1
|
Manion J, Waller MA, Clark T, Massingham JN, Neely GG. Developing Modern Pain Therapies. Front Neurosci 2019; 13:1370. [PMID: 31920521 PMCID: PMC6933609 DOI: 10.3389/fnins.2019.01370] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022] Open
Abstract
Chronic pain afflicts as much as 50% of the population at any given time but our methods to address pain remain limited, ineffective and addictive. In order to develop new therapies an understanding of the mechanisms of painful sensitization is essential. We discuss here recent progress in the understanding of mechanisms underlying pain, and how these mechanisms are being targeted to produce modern, specific therapies for pain. Finally, we make recommendations for the next generation of targeted, effective, and safe pain therapies.
Collapse
Affiliation(s)
- John Manion
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Matthew A. Waller
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Teleri Clark
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Joshua N. Massingham
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - G. Gregory Neely
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Genome Editing Initiative, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
King SE, Nilsson E, Beck D, Skinner MK. Adipocyte epigenetic alterations and potential therapeutic targets in transgenerationally inherited lean and obese phenotypes following ancestral exposures. Adipocyte 2019; 8:362-378. [PMID: 31755359 PMCID: PMC6948971 DOI: 10.1080/21623945.2019.1693747] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 01/01/2023] Open
Abstract
The incidence of obesity has increased dramatically over the past two decades with a prevalence of approximately 40% of the adult population within the United States. The current study examines the potential for transgenerational adipocyte (fat cell) epigenetic alterations. Adipocytes were isolated from the gonadal fat pad of the great-grand offspring F3 generation 1-year old rats ancestrally exposed to DDT (dichlorodiphenyltrichloroethane), atrazine, or vehicle control in order to obtain adipocytes for DNA methylation analysis. Observations indicate that there were differential DNA methylated regions (DMRs) in the adipocytes with the lean or obese phenotypes compared to control normal (non-obese or lean) populations. The comparison of epigenetic alterations indicated that there were substantial overlaps between the different treatment lineage groups for both the lean and obese phenotypes. Novel correlated genes and gene pathways associated with DNA methylation were identified, and may aid in the discovery of potential therapeutic targets for metabolic diseases such as obesity. Observations indicate that ancestral exposures during critical windows of development can induce the epigenetic transgenerational inheritance of DNA methylation changes in adipocytes that ultimately may contribute to an altered metabolic phenotype.
Collapse
Affiliation(s)
- Stephanie E. King
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
3
|
Thuzar M, Law WP, Ratnasingam J, Jang C, Dimeski G, Ho KKY. Glucocorticoids suppress brown adipose tissue function in humans: A double-blind placebo-controlled study. Diabetes Obes Metab 2018; 20:840-848. [PMID: 29119718 DOI: 10.1111/dom.13157] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/16/2017] [Accepted: 11/04/2017] [Indexed: 02/02/2023]
Abstract
AIM To investigate the effect of glucocorticoids on brown adipose tissue (BAT) function in humans. MATERIALS AND METHODS In a randomized double-blind cross-over design, 13 healthy adults underwent 1 week of oral prednisolone treatment (15 mg/d) and placebo with an intervening 2-week wash-out period. BAT function was assessed in response to cooling (19°C) and to a standardized meal, by measuring fluoro-deoxyglucose (FDG) uptake using positron emission tomography-computed tomography and skin temperatures overlying the supraclavicular (SCL) BAT depots using infrared thermography. Postprandial energy and substrate metabolism was assessed by indirect calorimetry. RESULTS During cooling, prednisolone significantly reduced BAT FDG uptake (standardized uptake value, SUVmax, 6.1 ± 2.2 vs 3.7 ± 1.2; P < .05) and SCL temperature (-0.45 ± 0.1 vs -1.0 ± 0.1°C; P < .01) compared to placebo. Postprandially, prednisolone significantly blunted the rise in SCL temperature (+0.2 ± 0.1 vs -0.3 ± 0.1°C; P < .05), enhanced energy production (+221 ± 17 vs +283 ± 27 kcal/d; P < .01) and lipid synthesis (+16.3 ± 3.2 vs +23.6 ± 4.9 mg/min; P < .05). The prednisolone-induced reduction in SCL temperature significantly correlated with the reduction in FDG uptake (r = 0.65, P < .05), while the increase in energy production significantly correlated with the increase in lipogenesis (r = 0.6, P < .05). CONCLUSION Prolonged exposure to glucocorticoid suppresses the function of human BAT. The enhancement of energy production and lipogenesis in the face of reduced dissipation of energy as heat suggests that glucocorticoids channel energy towards fat storage after nutrient intake. This is a novel mechanism of glucocorticoid-induced obesity.
Collapse
Affiliation(s)
- Moe Thuzar
- Department of Endocrinology & Diabetes, Princess Alexandra Hospital, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| | - Weikiat Phillip Law
- Department of Molecular Imaging, Princess Alexandra Hospital, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| | - Jeyakantha Ratnasingam
- Department of Endocrinology & Diabetes, Princess Alexandra Hospital, Brisbane, Australia
| | - Christina Jang
- Department of Endocrinology & Diabetes, Princess Alexandra Hospital, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| | - Goce Dimeski
- Chemical Pathology, Princess Alexandra Hospital, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| | - Ken K Y Ho
- Department of Endocrinology & Diabetes, Princess Alexandra Hospital, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
4
|
Roelfsema F, Yang RJ, Takahashi PY, Erickson D, Bowers CY, Veldhuis JD. Effects of Toremifene, a Selective Estrogen Receptor Modulator, on Spontaneous and Stimulated GH Secretion, IGF-I, and IGF-Binding Proteins in Healthy Elderly Subjects. J Endocr Soc 2017; 2:154-165. [PMID: 29383334 PMCID: PMC5789038 DOI: 10.1210/js.2017-00457] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/21/2017] [Indexed: 11/19/2022] Open
Abstract
Context: Estrogens amplify spontaneous and stimulated growth hormone (GH) secretion, whereas they diminish GH-dependent insulin-like growth factor (IGF)-I in a dose-dependent manner. Selective estrogen receptor modulators (SERMs), including tamoxifen and toremifene, are widely adjunctively used in breast and prostate cancer. Although some endocrine effects of tamoxifen are known, few data are available for toremifene. Objective: To explore sex-dependent effects of toremifene on spontaneous 10-hour overnight GH secretion, followed by GH-releasing hormone–ghrelin stimulation. Additionally, effects on IGF-I, its binding proteins, and sex hormone–binding globulin (SHBG) were quantified. Participants and Design: Twenty men and 20 women, within an allowable age range of 50 to 80 years, volunteered for this double-blind, placebo-controlled prospective crossover study. Ten-minute blood sampling was done for 10 hours overnight and then for 2 hours after combined GH-releasing hormone–ghrelin injection. Main Outcome Measures: Pulsatile GH and stimulated GH secretion, and fasting levels of IGF-I, IGF-binding protein (IGFBP)1, IGFBP3, and SHBG. Results: Toremifene did not enhance pulsatile or stimulated GH secretion, but decreased IGF-I by 20% in men and women. IGFBP3 was unchanged, whereas while IGFBP1 and SHBG increased in both sexes to a similar extent. Conclusions: The expected rise in spontaneous and stimulated GH secretion under the diminished negative feedback restraint of powered IGF-I favors a central inhibitory antiestrogenic effect of toremifene. Estrogenic effects of toremifene on the liver were present, as evidenced by increased IGFBP1 and SHBG levels. Men and women responded to this SERM comparably.
Collapse
Affiliation(s)
- Ferdinand Roelfsema
- Department of Internal Medicine, Section of Endocrinology and Metabolism, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Rebecca J Yang
- Endocrine Research Unit, Mayo School of Graduate Medical Education, Center for Translational Science Activities, Mayo Clinic, Rochester, Minnesota 55905
| | - Paul Y Takahashi
- Department of Primary Care Internal Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Dana Erickson
- Department of Endocrinology, Mayo Clinic, Rochester, Minnesota 55905
| | - Cyril Y Bowers
- Department of Internal Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana 70112
| | - Johannes D Veldhuis
- Endocrine Research Unit, Mayo School of Graduate Medical Education, Center for Translational Science Activities, Mayo Clinic, Rochester, Minnesota 55905
| |
Collapse
|
5
|
Valvassori SS, Borges CP, Varela RB, Bavaresco DV, Bianchini G, Mariot E, Arent CO, Resende WR, Budni J, Quevedo J. The different effects of lithium and tamoxifen on memory formation and the levels of neurotrophic factors in the brain of male and female rats. Brain Res Bull 2017; 134:228-235. [DOI: 10.1016/j.brainresbull.2017.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 01/22/2023]
|
6
|
Birzniece V, Ho KKY. Sex steroids and the GH axis: Implications for the management of hypopituitarism. Best Pract Res Clin Endocrinol Metab 2017; 31:59-69. [PMID: 28477733 DOI: 10.1016/j.beem.2017.03.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Growth hormone (GH) regulates somatic growth, substrate metabolism and body composition. Sex hormones exert profound effect on the secretion and action of GH. Estrogens stimulate the secretion of GH, but inhibit the action of GH on the liver, an effect that occurs when administered orally. Estrogens suppress GH receptor signaling by stimulating the expression proteins that inhibit cytokine receptor signaling. This effect of estrogens is avoided when physiological doses of estrogens are administered via a non-oral route. Estrogen-like compounds, such as selective estrogen receptor modulators, possess dual properties of inhibiting the secretion as well as the action of GH. In contrast, androgens stimulate GH secretion, driving IGF-1 production. In the periphery, androgens enhance the action of GH. The differential effects of estrogens and androgens influence the dose of GH replacement in patients with hypopituitarism on concomitant treatment with sex steroids. Where possible, a non-oral route of estrogen replacement is recommended for optimizing cost-benefit of GH replacement in women with GH deficiency. Adequate androgen replacement in conjunction with GH replacement is required to achieve the full anabolic effect in men with hypopituitarism.
Collapse
Affiliation(s)
- Vita Birzniece
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia; Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; School of Medicine, University of New South Wales, NSW 2052, Australia.
| | - Ken K Y Ho
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; Centres for Health Research, Princess Alexandra Hospital, University of Queensland, Brisbane, QLD 4102, Australia
| |
Collapse
|
7
|
Duarte FH, Jallad RS, Bronstein MD. Estrogens and selective estrogen receptor modulators in acromegaly. Endocrine 2016; 54:306-314. [PMID: 27704479 DOI: 10.1007/s12020-016-1118-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/07/2016] [Indexed: 10/20/2022]
Abstract
Despite recent advances in acromegaly treatment by surgery, drugs, and radiotherapy, hormonal control is still not achieved by some patients. The impairment of IGF-1 generation by estrogens in growth hormone deficient patients is well known. Patients on oral estrogens need higher growth hormone doses in order to achieve normal IGF-1 values. In the past, estrogens were one of the first drugs used to treat acromegaly. Nevertheless, due to the high doses used and the obvious side effects in male patients, this strategy was sidelined with the development of more specific drugs, as somatostatin receptor ligands and dopamine agonists. In the last 15 years, the antagonist of growth hormone receptor became available, making possible IGF-1 control of the majority of patients on this particular drug. However, due to its high cost, pegvisomant is still not available in many centers around the world. In this setting, the effect of estrogens and also of selective estrogen receptor modulators on IGF-1 control was reviewed, and proved to be an ancillary tool in the management of acromegaly. This review describes data concerning their efficacy and place in the treatment algorithm of acromegaly.
Collapse
Affiliation(s)
- Felipe H Duarte
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, SP, Brazil
- Endocrinology Service, AC Camargo Cancer Center, São Paulo, Brazil
| | - Raquel S Jallad
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Marcello D Bronstein
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, SP, Brazil.
| |
Collapse
|