South Florida, Tampa, USA
| | - Kanmatha Reddy Amulya
- Department of General Surgery, All India Institute of Medical Sciences, 249203, Rishikesh, India
| | - Nirmal Raj
- Department of General Surgery, All India Institute of Medical Sciences, 249203, Rishikesh, India
| | - Summi Karn
- Department of General Surgery, All India Institute of Medical Sciences, 249203, Rishikesh, India
| | - Somprakas Basu
- Department of General Surgery, All India Institute of Medical Sciences, 249203, Rishikesh, India
| |
Collapse
|
2
|
Valentini V, Bucalo A, Conti G, Celli L, Porzio V, Capalbo C, Silvestri V, Ottini L. Gender-Specific Genetic Predisposition to Breast Cancer: BRCA Genes and Beyond. Cancers (Basel) 2024; 16:579. [PMID: 38339330 PMCID: PMC10854694 DOI: 10.3390/cancers16030579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Among neoplastic diseases, breast cancer (BC) is one of the most influenced by gender. Despite common misconceptions associating BC as a women-only disease, BC can also occur in men. Additionally, transgender individuals may also experience BC. Genetic risk factors play a relevant role in BC predisposition, with important implications in precision prevention and treatment. The genetic architecture of BC susceptibility is similar in women and men, with high-, moderate-, and low-penetrance risk variants; however, some sex-specific features have emerged. Inherited high-penetrance pathogenic variants (PVs) in BRCA1 and BRCA2 genes are the strongest BC genetic risk factor. BRCA1 and BRCA2 PVs are more commonly associated with increased risk of female and male BC, respectively. Notably, BRCA-associated BCs are characterized by sex-specific pathologic features. Recently, next-generation sequencing technologies have helped to provide more insights on the role of moderate-penetrance BC risk variants, particularly in PALB2, CHEK2, and ATM genes, while international collaborative genome-wide association studies have contributed evidence on common low-penetrance BC risk variants, on their combined effect in polygenic models, and on their role as risk modulators in BRCA1/2 PV carriers. Overall, all these studies suggested that the genetic basis of male BC, although similar, may differ from female BC. Evaluating the genetic component of male BC as a distinct entity from female BC is the first step to improve both personalized risk assessment and therapeutic choices of patients of both sexes in order to reach gender equality in BC care. In this review, we summarize the latest research in the field of BC genetic predisposition with a particular focus on similarities and differences in male and female BC, and we also discuss the implications, challenges, and open issues that surround the establishment of a gender-oriented clinical management for BC.
Collapse
Affiliation(s)
- Virginia Valentini
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Agostino Bucalo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Giulia Conti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Ludovica Celli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Virginia Porzio
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Carlo Capalbo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
- Medical Oncology Unit, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Valentina Silvestri
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| |
Collapse
|
3
|
Bucalo A, Conti G, Valentini V, Capalbo C, Bruselles A, Tartaglia M, Bonanni B, Calistri D, Coppa A, Cortesi L, Giannini G, Gismondi V, Manoukian S, Manzella L, Montagna M, Peterlongo P, Radice P, Russo A, Tibiletti MG, Turchetti D, Viel A, Zanna I, Palli D, Silvestri V, Ottini L. Male breast cancer risk associated with pathogenic variants in genes other than BRCA1/2: an Italian case-control study. Eur J Cancer 2023; 188:183-191. [PMID: 37262986 DOI: 10.1016/j.ejca.2023.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Germline pathogenic variants (PVs) in BRCA1/2 genes are associated with breast cancer (BC) risk in both women and men. Multigene panel testing is being increasingly used for BC risk assessment, allowing the identification of PVs in genes other than BRCA1/2. While data on actionable PVs in other cancer susceptibility genes are now available in female BC, reliable data are still lacking in male BC (MBC). This study aimed to provide the patterns, prevalence and risk estimates associated with PVs in non-BRCA1/2 genes for MBC in order to improve BC prevention for male patients. METHODS We performed a large case-control study in the Italian population, including 767 BRCA1/2-negative MBCs and 1349 male controls, all screened using a custom 50 cancer gene panel. RESULTS PVs in genes other than BRCA1/2 were significantly more frequent in MBCs compared with controls (4.8% vs 1.8%, respectively) and associated with a threefold increased MBC risk (OR: 3.48, 95% CI: 1.88-6.44; p < 0.0001). PV carriers were more likely to have personal (p = 0.03) and family (p = 0.02) history of cancers, not limited to BC. PALB2 PVs were associated with a sevenfold increased MBC risk (OR: 7.28, 95% CI: 1.17-45.52; p = 0.034), and ATM PVs with a fivefold increased MBC risk (OR: 4.79, 95% CI: 1.12-20.56; p = 0.035). CONCLUSIONS This study highlights the role of PALB2 and ATM PVs in MBC susceptibility and provides risk estimates at population level. These data may help in the implementation of multigene panel testing in MBC patients and inform gender-specific BC risk management and decision making for patients and their families.
Collapse
Affiliation(s)
- Agostino Bucalo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulia Conti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Virginia Valentini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Carlo Capalbo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics Research Unit, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Daniele Calistri
- Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori"-IRST IRCCS, Meldola, Italy
| | - Anna Coppa
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Laura Cortesi
- Department of Oncology and Haematology, University of Modena and Reggio Emilia, Modena, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy; Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Viviana Gismondi
- Hereditary Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Siranoush Manoukian
- Unità di Genetica Medica, Dipartimento di Oncologia Medica ed Ematologia, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Marco Montagna
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori (INT), Milan, Italy
| | - Antonio Russo
- Section of Medical Oncology, Department of Surgical and Oncological Sciences, University of Palermo, Palermo, Italy
| | - Maria Grazia Tibiletti
- Dipartimento di Patologia, ASST Settelaghi and Centro di Ricerca per lo studio dei tumori eredo-familiari, Università dell'Insubria, Varese, Italy
| | - Daniela Turchetti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Alessandra Viel
- Unità di Oncogenetica e Oncogenomica Funzionale, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Ines Zanna
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Domenico Palli
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | | | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
4
|
Campos FAB, Rouleau E, Torrezan GT, Carraro DM, Casali da Rocha JC, Mantovani HK, da Silva LR, Osório CABDT, Moraes Sanches S, Caputo SM, Santana dos Santos E. Genetic Landscape of Male Breast Cancer. Cancers (Basel) 2021; 13:3535. [PMID: 34298749 PMCID: PMC8305894 DOI: 10.3390/cancers13143535] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/20/2022] Open
Abstract
Male breast cancer (MBC) is now considered molecularly different from female breast cancer (FBC). Evidence from studies indicates that common genetic and epigenetic features of FBC are not shared with those diagnosed in men. Genetic predisposition is likely to play a significant role in the tumorigenesis of this rare disease. Inherited germline variants in BRCA1 and BRCA2 account for around 2% and 10% of MBC cases, respectively, and the lifetime risk of breast cancer for men harboring BRCA1 and BRCA2 mutations is 1.2% and 6.8%. As for FBC, pathogenic mutations in other breast cancer genes have also been recently associated with an increased risk of MBC, such as PALB2 and CHEK2 mutations. However, while multigene germline panels have been extensively performed for BC female patients, the rarity of MBC has resulted in limited data to allow the understanding of the magnitude of risk and the contribution of recently identified moderate penetrance genes of FBC for MBC predisposition. This review gathers available data about the germline genetic landscape of men affected by breast cancer, estimated risk associated with these genetic variants, and current guidelines for clinical management.
Collapse
Affiliation(s)
| | - Etienne Rouleau
- Department of Medical Biology and Pathology, Gustave Roussy, Cancer Genetics Laboratory, Gustave Roussy, 94805 Villejuif, France;
| | - Giovana Tardin Torrezan
- Genomics and Molecular Biology Group, International Center of Research CIPE, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (G.T.T.); (D.M.C.)
- National Institute of Science and Technology in Oncogenomics (INCITO), Sao Paulo 01508-010, Brazil
| | - Dirce Maria Carraro
- Genomics and Molecular Biology Group, International Center of Research CIPE, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (G.T.T.); (D.M.C.)
- National Institute of Science and Technology in Oncogenomics (INCITO), Sao Paulo 01508-010, Brazil
| | | | - Higor Kassouf Mantovani
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas 13083-881, Brazil; (H.K.M.); (L.R.d.S.)
| | - Leonardo Roberto da Silva
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas 13083-881, Brazil; (H.K.M.); (L.R.d.S.)
| | | | - Solange Moraes Sanches
- Deparment of Medical Oncology, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (S.M.S.); (E.S.d.S.)
| | - Sandrine M. Caputo
- Department of Genetics, Institut Curie, 75248 Paris, France;
- Institut Curie, PSL Research University, 75005 Paris, France
| | - Elizabeth Santana dos Santos
- Deparment of Medical Oncology, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (S.M.S.); (E.S.d.S.)
- Centro de Oncologia, Hospital Sírio Libanês, Sao Paulo 01308-050, Brazil
| |
Collapse
|
5
|
Tedaldi G, Tebaldi M, Zampiga V, Cangini I, Pirini F, Ferracci E, Danesi R, Arcangeli V, Ravegnani M, Martinelli G, Falcini F, Ulivi P, Calistri D. Male Breast Cancer: Results of the Application of Multigene Panel Testing to an Italian Cohort of Patients. Diagnostics (Basel) 2020; 10:E269. [PMID: 32365798 PMCID: PMC7277207 DOI: 10.3390/diagnostics10050269] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 12/24/2022] Open
Abstract
Male breast cancer (MBC) is a rare tumor, accounting for less than 1% of all breast cancers. In MBC, genetic predisposition plays an important role; however, only a few studies have investigated in depth the role of genes other than BRCA1 and BRCA2. We performed a Next-Generation Sequencing (NGS) analysis with a panel of 94 cancer predisposition genes on germline DNA from an Italian case series of 70 patients with MBC. Moreover, we searched for large deletions/duplications of BRCA1/2 genes through the Multiplex Ligation-dependent Probe Amplification (MLPA) technique. Through the combination of NGS and MLPA, we identified three pathogenic variants in the BRCA1 gene and six in the BRCA2 gene. Besides these alterations, we found six additional pathogenic/likely-pathogenic variants in PALB2, CHEK2, ATM, RAD51C, BAP1 and EGFR genes. From our study, BRCA1 and BRCA2 emerge as the main genes associated with MBC risk, but also other genes seem to be associated with the disease. Indeed, some of these genes have already been implicated in female breast cancer predisposition, but others are known to be involved in other types of cancer. Consequently, our results suggest that novel genes could be involved in MBC susceptibility, shedding new light on their role in cancer development.
Collapse
Affiliation(s)
- Gianluca Tedaldi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (V.Z.); (I.C.); (F.P.); (E.F.); (D.C.)
| | - Michela Tebaldi
- Biostatistics and Clinical Trials Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy;
| | - Valentina Zampiga
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (V.Z.); (I.C.); (F.P.); (E.F.); (D.C.)
| | - Ilaria Cangini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (V.Z.); (I.C.); (F.P.); (E.F.); (D.C.)
| | - Francesca Pirini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (V.Z.); (I.C.); (F.P.); (E.F.); (D.C.)
| | - Elisa Ferracci
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (V.Z.); (I.C.); (F.P.); (E.F.); (D.C.)
| | - Rita Danesi
- Romagna Cancer Registry, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (R.D.); (M.R.); (F.F.)
| | | | - Mila Ravegnani
- Romagna Cancer Registry, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (R.D.); (M.R.); (F.F.)
| | - Giovanni Martinelli
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy;
| | - Fabio Falcini
- Romagna Cancer Registry, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (R.D.); (M.R.); (F.F.)
| | - Paola Ulivi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (V.Z.); (I.C.); (F.P.); (E.F.); (D.C.)
| | - Daniele Calistri
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (V.Z.); (I.C.); (F.P.); (E.F.); (D.C.)
| |
Collapse
|