1
|
de Bresser CJM, de Krijger RR. The Molecular Classification of Pheochromocytomas and Paragangliomas: Discovering the Genomic and Immune Landscape of Metastatic Disease. Endocr Pathol 2024:10.1007/s12022-024-09830-3. [PMID: 39466488 DOI: 10.1007/s12022-024-09830-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
Pheochromocytomas (PCCs) and paragangliomas (PGLs, together PPGLs) are the most hereditary tumors known. PPGLs were considered benign, but the fourth edition of the World Health Organisation (WHO) classification redefined all PPGLs as malignant neoplasms with variable metastatic potential. The metastatic rate differs based on histopathology, genetic background, size, and location of the tumor. The challenge in predicting metastatic disease lies in the absence of a clear genotype-phenotype correlation among the more than 20 identified genetic driver variants. Recent advances in molecular clustering based on underlying genetic alterations have paved the way for improved cluster-specific personalized treatments. However, despite some clusters demonstrating a higher propensity for metastatic disease, cluster-specific therapies have not yet been widely adopted in clinical practice. Comprehensive genomic profiling and transcriptomic analyses of large PPGL cohorts have identified potential new biomarkers that may influence metastatic potential. It appears that no single biomarker alone can reliably predict metastatic risk; instead, a combination of these biomarkers may be necessary to develop an effective prediction model for metastatic disease. This review evaluates current guidelines and recent genomic and transcriptomic findings, with the aim of accurately identifying novel biomarkers that could contribute to a predictive model for mPPGLs, thereby enhancing patient care and outcomes.
Collapse
Affiliation(s)
- Carolijn J M de Bresser
- Department of Vascular Surgery, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Ronald R de Krijger
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Kiriakopoulos A, Giannakis P, Menenakos E. Pheochromocytoma: a changing perspective and current concepts. Ther Adv Endocrinol Metab 2023; 14:20420188231207544. [PMID: 37916027 PMCID: PMC10617285 DOI: 10.1177/20420188231207544] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
This article aims to review current concepts in diagnosing and managing pheochromocytoma and paraganglioma (PPGL). Personalized genetic testing is vital, as 40-60% of tumors are linked to a known mutation. Tumor DNA should be sampled first. Next-generation sequencing is the best and most cost-effective choice and also helps with the expansion of current knowledge. Recent advancements have also led to the increased incorporation of regulatory RNA, metabolome markers, and the NETest in PPGL workup. PPGL presentation is highly volatile and nonspecific due to its multifactorial etiology. Symptoms mainly derive from catecholamine (CMN) excess or mass effect, primarily affecting the cardiovascular system. However, paroxysmal nature, hypertension, and the classic triad are no longer perceived as telltale signs. Identifying high-risk subjects and diagnosing patients at the correct time by using appropriate personalized methods are essential. Free plasma/urine catecholamine metabolites must be first-line examinations using liquid chromatography with tandem mass spectrometry as the gold standard analytical method. Reference intervals should be personalized according to demographics and comorbidity. The same applies to result interpretation. Threefold increase from the upper limit is highly suggestive of PPGL. Computed tomography (CT) is preferred for pheochromocytoma due to better cost-effectiveness and spatial resolution. Unenhanced attenuation of >10HU in non-contrast CT is indicative. The choice of extra-adrenal tumor imaging is based on location. Functional imaging with positron emission tomography/computed tomography and radionuclide administration improves diagnostic accuracy, especially in extra-adrenal/malignant or familial cases. Surgery is the mainstay treatment when feasible. Preoperative α-adrenergic blockade reduces surgical morbidity. Aggressive metastatic PPGL benefits from systemic chemotherapy, while milder cases can be managed with radionuclides. Short-term postoperative follow-up evaluates the adequacy of resection. Long-term follow-up assesses the risk of recurrence or metastasis. Asymptomatic carriers and their families can benefit from surveillance, with intervals depending on the specific gene mutation. Trials primarily focusing on targeted therapy and radionuclides are currently active. A multidisciplinary approach, correct timing, and personalization are key for successful PPGL management.
Collapse
Affiliation(s)
- Andreas Kiriakopoulos
- Department of Surgery, ‘Evgenidion Hospital’, National and Kapodistrian University of Athens School of Medicine, 5th Surgical Clinic, Papadiamantopoulou 20 Str, PO: 11528, Athens 11528, Greece
| | | | | |
Collapse
|
3
|
Bancel LP, Masso V, Dessein AF, Aubert S, Leteurtre E, Coppin L, Odou MF, Cao CD, Cardot-Bauters C, Pigny P. Serum Succinate/Fumarate Ratio in Patients With Paraganglioma/Pheochromocytoma Attending an Endocrine Oncogenetic Unit. J Clin Endocrinol Metab 2023; 108:2343-2352. [PMID: 36848172 DOI: 10.1210/clinem/dgad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/27/2023] [Accepted: 02/22/2023] [Indexed: 03/01/2023]
Abstract
CONTEXT Pheochromocytomas and paragangliomas (PPGLs) with SDHx pathogenic variants (PVs) are characterized by a higher intratissular succinate/fumarate ratio (RS/F) than non-SDHx-mutated ones. Also, an increase in serum succinate levels has been reported in patients with germline SDHB or SDHD PV. OBJECTIVE To assess whether measurement of serum succinate, fumarate levels, and RS/F might aid identification of an SDHx germline PV/likely pathogenic variant (LPV) in patients with PPGL or in asymptomatic relatives; and to guide identification of a PV/LPV among the variants of unknown significance (VUS) identified in SDHx by next-generation sequencing. METHODS This prospective monocentric study included 93 patients attending an endocrine oncogenetic unit for genetic testing. Succinate and fumarate were measured in serum by gas chromatography coupled to mass spectrometry. The RS/F was calculated to assess SDH enzymatic function. Diagnostic performance was assessed by receiver operating characteristic analysis. RESULTS RS/F had a higher discriminant power than succinate alone to identify an SDHx PV/LPV in patients with PPGL. However, SDHD PVs/LPVs are frequently missed. Only RS/F differed between asymptomatic SDHB/SDHD PV/LPV carriers and SDHB/SDHD-linked patients with PPGL. Finally RS/F could be helpful to easily evaluate the functional impact of VUS in SDHx. CONCLUSION Measurement of serum RS/F in patients with PPGL and in asymptomatic relatives is a valuable initial workup tool to detect those carrying a germline PV/LPV in SDHx. Its discriminative power is equal or superior to those of succinate measured alone. SDHD PVs/LPVs are less frequently identified by these biochemical tools. Use of RS/F for SDHx VUS reclassification needs to be evaluated further.
Collapse
Affiliation(s)
- Léo-Paul Bancel
- CHU Lille, Laboratoire de Biochimie-Hormonologie, Métabolisme, Nutrition, Oncologie, Centre de Biologie Pathologie, F.59037 Lille Cedex, France
| | - Vincent Masso
- CHU Lille, Laboratoire de Biochimie-Hormonologie, Métabolisme, Nutrition, Oncologie, Centre de Biologie Pathologie, F.59037 Lille Cedex, France
| | - Anne-Frederique Dessein
- CHU Lille, Laboratoire de Biochimie-Hormonologie, Métabolisme, Nutrition, Oncologie, Centre de Biologie Pathologie, F.59037 Lille Cedex, France
| | - Sébastien Aubert
- CHU Lille, Service d'Anatomie Pathologique, Centre de Biologie Pathologie, F-59037 Lille Cedex, France
| | - Emmanuelle Leteurtre
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to therapies, F-59000 Lille, France
| | - Lucie Coppin
- CHU Lille, Laboratoire de Biochimie-Hormonologie, Métabolisme, Nutrition, Oncologie, Centre de Biologie Pathologie, F.59037 Lille Cedex, France
| | - Marie-Françoise Odou
- CHU Lille, Laboratoire de Biochimie-Hormonologie, Métabolisme, Nutrition, Oncologie, Centre de Biologie Pathologie, F.59037 Lille Cedex, France
| | - Christine Do Cao
- CHU Lille, Service d'Endocrinologie, Diabétologie, Métabolisme, Nutrition, Hôpital Claude Huriez, F-59037 Lille Cedex, France
| | - Catherine Cardot-Bauters
- CHU Lille, Service d'Endocrinologie, Diabétologie, Métabolisme, Nutrition, Hôpital Claude Huriez, F-59037 Lille Cedex, France
| | - Pascal Pigny
- CHU Lille, Laboratoire de Biochimie-Hormonologie, Métabolisme, Nutrition, Oncologie, Centre de Biologie Pathologie, F.59037 Lille Cedex, France
| |
Collapse
|
4
|
Nezu M, Hirotsu Y, Amemiya K, Katsumata M, Watanabe T, Takizawa S, Inoue M, Mochizuki H, Hosaka K, Oyama T, Omata M. A case of juvenile-onset pheochromocytoma with KIF1B p.V1529M germline mutation. Endocr J 2022; 69:705-716. [PMID: 35046208 DOI: 10.1507/endocrj.ej21-0475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In 2008, a familial noradrenergic pheochromocytoma (PCC) with a KIF1B germline mutation in exon 41 was reported in a 24-year-old female proband and her family. However, in 2020, the same research group reported that the cause of PCC in this family was a MAX germline mutation and was not due to the KIF1B mutation. In this study, we investigated the pathogenicity of a KIF1B germline mutation detected in a 26-year-old woman with juvenile-onset noradrenergic PCC. She was surgically treated and did not have a family history of PCC. We performed whole-exome sequencing, Sanger sequencing, and immunohistochemical and gene expression analyses of catecholamine-synthesizing enzymes. Three tumors with associated somatic mutations were used as the control group. Whole-exome sequencing revealed a p.V1529M KIF1B germline mutation in exon 41 in our patient, and no other associated germline and somatic mutations, including MAX, were detected. Sanger sequencing confirmed the presence of both mutant and wild-type alleles in the tumor. Among the catecholamine-synthesizing enzymes, the expression of phenylethanolamine-N-methyl transferase was suppressed. An in silico analysis of the p.V1529M mutation showed a score suggestive of pathogenicity. After evaluation with the international guideline for sequence variants, p.V1529M mutation was still classified as a variant with uncertain significance; however, our data, including the in silico analysis data, provided certain evidences that met the criteria supporting its pathogenicity. Therefore, this study can support future studies in proving the pathogenicity of the KIF1B p.V1529M mutation.
Collapse
Affiliation(s)
- Masahiro Nezu
- Department of Endocrinology and Diabetes, Yamanashi Central Hospital, Kofu 400-8506, Japan
- Genome Analysis Center, Yamanashi Central Hospital, Kofu 400-8506, Japan
| | - Yosuke Hirotsu
- Genome Analysis Center, Yamanashi Central Hospital, Kofu 400-8506, Japan
| | - Kenji Amemiya
- Genome Analysis Center, Yamanashi Central Hospital, Kofu 400-8506, Japan
| | - Miho Katsumata
- Department of Endocrinology and Diabetes, Yamanashi Central Hospital, Kofu 400-8506, Japan
| | - Tomomi Watanabe
- Department of Endocrinology and Diabetes, Yamanashi Central Hospital, Kofu 400-8506, Japan
| | - Soichi Takizawa
- Department of Endocrinology and Diabetes, Yamanashi Central Hospital, Kofu 400-8506, Japan
| | - Masaharu Inoue
- Department of Endocrinology and Diabetes, Yamanashi Central Hospital, Kofu 400-8506, Japan
| | - Hitoshi Mochizuki
- Genome Analysis Center, Yamanashi Central Hospital, Kofu 400-8506, Japan
| | - Kyoko Hosaka
- Department of Urology, Yamanashi Central Hospital, Kofu 400-8506, Japan
| | - Toshio Oyama
- Department of Pathology, Yamanashi Central Hospital, Kofu 400-8506, Japan
| | - Masao Omata
- Genome Analysis Center, Yamanashi Central Hospital, Kofu 400-8506, Japan
- The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Parisien-La Salle S, Dumas N, Bédard K, Jolin J, Moramarco J, Lacroix A, Lévesque I, Burnichon N, Gimenez-Roqueplo AP, Bourdeau I. Genetic spectrum in a Canadian cohort of apparently sporadic pheochromocytomas and paragangliomas: New data on multigene panel retesting over time. Clin Endocrinol (Oxf) 2022; 96:803-811. [PMID: 34750850 DOI: 10.1111/cen.14618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Pheochromocytomas (PHEOs) and paragangliomas (PGLs), collectively known as PPGLs, are tumours with high heritability. The prevalence of germline mutations in apparently sporadic PPGLs varies depending on the study population. The objective of this study was to determine the spectrum of germline mutations in a cohort of patients with apparently sporadic PPGLs over time. DESIGN We performed a retrospective review of patients with apparently sporadic PPGLs who underwent genetic testing at our referral centre from 2005 to 2020. PATIENTS We included patients with apparently sporadic PPGLs who underwent genetic testing at our referral center. MEASUREMENTS Genetic analysis included sequential gene sequencing by Sanger method or next generation sequencing (NGS) with a multigene panel. RESULTS The prevalence of germline mutations was 26.2% (43/164); 40.0% (30/75) in PGLs and 14.6% (13/89) in PHEOs. We identified four novel pathogenic variants (two SDHB and two SDHD). Patients carrying germline mutations were younger (38.7 vs. 49.7 years old) than patients with no identified germline mutations. From 2015 to 2020, we performed NGS with a multigene panel on 12 patients for whom the initial genetic analysis was negative. Germline mutations in previously untested genes were found in four (33.3%) of these patients (two MAX and two SDHA), representing 9.3% (4/43) of the mutation carriers. CONCLUSION The prevalence of germline mutations in our cohort of patients with apparently sporadic PPGLs was 26.2%. Genetic re-evaluation over time using multigene sequencing by NGS assay in a subgroup of patients leads to an increase in the detection of mutations.
Collapse
Affiliation(s)
- Stéfanie Parisien-La Salle
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Nadine Dumas
- Division of Genetics, Department of Medicine, CRCHUM, Montreal, Quebec, Canada
| | - Karine Bédard
- Molecular Diagnostic Laboratory, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada
| | - Judith Jolin
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Jessica Moramarco
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - André Lacroix
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Isabelle Lévesque
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Nelly Burnichon
- Department of Genetics, Assistance Publique-Hôpitaux de Paris, Hôpital européen Georges Pompidou, Paris, France
- PARCC, INSERM, Université de Paris, Paris, France
| | - Anne-Paule Gimenez-Roqueplo
- Department of Genetics, Assistance Publique-Hôpitaux de Paris, Hôpital européen Georges Pompidou, Paris, France
- PARCC, INSERM, Université de Paris, Paris, France
| | - Isabelle Bourdeau
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
- Division of Genetics, Department of Medicine, CRCHUM, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Genetics of Pheochromocytomas and Paragangliomas Determine the Therapeutical Approach. Int J Mol Sci 2022; 23:ijms23031450. [PMID: 35163370 PMCID: PMC8836037 DOI: 10.3390/ijms23031450] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Pheochromocytomas and paragangliomas are the most heritable endocrine tumors. In addition to the inherited mutation other driver mutations have also been identified in tumor tissues. All these genetic alterations are clustered in distinct groups which determine the pathomechanisms. Most of these tumors are benign and their surgical removal will resolve patient management. However, 5–15% of them are malignant and therapeutical possibilities for them are limited. This review provides a brief insight about the tumorigenesis associated with pheochromocytomas/paragangliomas in order to present them as potential therapeutical targets.
Collapse
|