1
|
Corbett K, Ruether D, Seiden-Long I, Kline G. Resolution of PTHrP-Mediated Hypercalcemia Following Treatment with Dual BRAF/MEK Inhibition for BRAFV600E-Positive Metastatic Ameloblastoma. Calcif Tissue Int 2024; 114:444-449. [PMID: 38252285 DOI: 10.1007/s00223-023-01177-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
Ameloblastoma is a rare odontogenic tumor which may be complicated by hypercalcemia in advanced disease. Tumoral parathyroid hormone-related peptide (PTHrP) production and local osteolysis from paracrine factors have been proposed as mechanisms. Mitogen-activated protein kinase (MAPK) inhibitors have been successfully used in ameloblastomas with BRAF V600E mutation to reduce symptoms and decrease tumor burden. Serum calcium has been observed to normalize following treatment with MAPK inhibitors; however, the response of PTHrP and markers of bone turnover has not been reported. We describe a case of a 55-year-old female with PTHrP-mediated hypercalcemia secondary to BRAF V600E-positive ameloblastoma with pulmonary metastases. Following treatment with dabrafenib and trametinib, the patient experienced the regression of pulmonary lesions and normalization of serum calcium, PTHrP, and markers of bone turnover. Tissue samples of ameloblastoma carrying BRAF V600E mutation are more likely to express PTHrP than tissue samples carrying wild-type BRAF. In our case, resolution of PTHrP-mediated hypercalcemia following initiation of BRAF/MEK inhibition provides additional evidence that the MAPK pathway contributes to PTHrP synthesis. It also raises the question of whether MAPK inhibitors would be effective in treating PTHrP-mediated hypercalcemia associated with other malignancies harboring BRAF V600E mutation.
Collapse
Affiliation(s)
- Kathryn Corbett
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Dean Ruether
- Division of Oncology, Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Isolde Seiden-Long
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Precision Laboratories, Calgary, AB, Canada
| | - Gregory Kline
- Division of Endocrinology and Metabolism, Department of Medicine, University of Calgary, 1820 Richmond Rd SW, Calgary, AB, T2T 5C7, Canada.
| |
Collapse
|
2
|
Cao Y, Xiong Y, Sun H, Wang Z. Neurorescuing effect of Cinacalcet against hypercalcemia-induced nerve injury in chronic kidney disease via TRAF2/cIAP1/KLF2/SERPINA3 signal axis. Cell Biol Toxicol 2023; 39:1-17. [PMID: 35635602 DOI: 10.1007/s10565-022-09717-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 04/07/2022] [Indexed: 11/25/2022]
Abstract
Hypercalcemia is a common complication in chronic kidney disease (CKD) and unfortunately contributes to nerve injury. This study aims to investigate the potential role and underlying mechanisms of Cinacalcet (CIN) in hypercalcemia-driven nerve injury in CKD. A CKD mouse model was first established by adenine feeding to identify the therapeutic effects of CIN. Molecules related to CIN and CKD were predicted by bioinformatics analysis and their expression in the kidney tissues of CKD mice was measured by immunochemistry. Gain- and loss-of-functions assays were performed both in vitro and in vivo to evaluate their effects on nerve injury in CKD, as reflected by Scr and BUN, and brain calcium content as well as behavior tests. CIN ameliorated hypercalcemia-driven nerve injury in CKD mice. Interactions among TRAF2, an E3-ubiquitin ligase, KLF2, and SERPINA3 were bioinformatically predicted on CIN effect. CIN restricted the ubiquitin-mediated degradation of KLF2 by downregulating TRAF2. KLF2 targeted and inversely regulated SERPINA3 to repress hypercalcemia-driven nerve injury in CKD. CIN was substantiated in vivo to ameliorate hypercalcemia-driven nerve injury in CKD mice through the TRAF2/KLF2/SERPINA3 regulatory axis. Together, CIN suppresses SERPINA3 expression via TRAF2-mediated inhibition of the ubiquitin-dependent degradation of KLF2, thus repressing hypercalcemia-induced nerve injury in CKD mice.
Collapse
Affiliation(s)
- Yaochen Cao
- The First Affiliated Hospital of Hainan Medical University, Haikou, 571199, People's Republic of China
- Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, 10117, Berlin, Germany
| | - Yingquan Xiong
- Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, 10117, Berlin, Germany
| | - Hongming Sun
- Department of Neurology, the Fourth Hospital of Daqing, Daqing, 163712, People's Republic of China.
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan.
| | - Ziqiang Wang
- Department of Nephrology, The First Affiliated Hospital of Hainan Medical University, Haikou, 571199, People's Republic of China
| |
Collapse
|
3
|
Faiq S, Lavelle K, Hu T, Shoback D, Ku G. Cinacalcet increases renal calcium excretion in PTHrP-mediated hypercalcemia: a case report. BMC Endocr Disord 2023; 23:133. [PMID: 37328745 PMCID: PMC10273565 DOI: 10.1186/s12902-023-01386-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/08/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND In the acute setting, PTH-independent hypercalcemia is typically treated with anti-resorptive agents such as zoledronic acid or denosumab. When these agents are no longer able to control hypercalcemia, several case reports have shown the utility of cinacalcet. However, it is not known if cinacalcet can be effective in patients naïve to anti-resorptive therapy or how cinacalcet ameliorates the hypercalcemia. CASE PRESENTATION A 47-year-old male with a history of alcohol-induced cirrhosis was admitted for left cheek bleeding and swelling from an infiltrative squamous cell carcinoma of the oral cavity. On admission, he was found to have an elevated albumin-corrected serum calcium of 13.6 mg/dL, a serum phosphorus of 2.2 mg/dL and an intact PTH of 6 pg/mL (normal 18-90) with a PTHrP of 8.1 pmol/L (normal < 4.3), consistent with PTHrP-dependent hypercalcemia. Aggressive intravenous saline hydration and subcutaneous salmon calcitonin were initiated, but his serum calcium remained elevated. Given tooth extractions scheduled for the next day and possible irradiation to the jaw in the near future, alternatives to antiresorptive therapy were sought. Cinacalcet was initiated at 30 mg twice daily then increased to 60 mg twice daily the following day. The albumin-corrected serum calcium level decreased from 13.2 to 10.9 mg/dL within 48 h. The fractional excretion of calcium increased from 3.7 to 7.0%. CONCLUSIONS This case demonstrates the utility of cinacalcet for the treatment of PTHrP-mediated hypercalcemia without prior anti-resorptive therapy via increased renal clearance of calcium.
Collapse
Affiliation(s)
- Samya Faiq
- School of Medicine, University of California Davis, Davis, USA
| | - Kristen Lavelle
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Francisco, 513 Parnassus Ave, HSW 1027, San Francisco, CA, 94143, USA
| | - Tina Hu
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Francisco, 513 Parnassus Ave, HSW 1027, San Francisco, CA, 94143, USA
| | - Dolores Shoback
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Francisco, 513 Parnassus Ave, HSW 1027, San Francisco, CA, 94143, USA
- Department of Veterans Affairs, Endocrine Research Unit, San Francisco, CA, USA
| | - Gregory Ku
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Francisco, 513 Parnassus Ave, HSW 1027, San Francisco, CA, 94143, USA.
| |
Collapse
|
4
|
Hypercalcemia of Malignancy Attributed to Cosecretion of PTH and PTHRP in Lung Adenocarcinoma. AACE Clin Case Rep 2021; 7:200-203. [PMID: 34095488 PMCID: PMC8165115 DOI: 10.1016/j.aace.2021.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/29/2020] [Accepted: 01/02/2021] [Indexed: 11/22/2022] Open
Abstract
Introduction Hypercalcemia of malignancy (HCM) portends a very poor prognosis, and no established guidelines exist regarding its management. Most instances of HCM are due to local osteolysis or secretion of parathyroid hormone related-peptide, while less than 1% of all cases are due to ectopic secretion of parathyroid hormone. Case Report We present an unusual case of HCM due to proposed cosecretion of both parathyroid hormone and parathyroid hormone-related protein in a 36-year-old man with a poorly differentiated lung adenocarcinoma. The patient’s hypercalcemia was refractory to conventional measures, including intravenous bisphosphonate therapy (zoledronic acid), and was improved with administration of denosumab. Conclusion This is the youngest and first case of hypercalcemia of malignancy attributed to cosecretion of PTH and PTHrP from an adenocarcinoma. In refractory cases of HCM, denosumab is a potential option when other conventional measures are unsuccessful.
Collapse
|
5
|
O’Callaghan S, Yau H. Treatment of malignancy-associated hypercalcemia with cinacalcet: a paradigm shift. Endocr Connect 2021; 10:R13-R24. [PMID: 33289687 PMCID: PMC7923058 DOI: 10.1530/ec-20-0487] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 01/04/2023]
Abstract
Palliation of symptoms related to malignancy-associated hypercalcemia (MAH) is essential and clinically meaningful for patients, given the continued poor prognosis, with high morbidity and mortality associated with this disease process. Historically, agents have been temporizing, having no impact on patient morbidity nor survival. We suggest that cinacalcet can be an efficacious agent to be taken orally, reducing patients' time in the hospital/clinic settings. It is well-tolerated and maintains serum calcium levels in the normal range, while targeted cancer treatments can be employed. This has a direct, major impact on morbidity. Maintaining eucalcemia can increase quality of life, while allowing targeted therapies time to improve survival. Given that our case (and others) showed calcium reduction in MAH, there is promising evidence that cinacalcet can be more widely employed in this setting. Future consideration should be given to studies addressing the efficacy of cinacalcet in calcium normalization, improvement of quality of life, and impact on survival in patients with MAH. Though the exact mechanism of action for cinacalcet's reduction in calcium in this setting is not currently known, we can still afford patients the possible benefit from it.
Collapse
Affiliation(s)
- Sondra O’Callaghan
- Endocrinology, Diabetes & Metabolism, Orlando VA Healthcare System, Orlando, Florida, USA
| | - Hanford Yau
- Endocrinology, Diabetes & Metabolism, Orlando VA Healthcare System, Orlando, Florida, USA
| |
Collapse
|
6
|
Sheehan M, Tanimu S, Tanimu Y, Engel J, Onitilo A. Cinacalcet for the Treatment of Humoral Hypercalcemia of Malignancy: An Introductory Case Report with a Pathophysiologic and Therapeutic Review. Case Rep Oncol 2020; 13:321-329. [PMID: 32308599 PMCID: PMC7154241 DOI: 10.1159/000506100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 11/21/2022] Open
Abstract
Hypercalcemia is an ominous development in the course of malignancy associated with a mean survival of only several months. A majority of cases of hypercalcemia are related to humoral hypercalcemia of malignancy (HHM), where hypercalcemia is caused by increased levels of circulating parathyroid hormone-related protein (PTHrP). Mainstay treatments in the management of HHM are intravenous fluids, intravenous bisphosphonates, and subcutaneous denosumab, although hypercalcemia oftentimes recurs despite these efforts. We present a case of advanced non-small cell lung cancer with PTHrP-mediated hypercalcemia that proved resistant to standard therapy. A trial of oral cinacalcet was initiated and improved calcium levels for 2 months despite a progressive rise in PTHrP and prior to subsequent disease progression. Based on the current body of literature, we propose that this calcium-lowering effect of cinacalcet occurs due to a potential effect on renal calcium excretion.
Collapse
Affiliation(s)
- Michael Sheehan
- Department of Endocrinology, Marshfield Medical Center - Weston, Weston, Wisconsin, USA
| | - Sabo Tanimu
- Department of Gastroenterology, Marshfield Medical Center - Weston, Weston, Wisconsin, USA
| | - Yusuf Tanimu
- Department of Internal Medicine, Marshfield Medical Center - Marshfield, Marshfield, Wisconsin, USA
| | - Jessica Engel
- Department of Oncology, Marshfield Medical Center - Weston, Weston, Wisconsin, USA
| | - Adedayo Onitilo
- Department of Oncology, Marshfield Medical Center - Weston, Weston, Wisconsin, USA
| |
Collapse
|
7
|
Iamartino L, Elajnaf T, Kallay E, Schepelmann M. Calcium-sensing receptor in colorectal inflammation and cancer: Current insights and future perspectives. World J Gastroenterol 2018; 24:4119-4131. [PMID: 30271078 PMCID: PMC6158479 DOI: 10.3748/wjg.v24.i36.4119] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/11/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023] Open
Abstract
The extracellular calcium-sensing receptor (CaSR) is best known for its action in the parathyroid gland and kidneys where it controls body calcium homeostasis. However, the CaSR has different roles in the gastrointestinal tract, where it is ubiquitously expressed. In the colon, the CaSR is involved in controlling multiple mechanisms, including fluid transport, inflammation, cell proliferation and differentiation. Although the expression pattern and functions of the CaSR in the colonic microenvironment are far from being completely understood, evidence has been accumulating that the CaSR might play a protective role against both colonic inflammation and colorectal cancer. For example, CaSR agonists such as dipeptides have been suggested to reduce colonic inflammation, while dietary calcium was shown to reduce the risk of colorectal cancer. CaSR expression is lost in colonic malignancies, indicating that the CaSR is a biomarker for colonic cancer progression. This dual anti-inflammatory and anti-tumourigenic role of the CaSR makes it especially interesting in colitis-associated colorectal cancer. In this review, we describe the clinical and experimental evidence for the role of the CaSR in colonic inflammation and colorectal cancer, the intracellular signalling pathways which are putatively involved in these actions, and the possibilities to exploit these actions of the CaSR for future therapies of colonic inflammation and cancer.
Collapse
Affiliation(s)
- Luca Iamartino
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna 1090, Austria
| | - Taha Elajnaf
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna 1090, Austria
| | - Enikö Kallay
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna 1090, Austria
| | - Martin Schepelmann
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna 1090, Austria
| |
Collapse
|
8
|
Yang Y, Wang B. PTH1R-CaSR Cross Talk: New Treatment Options for Breast Cancer Osteolytic Bone Metastases. Int J Endocrinol 2018; 2018:7120979. [PMID: 30151009 PMCID: PMC6087585 DOI: 10.1155/2018/7120979] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/14/2018] [Indexed: 12/11/2022] Open
Abstract
Metastatic breast cancer (BrCa) is currently incurable despite great improvements in treatment of primary BrCa. The incidence of skeletal metastases in advanced BrCa occurs up to 70%. Recent findings have established that the distribution of BrCa metastases to the skeleton is not a random process but due to the favorable microenvironment for tumor invasion and growth. The complex interplay among BrCa cells, stromal/osteoblastic cells, and osteoclasts in the osseous microenvironment creates a bone-tumor vicious cycle (a feed-forward loop) that results in excessive bone destruction and progressive tumor growth. Both the type 1 PTH receptor (PTH1R) and extracellular calcium-sensing receptor (CaSR) participate in the vicious cycle and influence the skeletal metastatic niche. Thus, this review focuses on how the PTH1R and CaSR signaling pathways interact and contribute to the pathogenesis of BrCa bone metastases. The effects of intermittent PTH and allosteric modulators of CaSR for the use of bone-anabolic agents and prevention of BrCa bone metastases constitute a proof of principle for therapeutic consideration. Understanding the interplay between PTH1R and CaSR signaling in the development of BrCa bone metastases could lead to a novel therapeutic approach to control both osteolysis and tumor burden in the bone.
Collapse
Affiliation(s)
- Yanmei Yang
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Bin Wang
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|