1
|
Wang Q, Pan G, Zhang Y, Ni Y, Mu Y, Luo D. Emerging insights into thyroid cancer from immunotherapy perspective: A bibliometric analysis. Hum Vaccin Immunother 2024; 20:2403170. [PMID: 39294892 DOI: 10.1080/21645515.2024.2403170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/21/2024] [Accepted: 09/07/2024] [Indexed: 09/21/2024] Open
Abstract
Thyroid cancer is a common endocrine malignancy that poses considerable therapeutic challenges in treating anaplastic carcinoma and advanced aggressive disease. Immunotherapy has become a prominent strategy for cancer treatment, and has shown remarkable advancements in recent years. In this study, we utilized visualization and bibliometric tools to analyze publications on thyroid cancer immunotherapy from the Web of Science Core Collection (WoSCC). A total of 409 articles were included, with an annual increase in both publications and citations since 2016. China leads research efforts in this area, while the University of Texas System and UTMD Anderson Cancer Center rank first in publication output. The journal Thyroid has garnered the highest citations. Notable authors contributing to this field include Antonelli Alessandro, Fallahi Poupak, and Wang Yu. Current research hotspots include immune checkpoint inhibitors, combination therapies involving immunotherapy with targeted therapy, CAR-T cell therapy, and modulation of the tumor microenvironment, all of which underscore the evolving landscape and potential for innovative treatments in thyroid cancer.
Collapse
Affiliation(s)
- Qianyu Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China
| | - Gang Pan
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Yu Zhang
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Yiqin Ni
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Yuzhu Mu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China
| | - Dingcun Luo
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- College of Mathematical Medicine, Zhejiang Normal University, Jinhua, Zhejiang, China
| |
Collapse
|
2
|
Agarwal S, Jung CK, Gaddam P, Hirokawa M, Higashiyama T, Hang JF, Lai WA, Keelawat S, Liu Z, Na HY, Park SY, Fukuoka J, Satoh S, Mussazhanova Z, Nakashima M, Kakudo K, Bychkov A. PD-L1 Expression and Its Modulating Factors in Anaplastic Thyroid Carcinoma: A Multi-institutional Study. Am J Surg Pathol 2024; 48:1233-1244. [PMID: 39004795 DOI: 10.1097/pas.0000000000002284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Anti-PD immunotherapy is currently under investigation in anaplastic thyroid carcinoma (ATC). Tumor cell surface PD-L1 expression is considered predictive of therapeutic response. Although papillary thyroid carcinoma has been widely studied for PD-L1 expression, there are limited data on ATC. In this retrospective multi-institutional study involving 9 centers across Asia, 179 ATCs were assessed for PD-L1 expression using the SP263 (Ventana) clone. A tumor proportion score (TPS) ≥1% was required to consider a case PD-L1-positive. PD-L1 expression was compared with the histological patterns, the type of specimen (small or large), tumor molecular profile ( BRAF V600E and TERT promoter mutation status), and patient outcome. PD-L1 expression in any co-existent differentiated thyroid carcinoma (DTC) was evaluated separately and compared with ATC. Most ATCs (73.2%) were PD-L1-positive. The median TPS among positive cases was 36% (IQR 11% to 75%; range 1% to 99%). A high expression (TPS ≥ 50%) was noted in 30.7%. PD-L1-negative cases were more likely to be small specimens ( P =0.01). A negative result on small samples, hence, may not preclude expression elsewhere. ATCs having epithelioid and pleomorphic histological patterns were more likely to be PD-L1-positive with higher TPS than sarcomatoid ( P <0.01). DTCs were more frequently negative and had lower TPS than ATC ( P <0.01). Such PD-L1 conversion from DTC-negative to ATC-positive was documented in 71% of cases with co-existent DTC. BRAF V600E, but not TERT promoter mutations, correlated significantly with PD-L1-positivity rate ( P =0.039), reinforcing the potential of combining anti-PD and anti-BRAF V600E drugs. PD-L1 expression, however, did not impact the patient outcome.
Collapse
Affiliation(s)
- Shipra Agarwal
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Chan Kwon Jung
- Department of Hospital Pathology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Pranitha Gaddam
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | | | | | - Jen-Fan Hang
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-An Lai
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Somboon Keelawat
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Precision Pathology of Neoplasia Research Group, Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Zhiyan Liu
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hee Young Na
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, South Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - So Yeon Park
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, South Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Junya Fukuoka
- Department of Pathology Informatics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shinya Satoh
- Department of Endocrine Surgery, Yamashita Thyroid and Parathyroid Clinic, Fukuoka, Japan
| | - Zhanna Mussazhanova
- Department of Tumor and Diagnostic Pathology, Nagasaki University, Nagasaki, Japan
| | - Masahiro Nakashima
- Department of Tumor and Diagnostic Pathology, Nagasaki University, Nagasaki, Japan
| | - Kennichi Kakudo
- Department of Pathology, Izumi City General Hospital, Izumi, Japan
| | - Andrey Bychkov
- Department of Pathology, Kameda Medical Center, Kamogawa, Chiba, Japan
| |
Collapse
|
3
|
Lopes-Pinto M, Lacerda-Nobre E, Silva AL, Tortosa F, Marques P. The Role of Programmed Cell Death Ligand 1 Expression in Pituitary Tumours: Lessons from the Current Literature. Neuroendocrinology 2024; 114:709-720. [PMID: 38754394 DOI: 10.1159/000539345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Programmed cell death-1 (PD-1) and PD ligand-1 (PD-L1) expression predict the biological behaviour, aggressiveness, and response to immune checkpoint inhibitors in different cancers. We reviewed the published data on PD-L1 expression in pituitary tumours from the perspective of its biological role and prognostic usefulness. SUMMARY A literature review focused on PD-L1 expression in pituitary tumours was performed. Six immunohistochemistry-based studies which assessed PD-L1 positivity in pituitary tumours were included, encompassing 704 patients. The cohort consisted of 384 (54.5%) nonfunctioning tumours and 320 (43.5%) functioning pituitary tumours. PD-L1 expression was positive in 248 cases (35.2%). PD-L1 positivity rate was higher in functioning than in nonfunctioning tumours (46.3% vs. 26.0%; p < 0.001) but also higher in growth hormone-secreting tumours (56.7%) and prolactinomas (53.6%) than in thyrotroph (33.3%) or corticotroph tumours (20.6%). While proliferative pituitary tumours showed higher rate of PD-L1 positivity than non-proliferative tumours (p < 0.001), no association with invasion or recurrence was found. KEY MESSAGES PD-L1 is expressed in a substantial number of pituitary tumours, predominantly in the functioning ones. PD-L1 positivity rates were significantly higher in proliferative pituitary tumours in comparison to non-proliferative tumours, but no differences were found concerning invasive or recurrent pituitary tumours. More studies following homogeneous and standardised methodologies are needed to fully elucidate the role and usefulness of PD-L1 expression in pituitary tumours.
Collapse
Affiliation(s)
- Mariana Lopes-Pinto
- Endocrinology Department, Unidade Local de Saúde de Santa Maria, Hospital de Santa Maria, Lisbon, Portugal
| | - Ema Lacerda-Nobre
- Endocrinology Department, Unidade Local de Saúde de Santa Maria, Hospital de Santa Maria, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Luísa Silva
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Saúde Ambiental da Faculdade de Medicina da Universidade de Lisboa (ISAMB-FMUL), Lisbon, Portugal
| | - Francisco Tortosa
- Pituitary Tumor Unit, Pathology Department, Hospital CUF Descobertas, Lisbon, Portugal
| | - Pedro Marques
- Pituitary Tumor Unit, Endocrinology Department, Hospital CUF Descobertas, Lisbon, Portugal
- Faculdade de Medicina, Universidade Católica Portuguesa, Lisbon, Portugal
| |
Collapse
|
4
|
Kheraldine H, Gupta I, Cyprian FS, Vranic S, Al-Farsi HF, Merhi M, Dermime S, Al Moustafa AE. Targeting HER2-positive breast cancer cells by a combination of dasatinib and BMS-202: Insight into the molecular pathways. Cancer Cell Int 2024; 24:94. [PMID: 38431613 PMCID: PMC10909263 DOI: 10.1186/s12935-023-03195-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 12/26/2023] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Recent investigations have reported the benefits of using a tyrosine kinase inhibitor, dasatinib (DA), as well as programmed death-ligand 1 (PD-L1) inhibitors in the management of several solid tumors, including breast cancer. Nevertheless, the outcome of the combination of these inhibitors on HER2-positive breast cancer is not explored yet. METHODS Herein, we investigated the impact of DA and PD-L1 inhibitor (BMS-202) combination on HER2-positive breast cancer cell lines, SKBR3 and ZR75. RESULTS Our data reveal that the combination significantly inhibits cell viability of both cancer cell lines as compared to monotreatment. Moreover, the combination inhibits epithelial-mesenchymal transition (EMT) progression and reduces cancer cell invasion by restoring E-cadherin and β-catenin expressions and loss of vimentin, major biomarkers of EMT. Additionally, the combination reduces the colony formation of both cell lines in comparison with their matched control. Also, the combination considerably inhibits the angiogenesis of the chorioallantoic membrane model compared with monotreatment. Molecular pathway analysis of treated cells shows that this combination blocks HER2, AKT, β-catenin, and JNK1/2/3 activities. CONCLUSION Our findings implicate that a combination of DA and BMS-202 could have a significant impact on the management of HER2-positive breast cancer.
Collapse
Affiliation(s)
- Hadeel Kheraldine
- College of Medicine, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
- Biomedical Research Centre, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Ishita Gupta
- College of Medicine, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
- Sidra Medicine, Doha, Qatar
| | - Farhan Sachal Cyprian
- College of Medicine, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
- Biomedical Research Centre, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Halema F Al-Farsi
- College of Medicine, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Maysaloun Merhi
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
- Translational Cancer Research Facility, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
- Translational Cancer Research Facility, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar.
- Biomedical Research Centre, Qatar University, P. O. Box 2713, Doha, Qatar.
- Oncology Department, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
5
|
García-Pérez BE, Pérez-Torres C, Baltierra-Uribe SL, Castillo-Cruz J, Castrejón-Jiménez NS. Autophagy as a Target for Non-Immune Intrinsic Functions of Programmed Cell Death-Ligand 1 in Cancer. Int J Mol Sci 2023; 24:15016. [PMID: 37834467 PMCID: PMC10573536 DOI: 10.3390/ijms241915016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
Autophagy is a catabolic process that is essential to the maintenance of homeostasis through the cellular recycling of damaged organelles or misfolded proteins, which sustains energy balance. Additionally, autophagy plays a dual role in modulating the development and progression of cancer and inducing a survival strategy in tumoral cells. Programmed cell death-ligand 1 (PD-L1) modulates the immune response and is responsible for maintaining self-tolerance. Because tumor cells exploit the PD-L1-PD-1 interaction to subvert the immune response, immunotherapy has been developed based on the use of PD-L1-blocking antibodies. Recent evidence has suggested a bidirectional regulation between autophagy and PD-L1 molecule expression in tumor cells. Moreover, the research into the intrinsic properties of PD-L1 has highlighted new functions that are advantageous to tumor cells. The relationship between autophagy and PD-L1 is complex and still not fully understood; its effects can be context-dependent and might differ between tumoral cells. This review refines our understanding of the non-immune intrinsic functions of PD-L1 and its potential influence on autophagy, how these could allow the survival of tumor cells, and what this means for the efficacy of anti-PD-L1 therapeutic strategies.
Collapse
Affiliation(s)
- Blanca Estela García-Pérez
- Departmento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Christian Pérez-Torres
- Departmento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Shantal Lizbeth Baltierra-Uribe
- Departmento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Juan Castillo-Cruz
- Departmento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Departmento de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Nayeli Shantal Castrejón-Jiménez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km. 1. Exhacienda de Aquetzalpa A.P. 32, Tulancingo 43600, Mexico
| |
Collapse
|
6
|
Ochoa SV, Casas Z, Albarracín SL, Sutachan JJ, Torres YP. Therapeutic potential of TRPM8 channels in cancer treatment. Front Pharmacol 2023; 14:1098448. [PMID: 37033630 PMCID: PMC10073478 DOI: 10.3389/fphar.2023.1098448] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/20/2023] [Indexed: 04/11/2023] Open
Abstract
Cancer is a multifactorial process associated with changes in signaling pathways leading to cell cycle variations and gene expression. The transient receptor potential melastatin 8 (TRPM8) channel is a non-selective cation channel expressed in neuronal and non-neuronal tissues, where it is involved in several processes, including thermosensation, differentiation, and migration. Cancer is a multifactorial process associated with changes in signaling pathways leading to variations in cell cycle and gene expression. Interestingly, it has been shown that TRPM8 channels also participate in physiological processes related to cancer, such as proliferation, survival, and invasion. For instance, TRPM8 channels have an important role in the diagnosis, prognosis, and treatment of prostate cancer. In addition, it has been reported that TRPM8 channels are involved in the progress of pancreatic, breast, bladder, colon, gastric, and skin cancers, glioblastoma, and neuroblastoma. In this review, we summarize the current knowledge on the role of TRPM8 channels in cancer progression. We also discuss the therapeutic potential of TRPM8 in carcinogenesis, which has been proposed as a molecular target for cancer therapy.
Collapse
Affiliation(s)
- Sara V. Ochoa
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
- Semillero de Investigación, Biofísica y Fisiología de Canales Iónicos, Pontificia Universidad Javeriana, Bogotá, Colombia
- *Correspondence: Sara V. Ochoa, ; Yolima P. Torres,
| | - Zulma Casas
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Sonia L. Albarracín
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jhon Jairo Sutachan
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Yolima P. Torres
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
- *Correspondence: Sara V. Ochoa, ; Yolima P. Torres,
| |
Collapse
|
7
|
Wilhelm A, Lemmenmeier I, Lalos A, Posabella A, Kancherla V, Piscuoglio S, Delko T, von Flüe M, Glatz K, Droeser RA. The prognostic significance of CXCR4 and SDF-1 in differentiated thyroid cancer depends on CD8+ density. BMC Endocr Disord 2022; 22:292. [PMID: 36419107 PMCID: PMC9686066 DOI: 10.1186/s12902-022-01204-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Tumor infiltration with cytotoxic CD8+ T-cells is associated with a favorable outcome in several neoplasms, including thyroid cancer. The chemokine axis CXCR4/SDF-1 correlates with more aggressive tumors, but little is known concerning the prognostic relevance in relation to the tumor immune microenvironment of differentiated thyroid cancer (DTC). METHODS A tissue microarray (TMA) of 37 tumor specimens of primary DTC was analyzed by immunohistochemistry (IHC) for the expression of CD8+, CXCR4, phosphorylated CXCR4 and SDF-1. A survival analysis was performed on a larger collective (n = 456) at RNA level using data from The Cancer Genome Atlas (TCGA) papillary thyroid cancer cohort. RESULTS Among the 37 patients in the TMA-cohort, the density of CD8+ was higher in patients with less advanced primary tumors (median cells/TMA-punch: 12.5 (IQR: 6.5, 12.5) in T1-2 tumors vs. 5 (IQR: 3, 8) in T3-4 tumors, p = 0.05). In the TCGA-cohort, CXCR4 expression was higher in patients with cervical lymph node metastasis compared to N0 or Nx stage (CXCR4high/low 116/78 vs. 97/116 vs. 14/35, respectively, p = 0.001). Spearman's correlation analysis of the TMA-cohort demonstrated that SDF-1 was significantly correlated with CXCR4 (r = 0.4, p = 0.01) and pCXCR4 (r = 0.5, p = 0.002). In the TCGA-cohort, density of CD8+ correlated with CXCR4 and SDF-1 expression (r = 0.58, p < 0.001; r = 0.4, p < 0.001). The combined marker analysis of the TCGA cohort demonstrated that high expression of both, CXCR4 and SDF-1 was associated with reduced overall survival in the CD8 negative TCGA cohort (p = 0.004). CONCLUSION These findings suggest that the prognostic significance of CXCR4 and SDF-1 in differentiated thyroid cancer depends on the density of CD8 positive T-lymphocytes. Further studies with larger sample sizes are needed to support our findings and inform future investigations of new treatment and diagnostic options for a more personalized approach for patients with differentiated thyroid cancer.
Collapse
Affiliation(s)
- Alexander Wilhelm
- Department of Surgery, Clarunis, St. Clara Hospital and University Hospital Basel, University of Basel, Basel, Postfach, 4002, Switzerland.
- Department of Surgery, University of California, San Francisco, CA, USA.
| | - Isabelle Lemmenmeier
- Department of Surgery, Clarunis, St. Clara Hospital and University Hospital Basel, University of Basel, Basel, Postfach, 4002, Switzerland
| | - Alexandros Lalos
- Department of Surgery, Clarunis, St. Clara Hospital and University Hospital Basel, University of Basel, Basel, Postfach, 4002, Switzerland
| | - Alberto Posabella
- Department of Surgery, Clarunis, St. Clara Hospital and University Hospital Basel, University of Basel, Basel, Postfach, 4002, Switzerland
| | - Venkatesh Kancherla
- Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Salvatore Piscuoglio
- Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
- Visceral Surgery Research Laboratory, Clarunis, Department of Biomedicine, Basel, Switzerland
| | - Tarik Delko
- Department of Surgery, Clarunis, St. Clara Hospital and University Hospital Basel, University of Basel, Basel, Postfach, 4002, Switzerland
- Department of Surgery, Hirslanden Hospital St. Anna, Lucerne, Switzerland
| | - Markus von Flüe
- Department of Surgery, Clarunis, St. Clara Hospital and University Hospital Basel, University of Basel, Basel, Postfach, 4002, Switzerland
- Visceral Surgery Research Laboratory, Clarunis, Department of Biomedicine, Basel, Switzerland
| | - Kathrin Glatz
- Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Raoul André Droeser
- Department of Surgery, Clarunis, St. Clara Hospital and University Hospital Basel, University of Basel, Basel, Postfach, 4002, Switzerland
| |
Collapse
|
8
|
Yan X, Hong B, Feng J, Jin Y, Chen M, Li F, Qian Y. B7-H4 is a potential diagnostic and prognostic biomarker in colorectal cancer and correlates with the epithelial-mesenchymal transition. BMC Cancer 2022; 22:1053. [PMID: 36217128 PMCID: PMC9549643 DOI: 10.1186/s12885-022-10159-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/06/2022] [Indexed: 12/01/2022] Open
Abstract
Background As a negative co-stimulatory molecule of the B7 family, B7-H4 has recently attracted increased attention. However, the clinical value of B7-H4 in colorectal cancer (CRC) remains controversial and requires further investigation. This study aimed to investigate the role of B7-H4 in the clinical diagnosis and survival prognosis of CRC. Methods The relationships between B7-H4 expression, immune cell infiltration, epithelial-mesenchymal transition (EMT), clinicopathological features, and survival prognosis were determined through the TCGA database and verified in a large CRC cohort (n = 1118). Results The results showed the level of B7-H4 mRNA expression was significantly increased in the CRC tumor tissues compared with normal tissues (P < 0.001). Immunohistochemistry showed that B7-H4 protein expression was also up-regulated in CRC. The positive rate of B7-H4 in CRC tumor tissues was 76.38%, which was significantly higher than that in non-tumor tissues (P < 0.001). Overexpression of B7-H4 was positively correlated with lymph node metastasis, advanced TNM stage, and poor tumor differentiation (P = 0.012; 0.009; 0.014). Prognostic analysis showed high B7-H4 expression was associated with significantly shorter OS. Multivariate analysis demonstrated the risk of death in CRC patients with high B7-H4 expression is 1.487 times that of low B7-H4 expression. In addition, B7-H4 expression was negatively correlated with the epithelial marker E-cadherin (P < 0.001) and positively correlated with the mesenchymal marker vimentin (P < 0.001) in CRC tissues. However, B7-H4 expression was not associated with the immunosuppressive microenvironment in CRC. Conclusion B7-H4 may represent a potential biomarker for the diagnosis and prognosis of CRC and enhance CRC invasion by promoting EMT. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10159-5.
Collapse
Affiliation(s)
- Xiaotian Yan
- Department of Clinical Laboratory, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, 166 North Qiutao Road, Hangzhou, Zhejiang Province, 310006, China
| | - Bo Hong
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Jie Feng
- Department of Blood Transfusion, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Yuanqing Jin
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Mengting Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Fugang Li
- Shanghai Upper Bio Tech Pharma Company Limited, Shanghai, 201201, China
| | - Yun Qian
- Department of Clinical Laboratory, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, 166 North Qiutao Road, Hangzhou, Zhejiang Province, 310006, China.
| |
Collapse
|
9
|
Evaluation of Lipocalin-2 and Twist expression in thyroid cancers and its relationship with epithelial mesenchymal transition. Ann Diagn Pathol 2022; 59:151973. [DOI: 10.1016/j.anndiagpath.2022.151973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/16/2022] [Accepted: 05/05/2022] [Indexed: 11/19/2022]
|
10
|
Zhu X, Wang X, Gong Y, Deng J. E-cadherin on epithelial-mesenchymal transition in thyroid cancer. Cancer Cell Int 2021; 21:695. [PMID: 34930256 PMCID: PMC8690896 DOI: 10.1186/s12935-021-02344-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/15/2021] [Indexed: 02/08/2023] Open
Abstract
Thyroid carcinoma is a common malignant tumor of endocrine system and head and neck. Recurrence, metastasis and high malignant expression after routine treatment are serious clinical problems, so it is of great significance to explore its mechanism and find action targets. Epithelial-mesenchymal transition (EMT) is associated with tumor malignancy and invasion. One key change in tumour EMT is low expression of E-cadherin. Therefore, this article reviews the expression of E-cadherin in thyroid cancers (TC), discuss the potential mechanisms involved, and outline opportunities to exploit E-cadherin on regulating the occurrence of EMT as a critical factor in cancer therapeutics.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Jing'an District, Shanghai, 200040, China
| | - Xiaoping Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Jing'an District, Shanghai, 200040, China.
| | - Yifei Gong
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Jing'an District, Shanghai, 200040, China
| | - Junlin Deng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Jing'an District, Shanghai, 200040, China
| |
Collapse
|
11
|
Yang X, Sun J, Wen B, Wang Y, Zhang M, Chen W, Zhao W, He C, Zhong X, Liu Y, Li T, Sun H, He S. Biejiajian Pill Promotes the Infiltration of CD8 + T Cells in Hepatocellular Carcinoma by Regulating the Expression of CCL5. Front Pharmacol 2021; 12:771046. [PMID: 34899325 PMCID: PMC8661106 DOI: 10.3389/fphar.2021.771046] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/29/2021] [Indexed: 12/17/2022] Open
Abstract
Tumor-infiltrating CD8+T lymphocytes are mostly associated with a favorable prognosis in numerous cancers, including hepatocellular carcinoma (HCC). Biejiajian Pill (BJJP) is a common type of traditional Chinese medicine that is widely used in the treatment of HCC in China. Previous studies showed that BJJP suppressed the growth of HCC cells both in vivo and in vitro, by exerting direct cytotoxic effects on tumor cells. The present study demonstrated that in addition to direct cytotoxicity, BJJP inhibits the growth of tumor cells by promoting the infiltration of CD8+T cells into the tumor in H22-bearing mice. Mechanistically, chemokine ligand 5 (CCL5) was identified as one of the most highly expressed chemokines by tumor cells in vivo after treatment with BJJP. Additionally, CCL5 was knocked down in H22 cells and the results showed that knockdown of the gene significantly impaired the infiltration of CD8+T cells in vivo. Furthermore, the effects of BJJP on human HCC cell lines were assessed in vitro. Similarly, cells treated with BJJP had higher expression of CCL5 mRNA, which was consistent with increased levels of CCL5 protein in human tumor cells. These findings provide new insights into the anticancer effects of BJJP, which regulated the expression of CCL5 and the infiltration of CD8+T cells. The results, therefore, suggest that BJJP has great potential application in clinical practice.
Collapse
Affiliation(s)
- Xuemei Yang
- Nanfang Hospital, Southern Medical University, Guangzhou, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jialing Sun
- Nanfang Hospital, Southern Medical University, Guangzhou, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Bin Wen
- Department of Traditional Chinese Medicine, Hospital of PLA, Guangzhou, China
| | - Yu Wang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingjia Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Weicong Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wenting Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chunyu He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaodan Zhong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Tong Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Nanfang Hospital, Southern Medical University, Guangzhou, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Songqi He
- Nanfang Hospital, Southern Medical University, Guangzhou, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Niciporuka R, Nazarovs J, Ozolins A, Narbuts Z, Miklasevics E, Gardovskis J. Can We Predict Differentiated Thyroid Cancer Behavior? Role of Genetic and Molecular Markers. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:1131. [PMID: 34684168 PMCID: PMC8540789 DOI: 10.3390/medicina57101131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/07/2021] [Accepted: 10/15/2021] [Indexed: 12/27/2022]
Abstract
Thyroid cancer is ranked in ninth place among all the newly diagnosed cancer cases in 2020. Differentiated thyroid cancer behavior can vary from indolent to extremely aggressive. Currently, predictions of cancer prognosis are mainly based on clinicopathological features, which are direct consequences of cell and tissue microenvironment alterations. These alterations include genetic changes, cell cycle disorders, estrogen receptor expression abnormalities, enhanced epithelial-mesenchymal transition, extracellular matrix degradation, increased hypoxia, and consecutive neovascularization. All these processes are represented by specific genetic and molecular markers, which can further predict thyroid cancer development, progression, and prognosis. In conclusion, evaluation of cancer genetic and molecular patterns, in addition to clinicopathological features, can contribute to the identification of patients with a potentially worse prognosis. It is essential since it plays a crucial role in decision-making regarding initial surgery, postoperative treatment, and follow-up. To date, there is a large diversity in methodologies used in different studies, frequently leading to contradictory results. To evaluate the true significance of predictive markers, more comparable studies should be conducted.
Collapse
Affiliation(s)
- Rita Niciporuka
- Department of Surgery, Riga Stradins University, Pilsonu Street 13, LV-1002 Riga, Latvia; (A.O.); (Z.N.); (J.G.)
- Department of Surgery, Pauls Stradins Clinical University Hospital, Pilsonu Street 13, LV-1002 Riga, Latvia
| | - Jurijs Nazarovs
- Department of Pathology, Pauls Stradins Clinical University Hospital, Pilsonu Street 13, LV-1002 Riga, Latvia;
| | - Arturs Ozolins
- Department of Surgery, Riga Stradins University, Pilsonu Street 13, LV-1002 Riga, Latvia; (A.O.); (Z.N.); (J.G.)
- Department of Surgery, Pauls Stradins Clinical University Hospital, Pilsonu Street 13, LV-1002 Riga, Latvia
| | - Zenons Narbuts
- Department of Surgery, Riga Stradins University, Pilsonu Street 13, LV-1002 Riga, Latvia; (A.O.); (Z.N.); (J.G.)
- Department of Surgery, Pauls Stradins Clinical University Hospital, Pilsonu Street 13, LV-1002 Riga, Latvia
| | - Edvins Miklasevics
- Institute of Oncology, Riga Stradins University, Pilsonu Street 13, LV-1002 Riga, Latvia;
| | - Janis Gardovskis
- Department of Surgery, Riga Stradins University, Pilsonu Street 13, LV-1002 Riga, Latvia; (A.O.); (Z.N.); (J.G.)
- Department of Surgery, Pauls Stradins Clinical University Hospital, Pilsonu Street 13, LV-1002 Riga, Latvia
| |
Collapse
|