1
|
Schreyer E, Barthélémy P, Cottard F, Ould Madi-Berthélémy P, Schaff-Wendling F, Kurtz JE, Céraline J. [Androgen receptor variants in prostate cancer]. Med Sci (Paris) 2017; 33:758-764. [PMID: 28945566 DOI: 10.1051/medsci/20173308021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Prostate cancer is a public health concern as it currently represents the most frequent malignancy in men in Europe. Progression of this hormone-dependent cancer is driven by androgens. Thus, the most common treatment for patients with advanced prostate cancer consists in an androgen ablation by castration therapy. However, the majority of patients relapses and develops a castration-resistant prostate cancer. This failure of androgen deprivation is related to the emergence of mutant and splice variants of the androgen receptor. Indeed, androgen receptor variants are ligand-independent, constitutively active and thus able to induce resistance to castration. This review focuses on AR variants signaling pathways and their role in resistance to castration and prostate cancer progression.
Collapse
Affiliation(s)
- Edwige Schreyer
- Université de Strasbourg, Inserm, VSDSC UMR-S 1113, IGBMC, 1, rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France
| | - Philippe Barthélémy
- Université de Strasbourg, Inserm, VSDSC UMR-S 1113, IGBMC, 1, rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France - Service d'oncologie et d'hématologie, Hôpitaux universitaires de Strasbourg, 67000 Strasbourg, France
| | - Félicie Cottard
- Department of urology, Center for Clinical research, University Freiburg Medical Center, Breisacherstrasse 66, D-79106 Freiburg, Allemagne
| | - Pauline Ould Madi-Berthélémy
- Université de Strasbourg, Inserm, VSDSC UMR-S 1113, IGBMC, 1, rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France
| | - Frédérique Schaff-Wendling
- Université de Strasbourg, Inserm, VSDSC UMR-S 1113, IGBMC, 1, rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France - Service d'oncologie et d'hématologie, Hôpitaux universitaires de Strasbourg, 67000 Strasbourg, France
| | - Jean-Emmanuel Kurtz
- Université de Strasbourg, Inserm, VSDSC UMR-S 1113, IGBMC, 1, rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France - Service d'oncologie et d'hématologie, Hôpitaux universitaires de Strasbourg, 67000 Strasbourg, France
| | - Jocelyn Céraline
- Université de Strasbourg, Inserm, VSDSC UMR-S 1113, IGBMC, 1, rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France - Service d'oncologie et d'hématologie, Hôpitaux universitaires de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
2
|
Wadosky KM, Koochekpour S. Androgen receptor splice variants and prostate cancer: From bench to bedside. Oncotarget 2017; 8:18550-18576. [PMID: 28077788 PMCID: PMC5392349 DOI: 10.18632/oncotarget.14537] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/31/2016] [Indexed: 12/13/2022] Open
Abstract
Therapeutic interventions for advanced prostate cancer (PCa) center on inhibiting androgen receptor (AR) and downstream signaling pathways. Resistance to androgen deprivation therapy and/or AR antagonists is inevitable and molecular mechanisms driving castration-resistant PCa (CR-PCa) primarily involve alterations in AR expression and activity. Detailed molecular biology work over the past decade, discussed at length in this review article, has revealed several AR transcripts that result from alternative splicing. These AR splice variants are increased in cell and mouse models of CR-PCa and in CR-PCa tumors. Several AR variants lack the ligand binding domain, but retain their ability to bind DNA and activate transcription-linking constitutive AR function and therapeutic failure. ARV7 is the only variant endogenously detected at the protein level and thus has undergone more thorough molecular characterization. Clinical trials in PCa are currently investigating ARV7 utility as a biomarker and new therapeutics that inhibit ARV7 . Overall, this review will illustrate the historical perspectives of AR splice variant discovery using fundamental molecular biology techniques and how it changed the clinical approach to both therapeutic decisions and strategy. The body of work investigating AR splice variants in PCa represents a true example of translational research from bench to bedside.
Collapse
Affiliation(s)
- Kristine M. Wadosky
- Department of Cancer Genetics, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Shahriar Koochekpour
- Department of Cancer Genetics, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Buffalo, NY, USA
- Department of Urology, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
3
|
Ware KE, Somarelli JA, Schaeffer D, Li J, Zhang T, Park S, Patierno SR, Freedman J, Foo WC, Garcia MA, Armstrong AJ. Snail promotes resistance to enzalutamide through regulation of androgen receptor activity in prostate cancer. Oncotarget 2016; 7:50507-50521. [PMID: 27409172 PMCID: PMC5226599 DOI: 10.18632/oncotarget.10476] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/20/2016] [Indexed: 11/25/2022] Open
Abstract
Treatment with androgen-targeted therapies can induce upregulation of epithelial plasticity pathways. Epithelial plasticity is known to be important for metastatic dissemination and therapeutic resistance. The goal of this study is to elucidate the functional consequence of induced epithelial plasticity on AR regulation during disease progression to identify factors important for treatment-resistant and metastatic prostate cancer. We pinpoint the epithelial plasticity transcription factor, Snail, at the nexus of enzalutamide resistance and prostate cancer metastasis both in preclinical models of prostate cancer and in patients. In patients, Snail expression is associated with Gleason 9-10 high-risk disease and is strongly overexpressed in metastases as compared to localized prostate cancer. Snail expression is also elevated in enzalutamide-resistant prostate cancer cells compared to enzalutamide-sensitive cells, and downregulation of Snail re-sensitizes enzalutamide-resistant cells to enzalutamide. While activation of Snail increases migration and invasion, it is also capable of promoting enzalutamide resistance in enzalutamide-sensitive cells. This Snail-mediated enzalutamide resistance is a consequence of increased full-length AR and AR-V7 expression and nuclear localization. Downregulation of either full-length AR or AR-V7 re-sensitizes cells to enzalutamide in the presence of Snail, thus connecting Snail-induced enzalutamide resistance directly to AR biology. Finally, we demonstrate that Snail is capable of mediating-resistance through AR even in the absence of AR-V7. These findings imply that increased Snail expression during progression to metastatic disease may prime cells for resistance to AR-targeted therapies by promoting AR activity in prostate cancer.
Collapse
Affiliation(s)
- Kathryn E. Ware
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, USA
- Department of Genitourinary Oncology, Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Jason A. Somarelli
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, USA
- Department of Genitourinary Oncology, Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Daneen Schaeffer
- Department of Oncology, Translational Research, Janssen Research and Development, Spring House, PA, USA
| | - Jing Li
- Department of Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Tian Zhang
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, USA
- Department of Genitourinary Oncology, Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Sally Park
- Department of Genitourinary Oncology, Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Steven R. Patierno
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, USA
- Department of Genitourinary Oncology, Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Jennifer Freedman
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, USA
- Department of Genitourinary Oncology, Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Wen-Chi Foo
- Department of Pathology, Duke University, Durham, NC, USA
| | - Mariano A. Garcia
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Andrew J. Armstrong
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, USA
- Department of Genitourinary Oncology, Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| |
Collapse
|
4
|
Hagberg Thulin M, Nilsson ME, Thulin P, Céraline J, Ohlsson C, Damber JE, Welén K. Osteoblasts promote castration-resistant prostate cancer by altering intratumoral steroidogenesis. Mol Cell Endocrinol 2016; 422:182-191. [PMID: 26586211 DOI: 10.1016/j.mce.2015.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 11/23/2022]
Abstract
The skeleton is the preferred site for prostate cancer (PC) metastasis leading to incurable castration-resistant disease. The increased expression of genes encoding steroidogenic enzymes found in bone metastatic tissue from patients suggests that up-regulated steroidogenesis might contribute to tumor growth at the metastatic site. Because of the overall sclerotic phenotype, we hypothesize that osteoblasts regulate the intratumoral steroidogenesis of castration resistant prostate cancer (CRPC) in bone. We here show that osteoblasts alter the steroidogenic transcription program in CRPC cells, closely mimicking the gene expression pattern described in CRPC. Osteoblast-stimulated LNCaP-19 cells displayed an increased expression of genes encoding for steroidogenic enzymes (CYP11A1, HSD3B1, and AKR1C3), estrogen signaling-related genes (CYP19A1, and ESR2), and genes for DHT-inactivating enzymes (UGT2B7, UGT2B15, and UGT2B17). The observed osteoblast-induced effect was exclusive to osteogenic CRPC cells (LNCaP-19) in contrast to osteolytic PC-3 and androgen-dependent LNCaP cells. The altered steroid enzymatic pattern was specific for the intratibial tumors and verified by immunohistochemistry in tissue specimens from LNCaP-19 xenograft tumors. Additionally, the overall steroidogenic effect was reflected by corresponding levels of progesterone and testosterone in serum from castrated mice with intratibial xenografts. A bi-directional interplay was demonstrated since both proliferation and Esr2 expression of osteoblasts were induced by CRPC cells in steroid-depleted conditions. Together, our results demonstrate that osteoblasts are important mediators of the intratumoral steroidogenesis of CRPC and for castration-resistant growth in bone. Targeting osteoblasts may therefore be important in the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Malin Hagberg Thulin
- Sahlgrenska Cancer Center, Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Maria E Nilsson
- Center for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pontus Thulin
- Sahlgrenska Cancer Center, Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jocelyn Céraline
- INSERM UMR_S 1113, FMTS, Université de Strasbourg, Strasbourg, France
| | - Claes Ohlsson
- Center for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan-Erik Damber
- Sahlgrenska Cancer Center, Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin Welén
- Sahlgrenska Cancer Center, Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Ware KE, Garcia-Blanco MA, Armstrong AJ, Dehm SM. Biologic and clinical significance of androgen receptor variants in castration resistant prostate cancer. Endocr Relat Cancer 2014; 21:T87-T103. [PMID: 24859991 PMCID: PMC4277180 DOI: 10.1530/erc-13-0470] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As prostate cancer (PCa) progresses to the lethal castration resistant and metastatic form, genetic and epigenetic adaptation, clonal selection, and evolution of the tumor microenvironment contribute to the emergence of unique biological characteristics under the selective pressure of external stresses. These stresses include the therapies applied in the clinic or laboratory and the exposures of cancers to hormonal, paracrine, or autocrine stimuli in the context of the tumor micro- and macro-environment. The androgen receptor (AR) is a key gene involved in PCa etiology and oncogenesis, including disease development, progression, response to initial hormonal therapies, and subsequent resistance to hormonal therapies. Alterations in the AR signaling pathway have been observed in certain selection contexts and contribute to the resistance to agents that target hormonal regulation of the AR, including standard androgen deprivation therapy, antiandrogens such as enzalutamide, and androgen synthesis inhibition with abiraterone acetate. One such resistance mechanism is the synthesis of constitutively active AR variants lacking the canonical ligand-binding domain. This review focuses on the etiology, characterization, biological properties, and emerging data contributing to the clinical characteristics of AR variants, and suggests approaches to full-length AR and AR variant biomarker validation, assessment, and systemic targeting in the clinic.
Collapse
Affiliation(s)
- Kathryn E Ware
- Departments of Molecular Genetics and MedicineDuke University, 213 Research Dr, 0045 CARL Building, Durham, North Carolina 27710, USADepartment of MedicineDuke Cancer Institute, Duke University, Durham, North Carolina, USAMasonic Cancer CenterUniversity of Minnesota Masonic Cancer Center, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455, USADepartment of Laboratory Medicine and PathologyUniversity of Minnesota, Minneapolis, Minnesota, USA
| | - Mariano A Garcia-Blanco
- Departments of Molecular Genetics and MedicineDuke University, 213 Research Dr, 0045 CARL Building, Durham, North Carolina 27710, USADepartment of MedicineDuke Cancer Institute, Duke University, Durham, North Carolina, USAMasonic Cancer CenterUniversity of Minnesota Masonic Cancer Center, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455, USADepartment of Laboratory Medicine and PathologyUniversity of Minnesota, Minneapolis, Minnesota, USADepartments of Molecular Genetics and MedicineDuke University, 213 Research Dr, 0045 CARL Building, Durham, North Carolina 27710, USADepartment of MedicineDuke Cancer Institute, Duke University, Durham, North Carolina, USAMasonic Cancer CenterUniversity of Minnesota Masonic Cancer Center, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455, USADepartment of Laboratory Medicine and PathologyUniversity of Minnesota, Minneapolis, Minnesota, USA
| | - Andrew J Armstrong
- Departments of Molecular Genetics and MedicineDuke University, 213 Research Dr, 0045 CARL Building, Durham, North Carolina 27710, USADepartment of MedicineDuke Cancer Institute, Duke University, Durham, North Carolina, USAMasonic Cancer CenterUniversity of Minnesota Masonic Cancer Center, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455, USADepartment of Laboratory Medicine and PathologyUniversity of Minnesota, Minneapolis, Minnesota, USADepartments of Molecular Genetics and MedicineDuke University, 213 Research Dr, 0045 CARL Building, Durham, North Carolina 27710, USADepartment of MedicineDuke Cancer Institute, Duke University, Durham, North Carolina, USAMasonic Cancer CenterUniversity of Minnesota Masonic Cancer Center, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455, USADepartment of Laboratory Medicine and PathologyUniversity of Minnesota, Minneapolis, Minnesota, USA
| | - Scott M Dehm
- Departments of Molecular Genetics and MedicineDuke University, 213 Research Dr, 0045 CARL Building, Durham, North Carolina 27710, USADepartment of MedicineDuke Cancer Institute, Duke University, Durham, North Carolina, USAMasonic Cancer CenterUniversity of Minnesota Masonic Cancer Center, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455, USADepartment of Laboratory Medicine and PathologyUniversity of Minnesota, Minneapolis, Minnesota, USADepartments of Molecular Genetics and MedicineDuke University, 213 Research Dr, 0045 CARL Building, Durham, North Carolina 27710, USADepartment of MedicineDuke Cancer Institute, Duke University, Durham, North Carolina, USAMasonic Cancer CenterUniversity of Minnesota Masonic Cancer Center, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455, USADepartment of Laboratory Medicine and PathologyUniversity of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
6
|
Bicalutamide-activated oncolytic adenovirus for the adjuvant therapy of high-risk prostate cancer. Cancer Gene Ther 2013; 20:394-402. [PMID: 23764901 PMCID: PMC3732197 DOI: 10.1038/cgt.2013.34] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/18/2013] [Indexed: 01/10/2023]
Abstract
Conditionally replicating adenoviruses (CRAds) utilize tissue specific promoters to control the expression of the early genes, E1A and E1B, to preferentially replicate and lyse tumor cells (oncolysis). Previous CRAds used in prostate cancer gene therapy require androgens to activate prostate specific promoters and induce viral replication. Unfortunately, these CRAds have reduced activity in patients on androgen suppressive therapy. We describe a novel prostate specific CRAd generated by fusing the E1A gene to the androgen receptor (AR) cDNA with a point mutation in codon 685 (C685Y). The E1A-AR fusion neutralizes the previously described mutual inhibition of E1A & AR, and the C685Y point mutation alters specificity of steroid ligand binding to the AR, such that both androgens and non-steroidal anti-androgens can activate viral replication. We demonstrate that the mutated E1A-AR retained the ability to function in regulating AR responsive genes and E1A responsive viral genes. In combination therapy of virus, bicalutamide (anti-androgen) and radiation, a profound impact on cell death by viral oncolysis was seen both in vitro and tumor xenografts. To our knowledge, this is the first gene therapy engineered to be enhanced by anti-androgens, and a particularly attractive adjuvant strategy for intensity modulated radiation therapy (IMRT) of high-risk prostate cancers.
Collapse
|
7
|
Ben Jemaa A, Sallami S, Céraline J, Oueslati R. A novel regulation of PSMA and PSA expression by Q640X AR in 22Rv1 and LNCaP prostate cancer cells. Cell Biol Int 2013; 37:464-70. [PMID: 23418075 DOI: 10.1002/cbin.10055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 01/22/2013] [Indexed: 01/31/2023]
Abstract
We have investigated the expression of prostate-specific membrane antigen (PSMA) and prostate-specific antigen (PSA) transcripts in androgen-dependent (LNCaP) and androgen-independent (22Rv1) prostate cancer cell lines. We also enquired whether Q640X CTE-truncated androgen receptor (AR) has an impact on transcription of mRNA for PSMA and PSA in transfected androgen-sensitive prostate cancer LNCaP cells. Wild type LNCaP, 22Rv1 prostate cancer cells, prostate stromal cells (PrSC) and LNCaP cells transfected with p-Q640X AR, p-WT AR or p-C3 empty plasmids were studied. The expression of PSMA and PSA were detected by real-time PCR after transfection for 4 and 7 days. Expression of mRNAs for PSA was sixfold greater than PSMA in wild type LNCaP cells. In contrast, the wild type androgen refractory 22Rv1 cell line reacted almost exactly the opposite way reverse to LNCaP cells, since the transcription of mRNA for PSMA almost twofold greater than PSA. Non-transfected human PrSC responded similarly to PSMA mRNA and PSA mRNA was not detected in these cells. Q640X AR transfected LNCaP cells downregulated the expression of PSMA and PSA genes after 7 days. Our results demonstrate that Q640X mutated AR may have an important regulatory role in mediating the PSMA and PSA genes expression during the progression of prostate cancer from androgen-dependence to androgen-independence. Understanding their functional properties and mechanisms by which ARs involved in regulation of PSMA and PSA expression will allow the identification of new target therapies for the treatment of hormone-resistant prostate cancer.
Collapse
Affiliation(s)
- Awatef Ben Jemaa
- Unit of Immunology and Microbiology Environmental and Carcinogenesis, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia
| | | | | | | |
Collapse
|
8
|
Guyader C, Céraline J, Gravier E, Morin A, Michel S, Erdmann E, de Pinieux G, Cabon F, Bergerat JP, Poupon MF, Oudard S. Risk of hormone escape in a human prostate cancer model depends on therapy modalities and can be reduced by tyrosine kinase inhibitors. PLoS One 2012; 7:e42252. [PMID: 22879924 PMCID: PMC3412862 DOI: 10.1371/journal.pone.0042252] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 07/05/2012] [Indexed: 11/29/2022] Open
Abstract
Almost all prostate cancers respond to androgen deprivation treatment but many recur. We postulated that risk of hormone escape -frequency and delay- are influenced by hormone therapy modalities. More, hormone therapies induce crucial biological changes involving androgen receptors; some might be targets for escape prevention. We investigated the relationship between the androgen deprivation treatment and the risk of recurrence using nude mice bearing the high grade, hormone-dependent human prostate cancer xenograft PAC120. Tumor-bearing mice were treated by Luteinizing-Hormone Releasing Hormone (LHRH) antagonist alone, continuous or intermittent regimen, or combined with androgen receptor (AR) antagonists (bicalutamide or flutamide). Tumor growth was monitored. Biological changes were studied as for genomic alterations, AR mutations and protein expression in a large series of recurrent tumors according to hormone therapy modalities. Therapies targeting Her-2 or AKT were tested in combination with castration. All statistical tests were two-sided. Tumor growth was inhibited by continuous administration of the LH-RH antagonist degarelix (castration), but 40% of tumors recurred. Intermittent castration or complete blockade induced by degarelix and antiandrogens combination, inhibited tumor growth but increased the risk of recurrence (RR) as compared to continuous castration (RRintermittent: 14.5, RRcomplete blockade: 6.5 and 1.35). All recurrent tumors displayed new quantitative genetic alterations and AR mutations, whatever the treatment modalities. AR amplification was found after complete blockade. Increased expression of Her-2/neu with frequent ERK/AKT activation was detected in all variants. Combination of castration with a Her-2/neu inhibitor decreased recurrence risk (0.17) and combination with an mTOR inhibitor prevented it. Anti-hormone treatments influence risk of recurrence although tumor growth inhibition was initially similar. Recurrent tumors displayed genetic instability, AR mutations, and alterations of phosphorylation pathways. We postulated that Her-2/AKT pathways allowed salvage of tumor cells under castration and we demonstrated that their inhibition prevented tumor recurrence in our model.
Collapse
Affiliation(s)
| | - Jocelyn Céraline
- Signaling and Prostate Cancer Group, Université de Strasbourg, Strasbourg, France
| | - Eléonore Gravier
- Translational Research Department, Institut Curie, Paris, France
- Biostatistics Department, Institut Curie, Paris, France
- U900, INSERM, Paris, France
- Ecole des Mines de Paris, ParisTech, Fontainebleau, France
| | | | - Sandrine Michel
- Biomarker Research and Validation Department, BioMérieux, Marcy l’Etoile, France
| | - Eva Erdmann
- Signaling and Prostate Cancer Group, Université de Strasbourg, Strasbourg, France
| | | | | | - Jean-Pierre Bergerat
- Signaling and Prostate Cancer Group, Université de Strasbourg, Strasbourg, France
| | | | - Stéphane Oudard
- Medical Oncology, Hôpital Européen Georges Pompidou, Paris, France
- Université Paris V René Descartes, Paris, France
- * E-mail:
| |
Collapse
|
9
|
Sirab N, Terry S, Giton F, Caradec J, Chimingqi M, Moutereau S, Vacherot F, Taille ADL, Kouyoumdjian JC, Loric S. Androgens regulate Hedgehog signalling and proliferation in androgen-dependent prostate cells. Int J Cancer 2012; 131:1297-306. [DOI: 10.1002/ijc.27384] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 11/10/2011] [Indexed: 01/22/2023]
|
10
|
Shi XB, Xue L, Shi D, deVere White RW. Influence of short polyglutamine tracts and p160 coactivators on the transactivation of the androgen receptor. Cancer Biother Radiopharm 2011; 26:191-201. [PMID: 21539451 DOI: 10.1089/cbr.2010.0888] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The androgen receptor (AR) acting as a transcription factor plays a pivotal role in the occurrence and progression of prostate cancer (CaP). Several AR-related factors or modulators have been reported to influence AR activity. Whether and how these factors cooperatively modulate the AR activity has not been well defined. In the present study, the combined effect of p160 coactivators, short CAG length (encoding a short polyQ tract), and AR mutations on AR transactivation in a yeast system was evaluated. It was found that the short polyQ tract can upregulate the transactivation of the wild-type (WT) AR and partial-function (PF) AR mutants in response to a physiological level (10(-9) M) of dihydrotestosterone. Addition of a p160 coactivator (SRC-1 or TIF2) to the above systems resulted in a significant increase in the ligand-stimulated transactivation. Although the androgen antagonist bicalutamide could suppress the activity of androgen-activated WT or PF ARs, it was unable to do so for gain-of-function AR mutants. A combination of the short polyQ tract and coactivator TIF2 acted cooperatively on the WT AR and PF AR mutants to enhance their transactivation in response to either a low level of dihydrotestosterone (10(-10) M) or adrenal dehydroepiandrosterone. Taken together, this finding suggests that the modulated AR activity may involve early in the carcinogenesis of CaP. Additionally, these data support the concept that a given CaP in which the AR activity is modulated by multiple AR modulators may progress more readily to castrate resistance.
Collapse
Affiliation(s)
- Xu-Bao Shi
- Department of Urology, University of California, Davis, School of Medicine, Sacramento, California 95817, USA
| | | | | | | |
Collapse
|
11
|
Marcias G, Erdmann E, Lapouge G, Siebert C, Barthélémy P, Duclos B, Bergerat JP, Céraline J, Kurtz JE. Identification of novel truncated androgen receptor (AR) mutants including unreported pre-mRNA splicing variants in the 22Rv1 hormone-refractory prostate cancer (PCa) cell line. Hum Mutat 2010; 31:74-80. [PMID: 19830810 DOI: 10.1002/humu.21138] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Advanced prostate cancer (PCa) has emerged as a public health concern due to population aging. Although androgen deprivation has proven efficacy in this condition, most advanced PCa patients will have to face failure of androgen deprivation as a treatment. Mutations in the androgen receptor (AR) from tumor cells have been shown to induce androgen independency both in PCa cell lines and in the clinic. We have investigated the molecular events leading to androgen independency in the 22Rv1 cell line, a commonly used preclinical model of PCa. Besides AR mutants that have been described so far, including nonsense mutations, recent data have focused on AR pre-mRNA aberrant splicing as a new mechanism leading to constitutively active truncated AR variants. In this article, we describe two novel variants arising from aberrant splicing of AR pre-mRNA, characterized by long mRNA transcripts that encode truncated, constitutively active proteins. We also describe several new nonsense mutants that share ligand independency and transcriptional activity. Finally, we show that alongside these mutants, 22Rv1 cells also express a mutant AR lacking exon 3 tandem duplication, a major feature of this cell line. By describing unreported AR mutants in the 22Rv1 cell line, our data emphasize the complexity and heterogeneity of molecular events that occur in preclinical models, and supposedly in the clinic. Future work on the 22Rv1 cell line should take into account the concomitant expression of various AR mutants.
Collapse
Affiliation(s)
- Gemma Marcias
- Signalisation et Cancer de la Prostate, Physiopathologie et Médecine Translationnelle, Université de Strasbourg, 67000Strasbourg, France
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bergerat JP, Céraline J. Pleiotropic functional properties of androgen receptor mutants in prostate cancer. Hum Mutat 2009; 30:145-57. [PMID: 18800375 DOI: 10.1002/humu.20848] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The androgen receptor (AR) signaling pathway plays an important role during the development of the normal prostate gland, but also during the progression of prostate cancer on androgen ablation therapy. Mutations in the AR gene emerge to keep active the AR signaling pathway and to support prostate cancer cells growth and survival despite the low levels of circulating androgens. Indeed, mutations affecting the ligand binding domain (LBD) of the AR have been shown to generate so-called "promiscuous" receptors that present widened ligand specificity and allow the stimulation of these receptors by a larger spectrum of endogenous hormones. Another class of mutations, arising in the amino-terminal domain (NTD) of the receptor, modulate AR interactions with coregulators involved in cell proliferation regulation. Besides characteristics of these well-known types of mutations, the properties of other classes of AR mutants recently described in prostate cancer are currently under investigation. Most interestingly, in addition to their potential role in the mechanisms which allow prostate cancer cells to escape androgen ablation therapy, data suggest that certain AR mutations are present early in the natural history of the disease and may play a role in many aspects of prostate cancer progression. Surprisingly, singular truncated AR devoid of their carboxy-terminal end (CTE) region seem to exert specific paracrine effects and to induce a clonal cooperation with neighboring prostate cancer cells, which may facilitate both the invasion and metastasis processes. In this article, we review the functional properties of different classes of AR mutants and their potential impact on the natural history of prostate cancer. Hum Mutat 0, 1-14, 2008. (c) 2008 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Jean-Pierre Bergerat
- EA 3430-Signalisation et Cancer de la Prostate, Faculté de Médecine, Université Strasbourg, Strasbourg, France
| | | |
Collapse
|
13
|
Legrier ME, Guyader C, Céraline J, Dutrillaux B, Oudard S, Poupon MF, Auger N. Hormone escape is associated with genomic instability in a human prostate cancer model. Int J Cancer 2009; 124:1103-11. [PMID: 19058198 DOI: 10.1002/ijc.24073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Lack of hormone dependency in prostate cancers is an irreversible event that occurs through generation of genomic instability induced by androgen deprivation. Indeed, the cytogenetic profile of hormone-dependent (HD) prostate cancer remains stable as long as it received a hormone supply, whereas the profile of hormone-independent (HID) variants acquired new and various alterations. This is demonstrated here using a HD xenografted model of a human prostate cancer, PAC120, transplanted for 11 years into male nude mice and 4 HID variants obtained by surgical castration. Cytogenetic analysis, done by karyotype, FISH, CGH and array-CGH, shows that PAC120 at early passage presents numerous chromosomal alterations. Very few additional alterations were found between the 5th and 47th passages, indicating the stability of the parental tumor. HID variants largely maintained the core of chromosomal alterations of PAC120 - losses at 6q, 7p, 12q, 15q and 17q sites. However, each HID variant displayed a number of new alterations, almost all being specific to each variant and very few shared by all. None of the HID had androgen receptor mutations. Our study indicates that hormone castration is responsible for genomic instability generating new cytogenetic abnormalities susceptible to alter the properties of cancer cell associated with tumor progression, such as increased cell survival and ability to metastasize.
Collapse
Affiliation(s)
- Marie-Emmanuelle Legrier
- Institut Curie, Laboratoire d'Investigation Préclinique, Translational Research Department, Quadrilatère Historique porte 13, Hôpital Saint-Louis, Paris, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Schiffer NW, Céraline J, Hartl FU, Broadley SA. N-terminal polyglutamine-containing fragments inhibit androgen receptor transactivation function. Biol Chem 2008; 389:1455-66. [DOI: 10.1515/bc.2008.169] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
AbstractSeveral neurodegenerative diseases, including Kennedy's disease (KD), are associated with misfolding and aggregation of polyglutamine (polyQ)-expansion proteins. KD is caused by a polyQ-expansion in the androgen receptor (AR), a key player in male sexual differentiation. Interestingly, KD patients often show signs of mild-to-moderate androgen insensitivity syndrome (AIS) resulting from AR dysfunction. Here, we used the yeastSaccharomyces cerevisiaeto investigate the molecular mechanism behind AIS in KD. Upon expression in yeast, polyQ-expanded N-terminal fragments of AR lacking the hormone binding domain caused a polyQ length-dependent growth defect. Interestingly, while AR fragments with 67 Q formed large, SDS-resistant inclusions, the most pronounced toxicity was observed upon expression of 102 Q fragments which accumulated exclusively as soluble oligomers in the 100–600 kDa range. Analysis using a hormone-dependent luciferase reporter revealed that full-length polyQ-expanded AR is fully functional in transactivation, but becomes inactivated in the presence of the corresponding polyQ-expanded N-terminal fragment. Furthermore, the greatest impairment of AR activity was observed upon interaction of full-length AR with soluble AR fragments. Taken together, our results suggest that soluble polyQ-containing fragments bind to full-length AR and inactivate it, thus providing insight into the mechanism behind AIS in KD and possibly other polyglutamine diseases, such as Huntington's disease.
Collapse
|
15
|
Jagla M, Fève M, Kessler P, Lapouge G, Erdmann E, Serra S, Bergerat JP, Céraline J. A splicing variant of the androgen receptor detected in a metastatic prostate cancer exhibits exclusively cytoplasmic actions. Endocrinology 2007; 148:4334-43. [PMID: 17540719 DOI: 10.1210/en.2007-0446] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The androgen receptor (AR) is a ligand-activated transcription factor that displays genomic actions characterized by binding to androgen-response elements in the promoter of target genes as well as nongenomic actions that do not require nuclear translocation and DNA binding. In this study, we report exclusive cytoplasmic actions of a splicing variant of the AR detected in a metastatic prostate cancer. This AR variant, named AR23, results from an aberrant splicing of intron 2, wherein the last 69 nucleotides of the intronic sequence are retained, leading to the insertion of 23 amino acids between the two zinc fingers in the DNA-binding domain. We show that the nuclear entry of AR23 upon dihydrotestosterone (DHT) stimulation is impaired. Alternatively, DHT-activated AR23 forms cytoplasmic and perinuclear aggregates that partially colocalize with the endoplasmic reticulum and are devoid of genomic actions. However, in LNCaP cells, this cytoplasmic DHT-activated AR23 remains partially active as evidenced by the activation of transcription from androgen-responsive promoters, the stimulation of NF-kappaB transcriptional activity and by the decrease of AP-1 transcriptional activity. Our data reveal novel cytoplasmic actions for this splicing AR variant, suggesting a contribution in prostate cancer progression.
Collapse
Affiliation(s)
- Monika Jagla
- Faculté de Médecine/Signalisation et Cancer de la Prostate/Equipe d'Accueil 3430, Université Strasbourg, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Lapouge G, Erdmann E, Marcias G, Jagla M, Monge A, Kessler P, Serra S, Lang H, Jacqmin D, Bergerat JP, Céraline J. Unexpected paracrine action of prostate cancer cells harboring a new class of androgen receptor mutation—A new paradigm for cooperation among prostate tumor cells. Int J Cancer 2007; 121:1238-44. [PMID: 17534890 DOI: 10.1002/ijc.22830] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The emergence of mutations in the androgen receptor (AR) gene is a recurrent event during progression of prostate cancer (PCa) on androgen ablation therapy. In this study, we show that nonsense mutations that lead to carboxyl-terminal end truncated ARs are found at high frequency in metastatic PCas. Transcriptional activities of the Q640X mutant AR in the androgen-sensitive LNCaP cell line differ to those of the wild-type AR. Indeed, this mutant AR exhibits strong and ligand-independent transcriptional activities from an artificial promoter construct containing two repeats of androgen-responsive elements, but is inactive on the human PSA gene promoter. Nevertheless, the expression of the Q640X mutant AR in LNCaP cells is accompanied by an increase in the level of PSA protein, and by an increase in the expression of the endogenous AR gene. This enhanced expression of the endogenous AR gene is not limited to the sole transfected cells, but is observed in non-transfected neighboring cells. Additionally, in co-cultures of transfected and non-transfected LNCaP cells, the Q640X mutant AR leads to an unpredicted nuclear localization of the endogenous AR protein in the two cellular populations and this, in the absence of androgen. These data indicate that cells expressing the Q640X mutant AR acquire the property to emit a signal that activates the AR in neighboring cells by a paracrine mechanism and in a ligand-independent manner. Our data strongly support the notion of cooperation among tumor cells in PCa and could be of relevance for the understanding of progression on androgen ablation therapy.
Collapse
Affiliation(s)
- Gaëlle Lapouge
- Université Strasbourg-Fac de Médecine, EA 3430-Signalisation et Cancer de la Prostate, Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Céraline J, Cruchant MD, Erdmann E, Erbs P, Kurtz JE, Duclos B, Jacqmin D, Chopin D, Bergerat JP. Constitutive activation of the androgen receptor by a point mutation in the hinge region: a new mechanism for androgen-independent growth in prostate cancer. Int J Cancer 2003; 108:152-7. [PMID: 14618630 DOI: 10.1002/ijc.11404] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Androgen receptor (AR) mutations that modify both the ligand binding and the transactivation capacities of the AR represent one of the mechanisms involved in the transition of prostate cancer (PCa) from androgen-dependent to androgen-independent growth. We use a yeast-based functional assay to detect and analyze mutant ARs in PCa. We report the detection of 2 different mutant ARs within the same metastatic tumour sample harvested in a patient with advanced PCa who had escaped androgen deprivation. Concomitantly to the widely described T877A mutant AR, we identified an additional double mutant AR harboring the nonsense mutation Q640Stop just downstream the DNA binding domain together with the T877A point mutation. This type of mutation, which leads to a c-terminal truncated AR, has not been described yet in PCa. Using luciferase reporter assays we demonstrated that this truncated AR exhibited constitutive transactivation properties. In conclusion, our data suggest that mutation-induced constitutive activation of the AR could be a mechanism used by PCa cells to escape androgen deprivation.
Collapse
Affiliation(s)
- Jocelyn Céraline
- Laboratoire de Cancérologie Expérimentale et de Radiobiologie-EA/ULP 3430, IRCAD, Strasbourg, France.
| | | | | | | | | | | | | | | | | |
Collapse
|