1
|
Deng Y, Li Y, Yang M, Gao Y, Luo X, Chen H, Guo M, Yang X, Liu Y, He J, Lu B, Liu N. Carfilzomib activates ER stress and JNK/p38 MAPK signaling to promote apoptosis in hepatocellular carcinoma cells. Acta Biochim Biophys Sin (Shanghai) 2024; 56:697-708. [PMID: 38591121 PMCID: PMC11177107 DOI: 10.3724/abbs.2024040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/04/2024] [Indexed: 04/10/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and deadly cancers in the world, which is frequently diagnosed at a late stage. HCC patients have a poor prognosis due to the lack of an efficacious therapeutic strategy. Approved drug repurposing is a way for accelerating drug discovery and can significantly reduce the cost of drug development. Carfilzomib (CFZ) is a second-generation proteasome inhibitor, which is highly efficacious against multiple myeloma and has been reported to possess potential antitumor activities against multiple cancers. However, the underlying mechanism of CFZ on HCC is still unclear. Here, we show that CFZ inhibits the proliferation of HCC cells through cell cycle arrest at the G2/M phase and suppresses the migration and invasion of HCC cells by inhibiting epithelial-mesenchymal transition. We also find that CFZ promotes reactive oxygen species production to induce endoplasmic reticulum (ER) stress and activate JNK/p38 MAPK signaling in HCC cells, thus inducing cell death in HCC cells. Moreover, CFZ significantly inhibits HCC cell growth in a xenograft mouse model. Collectively, our study elucidates that CFZ impairs mitochondrial function and activates ER stress and JNK/p38 MAPK signaling, thus inhibiting HCC cell and tumor growth. This indicates that CFZ has the potential as a therapeutic drug for HCC.
Collapse
Affiliation(s)
- Yao Deng
- Department of Gastroenterology and Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver DiseaseThe Affiliated Nanhua Hospital and Department of Cell Biology and GeneticsSchool of Basic Medical SciencesHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Yujie Li
- School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalWenzhou Medical UniversityWenzhou325000China
| | - Mingyue Yang
- School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
| | - Yang Gao
- School of Public HealthFudan UniversityShanghai200032China
| | - Xuling Luo
- Department of Gastroenterology and Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver DiseaseThe Affiliated Nanhua Hospital and Department of Cell Biology and GeneticsSchool of Basic Medical SciencesHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Hanbin Chen
- Department of OncologyThe First Affiliated HospitalWenzhou Medical UniversityWenzhou325000China
| | - Meng Guo
- Department of Gastroenterology and Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver DiseaseThe Affiliated Nanhua Hospital and Department of Cell Biology and GeneticsSchool of Basic Medical SciencesHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Xuefeng Yang
- Department of Gastroenterology and Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver DiseaseThe Affiliated Nanhua Hospital and Department of Cell Biology and GeneticsSchool of Basic Medical SciencesHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Yongzhang Liu
- School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
| | - Jun He
- Department of Gastroenterology and Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver DiseaseThe Affiliated Nanhua Hospital and Department of Cell Biology and GeneticsSchool of Basic Medical SciencesHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Bin Lu
- Department of Gastroenterology and Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver DiseaseThe Affiliated Nanhua Hospital and Department of Cell Biology and GeneticsSchool of Basic Medical SciencesHengyang Medical SchoolUniversity of South ChinaHengyang421001China
- School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
| | - Naxin Liu
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalWenzhou Medical UniversityWenzhou325000China
| |
Collapse
|
2
|
Gazzaroli G, Angeli A, Giacomini A, Ronca R. Proteasome inhibitors as anticancer agents. Expert Opin Ther Pat 2023; 33:775-796. [PMID: 37847492 DOI: 10.1080/13543776.2023.2272648] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION The therapeutic targeting of the ubiquitin-proteasome pathway (UPP) through inhibitors of the 20S proteasome core proteolytic activities has revolutionized the treatment of hematological malignancies and is paving the way for its extension to solid tumors. AREAS COVERED This review covers the progress made in the field of proteasome inhibitors, ranging from the first-generation bortezomib to the latest second-generation inhibitors such as carfilzomib and ixazomib as well as the proteasome inhibitors in clinical phase such as oprozomib and marizomib. The development of selective and potent proteasome inhibitors with improved pharmacological properties is described from the synthesis to their basic biological, and clinical validation. EXPERT OPINION Proteasome inhibitors have transformed the treatment landscape for hematological malignancies and hold great promise for cancer therapy. Combination therapies targeting multiple pathways, the development of novel inhibitors or 'hybrid-inhibitors,' and the optimization of treatment protocols are key areas for future exploration. The extension of proteasome inhibitors for the treatment of solid tumors, and their ability to pass the blood-brain barrier open new possibilities for treating central nervous system cancers. However, managing adverse effects, particularly those affecting the central nervous system, remains a critical consideration and a strategic 'working on' aspect for the near future.
Collapse
Affiliation(s)
- Giorgia Gazzaroli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Andrea Angeli
- Neurofarba Department, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
3
|
Liu L, Liu A, Dong J, Zuo Z, Liu X. Proteasome 26S subunit, non-ATPase 1 (PSMD1) facilitated the progression of lung adenocarcinoma by the de-ubiquitination and stability of PTEN-induced kinase 1 (PINK1). Exp Cell Res 2022; 413:113075. [DOI: 10.1016/j.yexcr.2022.113075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/19/2022] [Accepted: 02/18/2022] [Indexed: 11/25/2022]
|
4
|
Zhang X, Linder S, Bazzaro M. Drug Development Targeting the Ubiquitin-Proteasome System (UPS) for the Treatment of Human Cancers. Cancers (Basel) 2020; 12:cancers12040902. [PMID: 32272746 PMCID: PMC7226376 DOI: 10.3390/cancers12040902] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cells are characterized by a higher rate of protein turnover and greater demand for protein homeostasis compared to normal cells. In this scenario, the ubiquitin-proteasome system (UPS), which is responsible for the degradation of over 80% of cellular proteins within mammalian cells, becomes vital to cancer cells, making the UPS a critical target for the discovery of novel cancer therapeutics. This review systematically categorizes all current reported small molecule inhibitors of the various essential components of the UPS, including ubiquitin-activating enzymes (E1s), ubiquitin-conjugating enzymes (E2s), ubiquitin ligases (E3s), the 20S proteasome catalytic core particle (20S CP) and the 19S proteasome regulatory particles (19S RP), as well as their mechanism/s of action and limitations. We also discuss the immunoproteasome which is considered as a prospective therapeutic target of the next generation of proteasome inhibitors in cancer therapies.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Department of Immunology, Genetics, and Pathology, Uppsala University, 751 05 Uppsala, Sweden
| | - Stig Linder
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Department of Medical and Health Sciences, Linköping University, SE-58183 Linköping, Sweden
| | - Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN 55455, USA;
- Correspondence:
| |
Collapse
|
5
|
Ghosh C, Kumar S, Kushchayeva Y, Gaskins K, Boufraqech M, Wei D, Gara SK, Zhang L, Zhang YQ, Shen M, Mukherjee S, Kebebew E. A Combinatorial Strategy for Targeting BRAF V600E-Mutant Cancers with BRAF V600E Inhibitor (PLX4720) and Tyrosine Kinase Inhibitor (Ponatinib). Clin Cancer Res 2020; 26:2022-2036. [PMID: 31937621 DOI: 10.1158/1078-0432.ccr-19-1606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/03/2019] [Accepted: 01/10/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Most aggressive thyroid cancers are commonly associated with a BRAF V600E mutation. Preclinical and clinical data in BRAF V600E cancers suggest that combined BRAF and MEK inhibitor treatment results in a response, but resistance is common. One mechanism of acquired resistance is through persistent activation of tyrosine kinase (TK) signaling by alternate pathways. We hypothesized that combination therapy with BRAF and multitargeting TK inhibitors (MTKI) might be more effective in BRAF V600E thyroid cancer than in single-agent or BRAF and MEK inhibitors. EXPERIMENTAL DESIGN The combined drug activity was analyzed to predict any synergistic effect using high-throughput screening (HTS) of active drugs. We performed follow-up in vitro and in vivo studies to validate and determine the mechanism of action of synergistic drugs. RESULTS The MTKI ponatinib and the BRAF inhibitor PLX4720 showed synergistic activity by HTS. This combination significantly inhibited proliferation, colony formation, invasion, and migration in BRAF V600E thyroid cancer cell lines and downregulated pERK/MEK and c-JUN signaling pathways, and increased apoptosis. PLX4720-resistant BRAF V600E cells became sensitized to the combination treatment, with decreased proliferation at lower PLX4720 concentrations. In an orthotopic thyroid cancer mouse model, combination therapy significantly reduced tumor growth (P < 0.05), decreased the number of metastases (P < 0.05), and increased survival (P < 0.05) compared with monotherapy and vehicle control. CONCLUSIONS Combination treatment with ponatinib and PLX4720 exhibited significant synergistic anticancer activity in preclinical models of BRAF V600E thyroid cancer, in addition to overcoming PLX4720 resistance. Our results suggest this combination should be tested in clinical trials.
Collapse
Affiliation(s)
- Chandrayee Ghosh
- Department of Surgery, Stanford University, Stanford, California
| | - Suresh Kumar
- Laboratory of Genetics and Genomics, National Institute of Aging, Bethesda, Maryland
| | | | | | | | | | | | - Lisa Zhang
- National Institute of Child Health and Development, NIH, Bethesda, Maryland
| | - Ya-Qin Zhang
- National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | - Min Shen
- National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | | | - Electron Kebebew
- Department of Surgery, Stanford University, Stanford, California.
| |
Collapse
|
6
|
Anania MC, Di Marco T, Mazzoni M, Greco A. Targeting Non-Oncogene Addiction: Focus on Thyroid Cancer. Cancers (Basel) 2020; 12:cancers12010129. [PMID: 31947935 PMCID: PMC7017043 DOI: 10.3390/cancers12010129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
Thyroid carcinoma (TC) is the most common malignancy of endocrine organs with an increasing incidence in industrialized countries. The majority of TC are characterized by a good prognosis, even though cases with aggressive forms not cured by standard therapies are also present. Moreover, target therapies have led to low rates of partial response and prompted the emergence of resistance, indicating that new therapies are needed. In this review, we summarize current literature about the non-oncogene addiction (NOA) concept, which indicates that cancer cells, at variance with normal cells, rely on the activity of genes, usually not mutated or aberrantly expressed, essential for coping with the transformed phenotype. We highlight the potential of non-oncogenes as a point of intervention for cancer therapy in general, and present evidence for new putative non-oncogenes that are essential for TC survival and that may constitute attractive new therapeutic targets.
Collapse
|
7
|
Jin Y, Liu M, Sa R, Fu H, Cheng L, Chen L. Mouse models of thyroid cancer: Bridging pathogenesis and novel therapeutics. Cancer Lett 2019; 469:35-53. [PMID: 31589905 DOI: 10.1016/j.canlet.2019.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 12/27/2022]
Abstract
Due to a global increase in the incidence of thyroid cancer, numerous novel mouse models were established to reveal thyroid cancer pathogenesis and test promising therapeutic strategies, necessitating a comprehensive review of translational medicine that covers (i) the role of mouse models in the research of thyroid cancer pathogenesis, and (ii) preclinical testing of potential anti-thyroid cancer therapeutics. The present review article aims to: (i) describe the current approaches for mouse modeling of thyroid cancer, (ii) provide insight into the biology and genetics of thyroid cancers, and (iii) offer guidance on the use of mouse models for testing potential therapeutics in preclinical settings. Based on research with mouse models of thyroid cancer pathogenesis involving the RTK, RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, SRC, and JAK-STAT signaling pathways, inhibitors of VEGFR, MEK, mTOR, SRC, and STAT3 have been developed as anti-thyroid cancer drugs for "bench-to-bedside" translation. In the future, mouse models of thyroid cancer will be designed to be ''humanized" and "patient-like," offering opportunities to: (i) investigate the pathogenesis of thyroid cancer through target screening based on the CRISPR/Cas system, (ii) test drugs based on new mouse models, and (iii) explore the underlying mechanisms based on multi-omics.
Collapse
Affiliation(s)
- Yuchen Jin
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Min Liu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China; Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.
| | - Ri Sa
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Hao Fu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Lin Cheng
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Libo Chen
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
8
|
Li D, Wang L, Yagüe E, Dai L, Zhao X, Yang Z, Zhi S, Hu Y. Studies of proteasome inhibition and apoptosis induction in triple‐negative breast cancer cells by novel amino acid–polypyridine–copper complex. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dongdong Li
- Tianjin Institute of Medical and Pharmaceutical Sciences Tianjin 300020 China
| | - Luyao Wang
- Tianjin Institute of Medical and Pharmaceutical Sciences Tianjin 300020 China
| | - Ernesto Yagüe
- Cancer Research Center, Division of Cancer, Faculty of MedicineImperial College London, Hammersmith Hospital Campus London W12 0NN UK
| | - Linlin Dai
- Tianjin Institute of Medical and Pharmaceutical Sciences Tianjin 300020 China
| | - Xiumei Zhao
- Tianjin Institute of Medical and Pharmaceutical Sciences Tianjin 300020 China
| | - Zibo Yang
- Tianjin Institute of Medical and Pharmaceutical Sciences Tianjin 300020 China
| | - Shuang Zhi
- Tianjin Institute of Medical and Pharmaceutical Sciences Tianjin 300020 China
| | - Yunhui Hu
- Third Department of Breast CancerTianjin Medical University Cancer Institute and Hospital Tianjin 300060 China
| |
Collapse
|
9
|
Li DD, Yagüe E, Wang LY, Dai LL, Yang ZB, Zhi S, Zhang N, Zhao XM, Hu YH. Novel Copper Complexes That Inhibit the Proteasome and Trigger Apoptosis in Triple-Negative Breast Cancer Cells. ACS Med Chem Lett 2019; 10:1328-1335. [PMID: 31531205 PMCID: PMC6746097 DOI: 10.1021/acsmedchemlett.9b00284] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 07/25/2019] [Indexed: 01/10/2023] Open
Abstract
Five innovative ternary copper(II) complexes [Cu(OH-PIP)(Phe)Cl](1), [Cu(OH-PIP)(Gly)(H2O)]NO3·2H2O (2), [Cu(OH-PIP)(Ala)(Cl)]·H2O (3), [Cu(OH-PIP)(Met)]PF6·2H2O (4), and [Cu(OH-PIP)(Gln)(H2O)](Cl)·3H2O (5) have been synthesized and characterized by infrared spectroscopy, elemental analysis, and single crystal X-ray diffraction analysis. X-ray crystallography indicates that all Cu atoms are five-coordinated in a square-pyramidal configuration. The complexes have been screened for cytotoxicity against human breast cancer cell lines MCF-7, MDA-MB-231, and CAL-51. The best anticancer activity is obtained with triple-negative breast cancer CAL-51 and MDA-MB-231 cell lines, with IC50 values in the range of 0.082-0.69 μM. Importantly, the copper compounds were more effective than carboplatin at triggering cell death. Mechanistically, the complexes inhibit proteasomal chymotrypsin-like activity, and docking studies reveal their 20S proteasome binding sites. As a consequence, they cause the accumulation of ubiquitinated proteins, inhibit cell proliferation, and induce apoptosis. In addition, these copper complexes decrease the stemness of triple-negative breast cancer cells and have synergistic effects with CBP on TNBC cells, indicating their great potential as a novel therapy for triple-negative breast cancer.
Collapse
Affiliation(s)
- Dong-Dong Li
- Tianjin
Institute of Medical and Pharmaceutical Sciences, Tianjin 300020, China
| | - Ernesto Yagüe
- Cancer
Research Center, Division of Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12
0NN, U.K.
| | - Lu-Yao Wang
- Tianjin
Institute of Medical and Pharmaceutical Sciences, Tianjin 300020, China
| | - Lin-Lin Dai
- Tianjin
Institute of Medical and Pharmaceutical Sciences, Tianjin 300020, China
| | - Zi-Bo Yang
- Tianjin
Institute of Medical and Pharmaceutical Sciences, Tianjin 300020, China
| | - Shuang Zhi
- Tianjin
Institute of Medical and Pharmaceutical Sciences, Tianjin 300020, China
| | - Na Zhang
- Tianjin
Institute of Medical and Pharmaceutical Sciences, Tianjin 300020, China
| | - Xiu-Mei Zhao
- Tianjin
Institute of Medical and Pharmaceutical Sciences, Tianjin 300020, China
| | - Yun-Hui Hu
- The
Third Department of Breast Cancer, Tianjin
Medical University Cancer Institute and Hospital, Tianjin 300060, China
| |
Collapse
|
10
|
Xiong W, Wang W, Huang H, Jiang Y, Guo W, Liu H, Yu J, Hu Y, Wan J, Li G. Prognostic Significance of PSMD1 Expression in Patients with Gastric Cancer. J Cancer 2019; 10:4357-4367. [PMID: 31413756 PMCID: PMC6691719 DOI: 10.7150/jca.31543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/21/2019] [Indexed: 12/28/2022] Open
Abstract
Background: PSMD1 has been considered to be involved in many human cancers, but its prognostic significance in gastric cancer (GC) has not been elucidated. The aim of this study was to evaluate the prognostic value of PSMD1 expression in tumor tissues of GC patients. Methods: We retrospectively analyzed the expression of PSMD1 in 241 paraffin-embedded GC specimens of the training cohort by immunohistochemistry. The prognostic value of PSMD1 expression was assessed using Kaplan-Meier survival curves and multivariate COX regression models. PSMD1 expression and other GC-associated risk factors were used to generate two nomograms to evaluate prognosis, and the performance of the two nomograms was assessed with respect to its calibration, discrimination, and clinical usefulness. Further validation was performed using an independent cohort of 170 cases. Results: High PSMD1 expression was significantly associated with decreased disease-free survival (DFS) and overall survival (OS) in GC patients. Furthermore, multivariate Cox proportional hazard analysis demonstrated that PSMD1 was an independent prognostic factor for DFS and OS. The two nomograms that were developed by integrating PSMD1 expression and the TNM staging system showed better prediction of DFS and OS than TNM staging system alone(C-index for training cohort: 0.708 (95% CI:0.670-0.746) and 0.712 (0.671-0.752), respectively; C-index for validation cohort: 0.704 (0.651-0.757) and 0.711 (0.656-0.767), respectively). Decision curve analysis demonstrated that the nomograms showed potential for clinical use. Conclusion: Intratumoral PSMD1 expression is a novel independent predictor of DFS and OS in GC patients. In the future, large-scale prospective studies will be necessary to confirm our findings regarding its potential prognostic and therapeutic value for GC patients.
Collapse
Affiliation(s)
- Wenjun Xiong
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China.,Department of Gastrointestinal Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Wang
- Department of Gastrointestinal Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haipeng Huang
- Department of Gastrointestinal Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuming Jiang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| | - Weihong Guo
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| | - Hao Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| | - Jiang Yu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| | - Yanfeng Hu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| | - Jin Wan
- Department of Gastrointestinal Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| |
Collapse
|
11
|
REGγ ablation impedes dedifferentiation of anaplastic thyroid carcinoma and accentuates radio-therapeutic response by regulating the Smad7-TGF-β pathway. Cell Death Differ 2019; 27:497-508. [PMID: 31243343 PMCID: PMC7205985 DOI: 10.1038/s41418-019-0367-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/17/2019] [Accepted: 05/30/2019] [Indexed: 01/11/2023] Open
Abstract
Anaplastic thyroid cancer (ATC) is the most aggressive human thyroid malignancy, characterized by dedifferentiation and resistance to radioiodine therapy. The underlying mechanisms regulating ATC dedifferentiation are largely unknown. Here, we show that REGγ, a noncanonical proteasome activator highly expressed in ATC, is an important regulator of differentiation in ATC cells. Ablation of REGγ significantly restored expression of thyroid-specific genes, enhanced iodine uptake, and improved the efficacy of 131I therapy in ATC xenograft models. Mechanistically, REGγ directly binds to the TGF-β signaling antagonist Smad7 and promotes its degradation, leading to the activation of the TGF-β signal pathway. With gain- and loss-of-function studies, we demonstrate that Smad7 is an important mediator for the REGγ function in ATC cell dedifferentiation, which is supported by expression profiles in human ATC tissues. It seems that REGγ impinges on repression of thyroid-specific genes and promotion of tumor malignancy in ATC cells by activating the TGF-β signal pathway via degradation of Smad7. Thus, REGγ may serve as a novel therapeutic target for allowing radioiodine therapy in anaplastic thyroid cancer patients with poor prognosis.
Collapse
|
12
|
The significance of gene mutations across eight major cancer types. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:88-99. [PMID: 31416581 DOI: 10.1016/j.mrrev.2019.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/11/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022]
Abstract
Mutations occur spontaneously, which can be induced by either chemicals (e.g. benzene) or biological factors (e.g. virus). Not all mutations cause noticeable changes in cellular functions. However, mutation in key cellular genes leads to developmental disorders. It is one of the main ways in which proto-oncogenes can be changed into their oncogenic state. The progressive accumulation of multiple mutations throughout life leads to cancer. In the past few decades, extensive research on cancer biology has discovered many genes and pathways having role in cancer development. In this review, we tried to summarize the current knowledge of mutational effect on different cancer types and its consequences in brief for future reference and guidance of researchers in cancer biology.
Collapse
|
13
|
Carfilzomib enhances cisplatin-induced apoptosis in SK-N-BE(2)-M17 human neuroblastoma cells. Sci Rep 2019; 9:5039. [PMID: 30911132 PMCID: PMC6434076 DOI: 10.1038/s41598-019-41527-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 03/06/2019] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma is a solid malignant tumor of the sympathetic nervous system, which accounts for 8–10% of childhood cancers. Considering the overall high risk and poor prognosis associated with neuroblastoma, effective therapeutics should be developed to improve patient survival and quality of life. A recent study showed that a proteasome inhibitor, carfilzomib (CFZ), reduced cell viability of SK-N-BE(2)-M17 neuroblastoma cells. Therefore, we investigated the molecular mechanisms by which CFZ lower the cell viability of neuroblastoma cells. CFZ reduced cell viability via cell cycle arrest at G2/M and apoptosis, which involved caspase activation (caspases-8, 9, 4, and 3), endoplasmic reticulum stress, reactive oxygen species production, mitochondrial membrane potential loss, and autophagy in a dose- and time-dependent manner. The effect of CFZ was additive to that of cisplatin (Cis), a well-known chemotherapeutic drug, in terms of cell viability reduction, cell cycle arrest, and apoptosis. Importantly, the additive effect of CFZ was maintained in Cis-resistant neuroblastoma cells. These results suggest that CFZ can be used in combination therapy for patients with neuroblastoma to overcome the resistance and adverse side effects of Cis.
Collapse
|
14
|
Ōmura S, Crump A. Lactacystin: first-in-class proteasome inhibitor still excelling and an exemplar for future antibiotic research. J Antibiot (Tokyo) 2019; 72:189-201. [PMID: 30755736 PMCID: PMC6760633 DOI: 10.1038/s41429-019-0141-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/12/2018] [Accepted: 01/07/2019] [Indexed: 01/28/2023]
Abstract
Lactacystin exemplifies the role that serendipity plays in drug discovery and why “finding things without actually looking for them” retains such a pivotal role in the search for the useful properties of chemicals. The first proteasome inhibitor discovered, lactacystin stimulated new possibilities in cancer control. New and innovative uses are regularly being found for lactacystin, including as a model to study dementia, while new formulations and delivery systems may facilitate its use clinically as an anticancer agent. All this provides yet more evidence that we need a comprehensive, collaborative and coordinated programme to fully investigate all new and existing chemical compounds, especially those of microbial origin. We need to do so in order to avoid failing to detect and successfully exploit unsought yet potentially life-saving or extremely advantageous properties of microbial metabolites.
Collapse
Affiliation(s)
- Satoshi Ōmura
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| | - Andy Crump
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| |
Collapse
|
15
|
Saini S, Tulla K, Maker AV, Burman KD, Prabhakar BS. Therapeutic advances in anaplastic thyroid cancer: a current perspective. Mol Cancer 2018; 17:154. [PMID: 30352606 PMCID: PMC6198524 DOI: 10.1186/s12943-018-0903-0] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/08/2018] [Indexed: 02/08/2023] Open
Abstract
Thyroid cancer incidence is increasing at an alarming rate, almost tripling every decade. In 2017, it was the fifth most common cancer in women. Although the majority of thyroid tumors are curable, about 2-3% of thyroid cancers are refractory to standard treatments. These undifferentiated, highly aggressive and mostly chemo-resistant tumors are phenotypically-termed anaplastic thyroid cancer (ATC). ATCs are resistant to standard therapies and are extremely difficult to manage. In this review, we provide the information related to current and recently emerged first-line systemic therapy (Dabrafenib and Trametinib) along with promising therapeutics which are in clinical trials and may be incorporated into clinical practice in the future. Different categories of promising therapeutics such as Aurora kinase inhibitors, multi-kinase inhibitors, epigenetic modulators, gene therapy using oncolytic viruses, apoptosis-inducing agents, and immunotherapy are reviewed. Combination treatment options that showed synergistic and antagonistic effects are also discussed. We highlight ongoing clinical trials in ATC and discuss how personalized medicine is crucial to design the second line of treatment. Besides using conventional combination therapy, embracing a personalized approach based on advanced genomics and proteomics assessment will be crucial to developing a tailored treatment plan to improve the chances of clinical success.
Collapse
Affiliation(s)
- Shikha Saini
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL USA
| | - Kiara Tulla
- Department of Surgery, Division of Surgical Oncology, University of Illinois-College of Medicine, Chicago, IL USA
| | - Ajay V. Maker
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL USA
- Department of Surgery, Division of Surgical Oncology, University of Illinois-College of Medicine, Chicago, IL USA
| | | | - Bellur S. Prabhakar
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL USA
- Jesse Brown VA Medical Center, Chicago, IL USA
| |
Collapse
|
16
|
Second-generation proteasome inhibitor carfilzomib enhances doxorubicin-induced cytotoxicity and apoptosis in breast cancer cells. Oncotarget 2018; 7:73697-73710. [PMID: 27655642 PMCID: PMC5342008 DOI: 10.18632/oncotarget.12048] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/26/2016] [Indexed: 12/30/2022] Open
Abstract
Proteasome inhibition is an attractive approach for anticancer therapy. Doxorubicin (DOX) is widely used for treatment in a number of cancers including breast cancer; however, the development of DOX resistance largely limits its clinical application. One of the possible mechanisms of DOX-resistance is that DOX might induce the activation of NF-κB. In this case, proteasome inhibitors could inhibit the activation of NF-κB by blocking inhibitory factor κB (IκB) degradation. Carfilzomib, a second-generation proteasome inhibitor, overcomes bortezomib resistance and lessens its side-effects. Currently, the effect of carfilzomib on breast cancer cell proliferation remains unclear. In this study, we exploited the role of carfilzomib in seven breast cancer cell lines, MCF7, T-47D, MDA-MB-361, HCC1954, MDA-MB-468, MDA-MB-231, and BT-549, representing all major molecular subtypes of breast cancer. We found that carfilzomib alone had cytotoxic effects on the breast cancer cells and it increased DOX-induced cytotoxic effects and apoptosis in combination by enhancing DOX-induced JNK phosphorylation and inhibiting DOX-induced IκBα degradation. The results suggest that carfilzomib has potent antitumor effects on breast cancer in vitro and can sensitize breast cancer cells to DOX treatment. DOX in combination with carfilzomib may be an effective and feasible therapeutic option in the clinical trials for treating breast cancer.
Collapse
|
17
|
Second-generation proteasome inhibitor carfilzomib sensitizes neuroblastoma cells to doxorubicin-induced apoptosis. Oncotarget 2018; 7:75914-75925. [PMID: 27713150 PMCID: PMC5342787 DOI: 10.18632/oncotarget.12427] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/22/2016] [Indexed: 01/30/2023] Open
Abstract
Neuroblastoma (NB), which accounts for about 15% of cancer-related mortality in children, is the most common extracranial malignant neoplasm in children. Elevated level of proteasome activity promotes cancer development and the inhibition of proteasome activity is a promising strategy for cancer treatment. Therefore, targeting proteasome by small molecule inhibitors may be a viable option for NB therapy. Here in this study, we show that a novel proteasome inhibitor Carfilzomib (CFZ) exerts anti-tumor effect on NB. CFZ caused decreased cell viability and attenuated colony formation ability of a subset of NB cell lines. CFZ induced cell apoptosis in NB cells. Moreover, CFZ enhanced the cytotoxic effect of doxorubicin (Dox) on NB cells and Dox-induced p38 and JNK phosphorylation. In addition, CFZ inhibited Dox-induced NF-κB activation by stabilizing the protein level of IκBα. Furthermore, CFZ induced apoptosis and augmented Dox-induced apoptosis in NB tumor cells in orthotopic xenograft mouse models. In summary, our study suggests that proteasome is a therapeutic target in NB and proteasome inhibition by CFZ is a potential therapeutic strategy for treating NB patients.
Collapse
|
18
|
Roeten MSF, Cloos J, Jansen G. Positioning of proteasome inhibitors in therapy of solid malignancies. Cancer Chemother Pharmacol 2018; 81:227-243. [PMID: 29184971 PMCID: PMC5778165 DOI: 10.1007/s00280-017-3489-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/19/2017] [Indexed: 12/13/2022]
Abstract
Targeting of the protein degradation pathway, in particular, the ubiquitin-proteasome system, has emerged as an attractive novel cancer chemotherapeutic modality. Although proteasome inhibitors have been most successfully applied in the treatment of hematological malignancies, they also received continuing interest for the treatment of solid tumors. In this review, we summarize the current positioning of proteasome inhibitors in the treatment of common solid malignancies (e.g., lung, colon, pancreas, breast, and head and neck cancer), addressing topics of their mechanism(s) of action, predictive factors and molecular mechanisms of resistance.
Collapse
Affiliation(s)
- Margot S F Roeten
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands.
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Gerrit Jansen
- Amsterdam Rheumatology and Immunology Center, Location VUmc, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Sidor-Kaczmarek J, Cichorek M, Spodnik JH, Wójcik S, Moryś J. Proteasome inhibitors against amelanotic melanoma. Cell Biol Toxicol 2017; 33:557-573. [PMID: 28281027 PMCID: PMC5658467 DOI: 10.1007/s10565-017-9390-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/15/2017] [Indexed: 12/11/2022]
Abstract
The incidence of malignant melanoma, the most aggressive skin cancer, is increasing constantly. Despite new targeted therapies, the prognosis for patients with metastatic disease remains poor. Thus, there is a need for new combinational treatments, and antineoplastic agents potentially valuable in this approach are inhibitors of the ubiquitin-proteasome system (UPS). In this work, we analyze the cytotoxicity mechanisms of proteasome inhibitors (MG-132, epoxomicin, and lactacystin) in a specific form of melanoma which does not synthesize melanin-the amelanotic melanoma (Ab cells). We found that the most cytotoxic of the compounds tested was epoxomicin. Caspase-9 activation as well as cytochrome C and AIF release from mitochondria indicated that exposure to epoxomicin induced the mitochondrial pathway of apoptosis. Epoxomicin treatment also resulted in accumulation of Bcl-2 family members-proapoptotic Noxa and antiapoptotic Mcl-1, which were postulated as the targets for bortezomib in melanoma. Inhibition of caspases by BAF revealed that cell death was partially caspase-independent. We observed no cell cycle arrest preceding the apoptosis of Ab cells, even though cdk inhibitors p21Cip1/Waf1 and p27Kip1 were up-regulated. The cell cycle was blocked only after inactivation of caspases by the pan-caspase inhibitor BAF. In summary, this is the first study exploring molecular mechanisms of cell death induced by epoxomicin in melanoma. We found that Ab cells died on the mitochondrial pathway of apoptosis and also partially by the caspase-independent way of death. Apoptosis induction was fast and efficient and was not preceded by cell cycle arrest.
Collapse
Affiliation(s)
| | | | - Jan Henryk Spodnik
- Department of Anatomy and Neurobiology, Medical University of Gdansk, Gdansk, Poland
| | - Sławomir Wójcik
- Department of Anatomy and Neurobiology, Medical University of Gdansk, Gdansk, Poland
| | - Janusz Moryś
- Department of Anatomy and Neurobiology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
20
|
Zhang L, Boufraqech M, Lake R, Kebebew E. Carfilzomib potentiates CUDC-101-induced apoptosis in anaplastic thyroid cancer. Oncotarget 2017; 7:16517-28. [PMID: 26934320 PMCID: PMC4941332 DOI: 10.18632/oncotarget.7760] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/08/2016] [Indexed: 12/19/2022] Open
Abstract
Anaplastic thyroid cancer (ATC) is one of the most aggressive human malignancies, with no effective treatment currently available. Previously, we identified agents active against ATC cells, both in vitro and in vivo, using quantitative high-throughput screening of 3282 clinically approved drugs and small molecules. Here, we report that combining two of these active agents, carfilzomib, a second-generation proteasome inhibitor, and CUDC-101, a histone deacetylase and multi-kinase inhibitor, results in increased, synergistic activity in ATC cells. The combination of carfilzomib and CUDC-101 synergistically inhibited cellular proliferation and caused cell death in multiple ATC cell lines harboring various driver mutations observed in human ATC tumors. This increased anti-ATC effect was associated with a synergistically enhanced G2/M cell cycle arrest and increased caspase 3/7 activity induced by the drug combination. Mechanistically, treatment with carfilzomib and CUDC-101 increased p21 expression and poly (ADP-ribose) polymerase protein cleavage. Our results suggest that combining carfilzomib and CUDC-101 would offer an effective therapeutic strategy to treat ATC.
Collapse
Affiliation(s)
- Lisa Zhang
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Myriem Boufraqech
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ross Lake
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, Maryland, USA
| | - Electron Kebebew
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
21
|
Capasso M, McDaniel LD, Cimmino F, Cirino A, Formicola D, Russell MR, Raman P, Cole KA, Diskin SJ. The functional variant rs34330 of CDKN1B is associated with risk of neuroblastoma. J Cell Mol Med 2017; 21:3224-3230. [PMID: 28667701 PMCID: PMC5706517 DOI: 10.1111/jcmm.13226] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 04/07/2017] [Indexed: 11/30/2022] Open
Abstract
The genetic aetiology of sporadic neuroblastoma is still largely unknown. We have identified diverse neuroblastoma susceptibility loci by genomewide association studies (GWASs); however, additional SNPs that likely contribute to neuroblastoma susceptibility prompted this investigation for identification of additional variants that are likely hidden among signals discarded by the multiple testing corrections used in the analysis of genomewide data. There is evidence suggesting the CDKN1B, coding for the cycle inhibitor p27Kip1, is involved in neuroblastoma. We thus assess whether genetic variants of CDKN1B are associated with neuroblastoma. We imputed all possible genotypes across CDKN1B locus on a discovery case series of 2101 neuroblastoma patients and 4202 genetically matched controls of European ancestry. The most significantly associated rs34330 was analysed in an independent Italian cohort of 311 cases and 709 controls. In vitro functional analysis was carried out in HEK293T and in neuroblastoma cell line SHEP‐2, both transfected with pGL3‐CDKN1B‐CC or pGL3‐CDKN1B‐TT constructs. We identified an association of the rs34330 T allele (‐79C/T) with the neuroblastoma risk (Pcombined = 0.002; OR = 1.17). The risk allele (T) of this single nucleotide polymorphism led to a lower transcription rate in cells transfected with a luciferase reporter driven by the polymorphic p27Kip1 promoter (P < 0.05). Three independent sets of neuroblastoma tumours carrying ‐79TT genotype showed a tendency towards lower CDKN1B mRNA levels. Our study shows that a functional variant, associated with a reduced CDKN1B gene transcription, influences neuroblastoma susceptibility.
Collapse
Affiliation(s)
- Mario Capasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,Istituto di Ricerca Diagnostica e Nucleare, IRCCS SDN, Naples, Italy
| | - Lee D McDaniel
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Flora Cimmino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Andrea Cirino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Daniela Formicola
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Mike R Russell
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Pichai Raman
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kristina A Cole
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sharon J Diskin
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
22
|
Jonker PKC, van Dam GM, Oosting SF, Kruijff S, Fehrmann RSN. Identification of novel therapeutic targets in anaplastic thyroid carcinoma using functional genomic mRNA-profiling: Paving the way for new avenues? Surgery 2016; 161:202-211. [PMID: 27865593 DOI: 10.1016/j.surg.2016.06.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/30/2016] [Accepted: 06/18/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND Currently, anaplastic thyroid carcinoma has a very poor prognosis and there is an unmet need for new therapeutic options. Therefore, this study aims to identify upregulated genes in anaplastic thyroid carcinoma with known drug interactions that could serve as new therapeutic targets. METHODS Publicly available microarray expression profiles of anaplastic thyroid carcinoma and normal thyroid tissue were collected. FGmRNA-profiling was applied, which is a recently developed method that enhances the ability to capture the downstream effects of genomic alterations on gene expression levels. Next, a comparison between FGmRNA-profiles of anaplastic thyroid carcinoma and normal thyroid samples was performed. Significantly upregulated genes in ATC were prioritized based on: 1) known interaction with antineoplastic drugs, 2) current drug development status in human, and 3) association with biologic pathways known to be involved in anaplastic thyroid carcinoma carcinogenesis. RESULTS In the study, 25 anaplastic thyroid carcinoma and 80 normal thyroid samples were included for FGmRNA-profiling. Class comparison identified 301 significantly upregulated genes. Following prioritization, MTOR, MET, WEE1, PSMD1, MERTK, FGFR3, RARG, and ESR2 were identified as potential therapeutic targets. CONCLUSION We prioritized 8 potential therapeutic druggable targets in anaplastic thyroid carcinoma. Ultimately, inhibition of these therapeutic targets might improve patient outcome in anaplastic thyroid carcinoma by reducing locoregional disease and distant metastases.
Collapse
Affiliation(s)
- Pascal K C Jonker
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gooitzen M van Dam
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Nuclear Medicine and Molecular Imaging, Intensive Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sjoukje F Oosting
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Schelto Kruijff
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rudolf S N Fehrmann
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
23
|
Inhibition of autophagy with chloroquine potentiates carfilzomib-induced apoptosis in myeloma cells in vitro and in vivo. Cancer Lett 2016; 382:1-10. [PMID: 27565383 DOI: 10.1016/j.canlet.2016.08.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 01/24/2023]
Abstract
The proteasome inhibitor bortezomib is now the cornerstone of combination therapy of multiple myeloma (MM). Carfilzomib, a second-generation inhibitor, has shown a substantial benefit vs bortezomib in combination regimes. Here we have analyzed in detail the mechanism of cell death induced by carfilzomib and its crosstalk with autophagy and applied the results to the in vivo treatment of MM in a mouse model. Carfilzomib induced apoptosis essentially by the intrinsic pathway, through the up-regulation of Puma and Noxa proteins followed by the interaction of Puma, Noxa and Bim with Bax and of Noxa with Bak. Carfilzomib also produces an increase in the formation of autophagosomes but, as apoptosis progresses, autophagy is disrupted, probably owing to Beclin 1 and p62 inactivation. Cotreatment with chloroquine, which blocks autophagy, strongly potentiated apoptosis in vitro and in vivo. Accordingly, combination therapy with carfilzomib plus chloroquine was highly effective in the treatment of MM in a mouse xenograft model. Chloroquine also enhanced carfilzomib-induced calreticulin exposure in MM cells undergoing apoptosis, increasing the immunogenic ability of carfilzomib. These results support design of trials combining carfilzomib with chloroquine to improve MM therapy.
Collapse
|
24
|
Reichel D, Rychahou P, Bae Y. Polymer nanoassemblies with solvato- and halo-fluorochromism for drug release monitoring and metastasis imaging. Ther Deliv 2015; 6:1221-37. [PMID: 26446432 PMCID: PMC4977001 DOI: 10.4155/tde.15.59] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Theranostics, an emerging technique that combines therapeutic and diagnostic modalities for various diseases, holds promise to detect cancer in early stages, eradicate metastatic tumors and ultimately reduce cancer mortality. METHODS & RESULTS This study reports unique polymer nanoassemblies that increase fluorescence intensity upon addition of hydrophobic drugs and either increase or decrease fluorescence intensity in acidic environments, depending on nanoparticle core environment properties. Extensive spectroscopic analyses were performed to determine optimal excitation and emission wavelengths, which enabled real time measurement of drugs releasing from the nanoassemblies and ex vivo imaging of acidic liver metastatic tumors from mice. CONCLUSION Polymer nanoassemblies with solvato- and halo-fluorochromic properties are promising platforms to develop novel theranostic tools for the detection and treatment of metastatic tumors.
Collapse
Affiliation(s)
- Derek Reichel
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, KY 40536–0596, USA
| | - Piotr Rychahou
- Markey Cancer Center, University of Kentucky, 800 Rose Street, CC140, Lexington, KY 40536, USA
- Department of Surgery, College of Medicine, University of Kentucky, 741 South Limestone, Lexington, KY 40536, USA
| | - Younsoo Bae
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, KY 40536–0596, USA
| |
Collapse
|
25
|
Gao XJ, Li AQ, Zhang X, Liu P, Wang JR, Cai X. Thyroid-stimulating hormone (TSH)-armed polymer–lipid nanoparticles for the targeted delivery of cisplatin in thyroid cancers: therapeutic efficacy evaluation. RSC Adv 2015. [DOI: 10.1039/c5ra12588j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thyroid-stimulating hormone (TSH)-conjugated polymer–lipid hybrid nanoparticles (TPLHC) were developed for the targeted delivery of cisplatin (CDDP) in thyroid cancers.
Collapse
Affiliation(s)
- Xue-jun Gao
- Department of Thyroid Surgery
- Affiliated Hospital of Qingdao University
- Qingdao 266000
- China
| | - Ai-qin Li
- Affiliated Hospital of Qingdao University
- Qingdao 266000
- China
| | - Xin Zhang
- Department of Thyroid Surgery
- Affiliated Hospital of Qingdao University
- Qingdao 266000
- China
| | - Ping Liu
- Department of Pharmacy
- Shandong Provincial Hospital Affiliated to Shandong University
- Jinan 250021
- China
| | - Jue-Ru Wang
- Department of Thyroid Surgery
- Affiliated Hospital of Qingdao University
- Qingdao 266000
- China
| | - Xia Cai
- Department of Plastic Surgery
- Affiliated Hospital of Qingdao University
- Qingdao 266000
- China
| |
Collapse
|