1
|
Hilhorst R, van den Berg A, Boender P, van Wezel T, Kievits T, de Wijn R, Ruijtenbeek R, Corver WE, Morreau H. Differentiating Benign from Malignant Thyroid Tumors by Kinase Activity Profiling and Dabrafenib BRAF V600E Targeting. Cancers (Basel) 2023; 15:4477. [PMID: 37760447 PMCID: PMC10527361 DOI: 10.3390/cancers15184477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Differentiated non-medullary thyroid cancer (NMTC) can be effectively treated by surgery followed by radioactive iodide therapy. However, a small subset of patients shows recurrence due to a loss of iodide transport, a phenotype frequently associated with BRAF V600E mutations. In theory, this should enable the use of existing targeted therapies specifically designed for BRAF V600E mutations. However, in practice, generic or specific drugs aimed at molecular targets identified by next generation sequencing (NGS) are not always beneficial. Detailed kinase profiling may provide additional information to help improve therapy success rates. In this study, we therefore investigated whether serine/threonine kinase (STK) activity profiling can accurately classify benign thyroid lesions and NMTC. We also determined whether dabrafenib (BRAF V600E-specific inhibitor), as well as sorafenib and regorafenib (RAF inhibitors), can differentiate BRAF V600E from non-BRAF V600E thyroid tumors. Using 21 benign and 34 malignant frozen thyroid tumor samples, we analyzed serine/threonine kinase activity using PamChip®peptide microarrays. An STK kinase activity classifier successfully differentiated malignant (26/34; 76%) from benign tumors (16/21; 76%). Of the kinases analyzed, PKC (theta) and PKD1 in particular, showed differential activity in benign and malignant tumors, while oncocytic neoplasia or Graves' disease contributed to erroneous classifications. Ex vivo BRAF V600E-specific dabrafenib kinase inhibition identified 6/92 analyzed peptides, capable of differentiating BRAF V600E-mutant from non-BRAF V600E papillary thyroid cancers (PTCs), an effect not seen with the generic inhibitors sorafenib and regorafenib. In conclusion, STK activity profiling differentiates benign from malignant thyroid tumors and generates unbiased hypotheses regarding differentially active kinases. This approach can serve as a model to select novel kinase inhibitors based on tissue analysis of recurrent thyroid and other cancers.
Collapse
Affiliation(s)
- Riet Hilhorst
- PamGene International BV, 5211 HH ‘s-Hertogenbosch, The Netherlands; (R.H.)
| | | | - Piet Boender
- PamGene International BV, 5211 HH ‘s-Hertogenbosch, The Netherlands; (R.H.)
| | - Tom van Wezel
- Leiden University Medical Center, 2333 ZA Leiden, The Netherlands (H.M.)
| | - Tim Kievits
- PamGene International BV, 5211 HH ‘s-Hertogenbosch, The Netherlands; (R.H.)
| | - Rik de Wijn
- PamGene International BV, 5211 HH ‘s-Hertogenbosch, The Netherlands; (R.H.)
| | - Rob Ruijtenbeek
- PamGene International BV, 5211 HH ‘s-Hertogenbosch, The Netherlands; (R.H.)
| | - Willem E. Corver
- Leiden University Medical Center, 2333 ZA Leiden, The Netherlands (H.M.)
| | - Hans Morreau
- Leiden University Medical Center, 2333 ZA Leiden, The Netherlands (H.M.)
| |
Collapse
|
2
|
Frank AR, Li V, Shelton SD, Kim J, Stott GM, Neckers LM, Xie Y, Williams NS, Mishra P, McFadden DG. Mitochondrial-Encoded Complex I Impairment Induces a Targetable Dependency on Aerobic Fermentation in Hürthle Cell Carcinoma of the Thyroid. Cancer Discov 2023; 13:1884-1903. [PMID: 37262072 PMCID: PMC10524862 DOI: 10.1158/2159-8290.cd-22-0982] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/20/2023] [Accepted: 05/08/2023] [Indexed: 06/03/2023]
Abstract
A metabolic hallmark of cancer identified by Warburg is the increased consumption of glucose and secretion of lactate, even in the presence of oxygen. Although many tumors exhibit increased glycolytic activity, most forms of cancer rely on mitochondrial respiration for tumor growth. We report here that Hürthle cell carcinoma of the thyroid (HTC) models harboring mitochondrial DNA-encoded defects in complex I of the mitochondrial electron transport chain exhibit impaired respiration and alterations in glucose metabolism. CRISPR-Cas9 pooled screening identified glycolytic enzymes as selectively essential in complex I-mutant HTC cells. We demonstrate in cultured cells and a patient-derived xenograft model that small-molecule inhibitors of lactate dehydrogenase selectively induce an ATP crisis and cell death in HTC. This work demonstrates that complex I loss exposes fermentation as a therapeutic target in HTC and has implications for other tumors bearing mutations that irreversibly damage mitochondrial respiration. SIGNIFICANCE HTC is enriched in somatic mtDNA mutations predicted to affect complex I of the electron transport chain (ETC). We demonstrate that these mutations impair respiration and induce a therapeutically tractable reliance on aerobic fermentation for cell survival. This work provides a rationale for targeting fermentation in cancers harboring irreversible genetically encoded ETC defects. See related article by Gopal et al., p. 1904. This article is highlighted in the In This Issue feature, p. 1749.
Collapse
Affiliation(s)
- Anderson R Frank
- Department of Internal Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vicky Li
- Department of Internal Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Spencer D Shelton
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiwoong Kim
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gordon M Stott
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 24060, USA
| | - Leonard M Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yang Xie
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prashant Mishra
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Deparment of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David G McFadden
- Department of Internal Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Program in Molecular Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Lead contact
| |
Collapse
|
3
|
de Koster EJ, van Engen-van Grunsven ACH, Bussink J, Frielink C, de Geus-Oei LF, Kusters B, Peters H, Oyen WJG, Vriens D. [ 18F]FDG Uptake and Expression of Immunohistochemical Markers Related to Glycolysis, Hypoxia, and Proliferation in Indeterminate Thyroid Nodules. Mol Imaging Biol 2022; 25:483-494. [PMID: 36253663 PMCID: PMC10172288 DOI: 10.1007/s11307-022-01776-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE The current study explored the association between 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) uptake and the quantitative expression of immunohistochemical markers related to glucose metabolism, hypoxia, and cell proliferation in benign and malignant thyroid nodules of indeterminate cytology. PROCEDURES Using a case-control design, 24 patients were selected from participants of a randomized controlled multicenter trial (NCT02208544) in which [18F]FDG-PET/CT and thyroid surgery were performed for Bethesda III and IV nodules. Three equally sized groups of [18F]FDG-positive malignant, [18F]FDG-positive benign, and [18F]FDG-negative benign nodules were included. Immunohistochemical staining was performed for glucose transporters (GLUT) 1, 3, and 4; hexokinases (HK) 1 and 2; hypoxia-inducible factor-1 alpha (HIF1α; monocarboxylate transporter 4 (MCT4); carbonic anhydrase IX (CA-IX); vascular endothelial growth factor (VEGF); sodium-iodide symporter (NIS); and Ki-67. Marker expression was scored using an immunoreactive score. Unsupervised cluster analysis was performed. The immunoreactive score was correlated to the maximum and peak standardized uptake values (SUVmax, SUVpeak) and SUVmax ratio (SUVmax of nodule/background SUVmax of contralateral, normal thyroid) of the [18F]FDG-PET/CT using the Spearman's rank correlation coefficient and compared between the three groups using Kruskal-Wallis tests. RESULTS The expression of GLUT1, GLUT3, HK2, and MCT4 was strongly positively correlated with the SUVmax, SUVpeak, and SUVmax ratio. The expression of GLUT1 (p = 0.009), HK2 (p = 0.02), MCT4 (p = 0.01), and VEGF (p = 0.007) was statistically significantly different between [18F]FDG-positive benign nodules, [18F]FDG-positive thyroid carcinomas, and [18F]FDG-negative benign nodules. In both [18F]FDG-positive benign nodules and [18F]FDG-positive thyroid carcinomas, the expression of GLUT1, HK2, and MCT4 was increased as compared to [18F]FDG-negative benign nodules. VEGF expression was higher in [18F]FDG-positive thyroid carcinomas as compared to [18F]FDG-negative and [18F]FDG-positive benign nodules. CONCLUSIONS Our results suggest that [18F]FDG-positive benign thyroid nodules undergo changes in protein expression similar to those in thyroid carcinomas. To expand the understanding of the metabolic changes in benign and malignant thyroid nodules, further research is required, including correlation with underlying genetic alterations.
Collapse
Affiliation(s)
- Elizabeth J de Koster
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands.
| | | | - Johan Bussink
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud University Medical Center, Nijmegen, Netherlands
| | - Cathelijne Frielink
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Lioe-Fee de Geus-Oei
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands.,Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, Leiden, the Netherlands.,Biomedical Photonic Imaging Group, University of Twente, Enschede, the Netherlands
| | - Benno Kusters
- Department of Pathology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Hans Peters
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud University Medical Center, Nijmegen, Netherlands
| | - Wim J G Oyen
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands.,Department of Radiology and Nuclear Medicine, Rijnstate Hospital, Arnhem, the Netherlands.,Department of Biomedical Sciences and Humanitas Clinical and Research Centre, Department of Nuclear Medicine, Humanitas University, Milan, Italy
| | - Dennis Vriens
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | | |
Collapse
|
4
|
Tarabichi M, Demetter P, Craciun L, Maenhaut C, Detours V. Thyroid cancer under the scope of emerging technologies. Mol Cell Endocrinol 2022; 541:111491. [PMID: 34740746 DOI: 10.1016/j.mce.2021.111491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 01/03/2023]
Abstract
The vast majority of thyroid cancers originate from follicular cells. We outline outstanding issues at each step along the path of cancer patient care, from prevention to post-treatment follow-up and highlight how emerging technologies will help address them in the coming years. Three directions will dominate the coming technological landscape. Genomics will reveal tumoral evolutionary history and shed light on how these cancers arise from the normal epithelium and the genomics alteration driving their progression. Transcriptomics will gain cellular and spatial resolution providing a full account of intra-tumor heterogeneity and opening a window on the microenvironment supporting thyroid tumor growth. Artificial intelligence will set morphological analysis on an objective quantitative ground laying the foundations of a systematic thyroid tumor classification system. It will also integrate into unified representations the molecular and morphological perspectives on thyroid cancer.
Collapse
Affiliation(s)
- Maxime Tarabichi
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium.
| | - Pieter Demetter
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Ligia Craciun
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Carine Maenhaut
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium.
| | - Vincent Detours
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
5
|
Targeting the complex I and III of mitochondrial electron transport chain as a potentially viable option in liver cancer management. Cell Death Discov 2021; 7:293. [PMID: 34650055 PMCID: PMC8516882 DOI: 10.1038/s41420-021-00675-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
Liver cancer is one of the most common and lethal types of oncological disease in the world, with limited treatment options. New treatment modalities are desperately needed, but their development is hampered by a lack of insight into the underlying molecular mechanisms of disease. It is clear that metabolic reprogramming in mitochondrial function is intimately linked to the liver cancer process, prompting the possibility to explore mitochondrial biochemistry as a potential therapeutic target. Here we report that depletion of mitochondrial DNA, pharmacologic inhibition of mitochondrial electron transport chain (mETC) complex I/complex III, or genetic of mETC complex I restricts cancer cell growth and clonogenicity in various preclinical models of liver cancer, including cell lines, mouse liver organoids, and murine xenografts. The restriction is linked to the production of reactive oxygen species, apoptosis induction and reduced ATP generation. As a result, our findings suggest that the mETC compartment of mitochondria could be a potential therapeutic target in liver cancer.
Collapse
|
6
|
Bora Makal G, Aslan A. The Diagnostic Value of the American College of Radiology Thyroid Imaging Reporting and Data System Classification and Shear-Wave Elastography for the Differentiation of Thyroid Nodules. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1227-1234. [PMID: 33589354 DOI: 10.1016/j.ultrasmedbio.2021.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to determine the diagnostic accuracy of the American College of Radiology Thyroid Imaging Reporting and Data System (ACR TI-RADS) classification and shear-wave elastography (SWE) for the diagnosis of benign and malignant thyroid nodules. This retrospective study enrolled 141 patients (18-84 y of age) undergoing thyroidectomy between January 2015 and August 2020. All statistical analysis was based on pathologic results of patients. The cut-off value was found as category 4 for ACR TI-RADS classification and 5 m/s for shear-wave velocity (Vs) by the receiver operator characteristic curve analysis (area under the curve [AUC] = 0.684, p = 0.020 and AUC = 0.715, p = 0.005, respectively). SWE has higher diagnostic accuracy than the ACR TI-RADS classification system and can improve thyroid nodule discrimination in all sizes of the nodules. Also, the diagnostic performance decreases when the nodule diameter increases.
Collapse
Affiliation(s)
- Gül Bora Makal
- Yuksek Ihtisas University, Faculty of Medicine, Department of General Surgery, Ankara, Turkey.
| | - Aydın Aslan
- Yuksek Ihtisas University, Faculty of Medicine, Department of Radiology, Ankara, Turkey
| |
Collapse
|
7
|
Bonora M, Missiroli S, Perrone M, Fiorica F, Pinton P, Giorgi C. Mitochondrial Control of Genomic Instability in Cancer. Cancers (Basel) 2021; 13:cancers13081914. [PMID: 33921106 PMCID: PMC8071454 DOI: 10.3390/cancers13081914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Cancer cells display among its hallmark genomic instability. This is a progressive tendency in accumulate genome alteration which contributes to the damage of genes regulating cell division and tumor suppression. Genomic instability favors the appearance of survival-promoting mutations, increasing the likelihood that those mutations will propagate into daughter cells and have a significant impact on cancer progression. Among the many factor influencing this phenomenon, mitochondrial physiology is emerging. Mitochondria are bound to genomic instability by responding to DNA alteration to trigger cell death programs and as a source for DNA damage. Mitochondrial alterations prototypical of cancer can desensitize the mitochondrial route of cell death, facilitating the survival of cell acquiring new mutations, or can stimulate mitochondrial mediated DNA damage, boosting the mutation rate and genomic instability itself. Abstract Mitochondria are well known to participate in multiple aspects of tumor formation and progression. They indeed can alter the susceptibility of cells to engage regulated cell death, regulate pro-survival signal transduction pathways and confer metabolic plasticity that adapts to specific tumor cell demands. Interestingly, a relatively poorly explored aspect of mitochondria in neoplastic disease is their contribution to the characteristic genomic instability that underlies the evolution of the disease. In this review, we summarize the known mechanisms by which mitochondrial alterations in cancer tolerate and support the accumulation of DNA mutations which leads to genomic instability. We describe recent studies elucidating mitochondrial responses to DNA damage as well as the direct contribution of mitochondria to favor the accumulation of DNA alterations.
Collapse
Affiliation(s)
- Massimo Bonora
- Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.B.); (S.M.); (M.P.); (P.P.)
| | - Sonia Missiroli
- Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.B.); (S.M.); (M.P.); (P.P.)
| | - Mariasole Perrone
- Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.B.); (S.M.); (M.P.); (P.P.)
| | - Francesco Fiorica
- Department of Radiation Oncology and Nuclear Medicine, AULSS 9 Scaligera, 37100 Verona, Italy;
| | - Paolo Pinton
- Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.B.); (S.M.); (M.P.); (P.P.)
| | - Carlotta Giorgi
- Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.B.); (S.M.); (M.P.); (P.P.)
- Correspondence:
| |
Collapse
|
8
|
Correia M, Lima AR, Batista R, Máximo V, Sobrinho-Simões M. Inherited Thyroid Tumors With Oncocytic Change. Front Endocrinol (Lausanne) 2021; 12:691979. [PMID: 34177813 PMCID: PMC8220141 DOI: 10.3389/fendo.2021.691979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/12/2021] [Indexed: 01/19/2023] Open
Abstract
Familial non-medullary thyroid carcinoma (FNMTC) corresponds to 5-10% of all follicular cell-derived carcinoma (FCDTC). Oncocytic thyroid tumors have an increased incidence in the familial context in comparison with sporadic FCDTC, encompassing benign and malignant tumors in the same family presenting with some extent of cell oxyphilia. This has triggered the interest of our and other groups to clarify the oncocytic change, looking for genetic markers that could explain the emergence of this phenotype in thyroid benign and malignant lesions, focusing on familial aggregation. Despite some advances regarding the identification of the gene associated with retinoic and interferon-induced mortality 19 (GRIM-19), as one of the key candidate genes affected in the "Tumor with Cell Oxyphilia" (TCO) locus, most of the mutations follow a pattern of "private mutations", almost exclusive to one family. Moreover, no causative genetic alterations were identified so far in most families. The incomplete penetrance of the disease, the diverse benign and malignant phenotypes in the affected familial members and the variable syndromic associations create an additional layer of complexity for studying the genetic alterations in oncocytic tumors. In the present review, we summarized the available evidence supporting genomic-based mechanisms for the oncocytic change, particularly in the context of FNMTC. We have also addressed the challenges and gaps in the aforementioned mechanisms, as well as molecular clues that can explain, at least partially, the phenotype of oncocytic tumors and the respective clinico-pathological behavior. Finally, we pointed to areas of further investigation in the field of oncocytic (F)NMTC with translational potential in terms of therapy.
Collapse
Affiliation(s)
- Marcelo Correia
- Cancer Signalling and Metabolism, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Cancer Signalling and Metabolism, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- *Correspondence: Marcelo Correia,
| | - Ana Rita Lima
- Cancer Signalling and Metabolism, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Cancer Signalling and Metabolism, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Rui Batista
- Cancer Signalling and Metabolism, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Cancer Signalling and Metabolism, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Valdemar Máximo
- Cancer Signalling and Metabolism, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Cancer Signalling and Metabolism, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Manuel Sobrinho-Simões
- Cancer Signalling and Metabolism, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Cancer Signalling and Metabolism, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
- Department of Pathology, Centro Hospitalar e Universitário São João (CHUSJ), Porto, Portugal
| |
Collapse
|
9
|
McFadden DG, Sadow PM. Genetics, Diagnosis, and Management of Hürthle Cell Thyroid Neoplasms. Front Endocrinol (Lausanne) 2021; 12:696386. [PMID: 34177816 PMCID: PMC8223676 DOI: 10.3389/fendo.2021.696386] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/14/2021] [Indexed: 01/17/2023] Open
Abstract
Hürthle cell lesions have been a diagnostic conundrum in pathology since they were first recognized over a century ago. Controversy as to the name of the cell, the origin of the cell, and even which cells in particular may be designated as such still challenge pathologists and confound those treating patients with a diagnosis of "Hürthle cell" anything within the diagnosis, especially if that anything is a sizable mass lesion. The diagnosis of Hürthle cell adenoma (HCA) or Hürthle cell carcinoma (HCC) has typically relied on a judgement call by pathologists as to the presence or absence of capsular and/or vascular invasion of the adjacent thyroid parenchyma, easy to note in widely invasive disease and a somewhat subjective diagnosis for minimally invasive or borderline invasive disease. Diagnostic specificity, which has incorporated a sharp increase in molecular genetic studies of thyroid tumor subtypes and the integration of molecular testing into preoperative management protocols, continues to be challenged by Hürthle cell neoplasia. Here, we provide the improving yet still murky state of what is known about Hürthle cell tumor genetics, clinical management, and based upon what we are learning about the genetics of other thyroid tumors, how to manage expectations, by pathologists, clinicians, and patients, for more actionable, precise classifications of Hürthle cell tumors of the thyroid.
Collapse
Affiliation(s)
- David G. McFadden
- Division of Endocrinology, Department of Internal Medicine, Department of Biochemistry, Program in Molecular Medicine, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Peter M. Sadow
- Departments of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- *Correspondence: Peter M. Sadow,
| |
Collapse
|
10
|
Luo J, Chen J, Sun Y, Xu F, Wu L, Huang P. A retrospective study of reducing unnecessary thyroid biopsy for American College of Radiology Thyroid Imaging Reporting and Data Systems 4 assessment through applying shear wave elastography. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2020; 64:349-355. [PMID: 32725061 PMCID: PMC10522092 DOI: 10.20945/2359-3997000000267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 01/11/2020] [Indexed: 11/23/2022]
Abstract
Objective The purpose of the study is to quantitatively assess shear-wave elastography (SWE) value in American College of Radiology Thyroid Imaging Reporting and Data Systems (ACR TI-RADS) 4. Materials and methods One hundred and fifty-two ACR TI-RADS 4 thyroid nodules undergoing SWE were included in the study. The mean (EMean), minimum (EMin) and maximum (EMax) of SWE elasticity were measured. Results The areas under the receiver operating characteristic (ROC) curves for SWE EMean, EMin and EMax in detecting benign and malignant nodules were 0.95, 0.83 and 0.84, respectively. Cut-off value of EMean ≤ 23.30 kPa is able to downgrade the lesion category to ACR TI-RADS 3 and cut-off value of EMean ≥ 52.14 kPa is able to upgrade the lesion category to ACR TI-RADS 5. Conclusions The EMean of SWE will probably identify nodules that have a high potential for benignity in ACR TI-RADS 4. It may help identify and select benign nodules while reducing unnecessary biopsy of benign thyroid nodules.
Collapse
Affiliation(s)
- Jieli Luo
- Second Affiliated HospitalZhejiang UniversitySchool of MedicineChina Department of Ultrasound, the Second Affiliated Hospital of Zhejiang University School of Medicine , Hangzhou, China
| | - Jianshe Chen
- Second Affiliated HospitalZhejiang UniversitySchool of MedicineChina Department of Ultrasound, the Second Affiliated Hospital of Zhejiang University School of Medicine , Hangzhou, China
| | - Yang Sun
- Second Affiliated HospitalZhejiang UniversitySchool of MedicineChina Department of Ultrasound, the Second Affiliated Hospital of Zhejiang University School of Medicine , Hangzhou, China
| | - Fangting Xu
- Second Affiliated HospitalZhejiang UniversitySchool of MedicineChina Department of Ultrasound, the Second Affiliated Hospital of Zhejiang University School of Medicine , Hangzhou, China
| | - Lilu Wu
- Second Affiliated HospitalZhejiang UniversitySchool of MedicineChina Department of Ultrasound, the Second Affiliated Hospital of Zhejiang University School of Medicine , Hangzhou, China
| | - Pintong Huang
- Second Affiliated HospitalZhejiang UniversitySchool of MedicineChina Department of Ultrasound, the Second Affiliated Hospital of Zhejiang University School of Medicine , Hangzhou, China
| |
Collapse
|
11
|
Addie RD, Kostidis S, Corver WE, Oosting J, Aminzadeh-Gohari S, Feichtinger RG, Kofler B, Aydemirli MD, Giera M, Morreau H. Metabolic reprogramming related to whole-chromosome instability in models for Hürthle cell carcinoma. Sci Rep 2020; 10:9578. [PMID: 32533088 PMCID: PMC7293353 DOI: 10.1038/s41598-020-66599-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 05/19/2020] [Indexed: 12/21/2022] Open
Abstract
Hürthle cell carcinoma (HCC) is a recurrent subtype of non-medullary thyroid cancer. HCC is characterized by profound whole-chromosome instability (w-CIN), resulting in a near-homozygous genome (NHG), a phenomenon recently attributed to reactive oxygen species (ROS) generated during mitosis by malfunctioning mitochondria. We studied shared metabolic traits during standard and glucose-depleted cell culture in thyroid cancer cell lines (TCCLs), with or without a NHG, using quantitative analysis of extra and intracellular metabolites and ROS production following inhibition of complex III with antimycin A. We found that the XTC.UC1 and FTC-236 cell lines (both NHG) are functionally impaired in complex I and produce significantly more superoxide radicals than SW579 and BHP 2–7 (non-NHG) after challenge with antimycin A. FTC-236 showed the lowest levels of glutathione and SOD2. XTC.UC1 and FTC-236 both exhibited reduced glycolytic activity and utilization of alternative sources to meet energy demands. Both cell lines also shared low levels of α-ketoglutarate and high levels of creatine, phosphocreatine, uridine diphosphate-N-acetylglucosamine, pyruvate and acetylcarnitine. Furthermore, the metabolism of XTC.UC1 was skewed towards the de novo synthesis of aspartate, an effect that persisted even in glucose-free media, pointing to reductive carboxylation. Our data suggests that metabolic reprogramming and a subtle balance between ROS generation and scavenging/conversion of intermediates may be involved in ROS-induced w-CIN in HCC and possibly also in rare cases of follicular thyroid cancer showing a NHG.
Collapse
Affiliation(s)
- Ruben D Addie
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333ZA, Leiden, The Netherlands.,Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333ZA, Leiden, The Netherlands
| | - Sarantos Kostidis
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333ZA, Leiden, The Netherlands
| | - Willem E Corver
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333ZA, Leiden, The Netherlands.
| | - Jan Oosting
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333ZA, Leiden, The Netherlands
| | - Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria
| | - René G Feichtinger
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria
| | - Mehtap Derya Aydemirli
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333ZA, Leiden, The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333ZA, Leiden, The Netherlands
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333ZA, Leiden, The Netherlands
| |
Collapse
|
12
|
Jalaly JB, Baloch ZW. Hürthle-cell neoplasms of the thyroid: An algorithmic approach to pathologic diagnosis in light of molecular advances. Semin Diagn Pathol 2020; 37:234-242. [PMID: 32444244 DOI: 10.1053/j.semdp.2020.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/13/2020] [Accepted: 03/23/2020] [Indexed: 01/17/2023]
Abstract
Our understanding of neoplasia is evolving at a rapid pace in these exciting times, where recent molecular pathology advances are reinforcing and fine tuning morphological divisions and classification. Thyroid gland neoplasia in general, and Hürthle-cell neoplasms in particular, are no exception in the current era of histopathology-molecular biology paradigm. In this review paper, we discuss the rationale that led pathologists in the past to separate Hürthle-cell neoplasms into its own dedicated diagnostic category, and provide an algorithmic approach to the differential diagnosis of oncocytic lesions of the thyroid. This review will also shed light on the current WHO classification of Hürthle-cell neoplasms in light of molecular advances that justify histopathologic distinctions.
Collapse
Affiliation(s)
- Jalal B Jalaly
- Hospital of the University of Pennsylvania, Department of Pathology, Philadelphia, (PA), United States
| | - Zubair W Baloch
- Hospital of the University of Pennsylvania, Department of Pathology, Philadelphia, (PA), United States.
| |
Collapse
|
13
|
Inhibition of PARP Sensitizes Chondrosarcoma Cell Lines to Chemo- and Radiotherapy Irrespective of the IDH1 or IDH2 Mutation Status. Cancers (Basel) 2019; 11:cancers11121918. [PMID: 31810230 PMCID: PMC6966531 DOI: 10.3390/cancers11121918] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/21/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023] Open
Abstract
Chondrosarcomas are chemo- and radiotherapy resistant and frequently harbor mutations in isocitrate dehydrogenase (IDH1 or IDH2), causing increased levels of D-2-hydroxyglutarate (D-2-HG). DNA repair defects and synthetic lethality with poly(ADP-ribose) polymerase (PARP) inhibition occur in IDH mutant glioma and leukemia models. Here we evaluated DNA repair and PARP inhibition, alone or combined with chemo- or radiotherapy, in chondrosarcoma cell lines with or without endogenous IDH mutations. Chondrosarcoma cell lines treated with the PARP inhibitor talazoparib were examined for dose–response relationships, as well as underlying cell death mechanisms and DNA repair functionality. Talazoparib was combined with chemo- or radiotherapy to evaluate potential synergy. Cell lines treated long term with an inhibitor normalizing D-2-HG levels were investigated for synthetic lethality with talazoparib. We report that talazoparib sensitivity was variable and irrespective of IDH mutation status. All cell lines expressed Ataxia Telangiectasia Mutated (ATM), but a subset was impaired in poly(ADP-ribosyl)ation (PARylation) capacity, homologous recombination, and O-6-methylguanine-DNA methyltransferase (MGMT) expression. Talazoparib synergized with temozolomide or radiation, independent of IDH1 mutant inhibition. This study suggests that talazoparib combined with temozolomide or radiation are promising therapeutic strategies for chondrosarcoma, irrespective of IDH mutation status. A subset of chondrosarcomas may be deficient in nonclassical DNA repair pathways, suggesting that PARP inhibitor sensitivity is multifactorial in chondrosarcoma.
Collapse
|
14
|
Aydemirli MD, Corver W, Beuk R, Roepman P, Solleveld-Westerink N, van Wezel T, Kapiteijn E, Morreau H. Targeted Treatment Options of Recurrent Radioactive Iodine Refractory Hürthle Cell Cancer. Cancers (Basel) 2019; 11:E1185. [PMID: 31443247 PMCID: PMC6721552 DOI: 10.3390/cancers11081185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/13/2019] [Indexed: 01/29/2023] Open
Abstract
Objective: To evaluate the efficacy and treatment rationale of Hürthle cell carcinoma (HCC) following a patient with progressive and metastatic HCC. HCC was recently shown to harbor a distinct genetic make-up and the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kiase (PI3K)/AKT signaling pathways are potential targets for anti-cancer agents in the management of recurrent HCC. The presence or absence of gene variants can give a rationale for targeted therapies that could be made available in the context of drug repurposing trials. Methods: Treatment included everolimus, sorafenib, nintedanib, lenvatinib, and panitumumab. Whole genome sequencing (WGS) of metastatic tumor material obtained before administration of the last drug, was performed. We subsequently evaluated the rationale and efficacy of panitumumab in thyroid cancer and control cell lines after epidermal growth factor (EGF) stimulation and treatment with panitumumab using immunofluorescent Western blot analysis. EGF receptor (EGFR) quantification was performed using flow cytometry. Results: WGS revealed a near-homozygous genome (NHG) and a somatic homozygous TSC1 variant, that was absent in the primary tumor. In the absence of RAS variants, panitumumab showed no real-life efficacy. This might be explained by high constitutive AKT signaling in the two thyroid cancer cell lines with NHG, with panitumumab only being a potent inhibitor of pEGFR in all cancer cell lines tested. Conclusions: In progressive HCC, several treatment options outside or inside clinical trials are available. WGS of metastatic tumors might direct the timing of therapy. Unlike other cancers, the absence of RAS variants seems to provide insufficient justification of single-agent panitumumab administration in HCC cases harboring a near-homozygous genome.
Collapse
Affiliation(s)
- Mehtap Derya Aydemirli
- Department of Medical Oncolosgy, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Willem Corver
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Ruben Beuk
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Paul Roepman
- Hartwig Medical Foundation, 1098 XH Amsterdam, The Netherlands
| | | | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Ellen Kapiteijn
- Department of Medical Oncolosgy, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
15
|
de Jong Y, Ingola M, Briaire-de Bruijn IH, Kruisselbrink AB, Venneker S, Palubeckaite I, Heijs BPAM, Cleton-Jansen AM, Haas RLM, Bovée JVMG. Radiotherapy resistance in chondrosarcoma cells; a possible correlation with alterations in cell cycle related genes. Clin Sarcoma Res 2019; 9:9. [PMID: 31160965 PMCID: PMC6540537 DOI: 10.1186/s13569-019-0119-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/20/2019] [Indexed: 02/07/2023] Open
Abstract
Background Conventional chondrosarcomas are malignant cartilage tumors considered radioresistant. Nevertheless, retrospective series show a small but significant survival benefit for patients with locally advanced disease treated with radiotherapy. And, in daily practice when considered inoperable their irradiation is an accepted indication for proton beam radiotherapy. Therefore, we investigated the sensitivity of chondrosarcoma cell lines and -tissue samples towards radiotherapy and screened for biomarkers to identify predictors of radiosensitivity. Methods Proliferation and clonogenic assays were performed in chondrosarcoma cell lines after γ-radiation in combination with mutant IDH1 inhibitor AGI-5198. In addition, glutathione levels were measured using mass spectrometry. Chondrosarcoma tumor explants were irradiated after which γ-H2AX foci were counted. Mutation analysis was performed using the Ion AmpliSeq™ Cancer Hotspot Panel and immunohistochemical staining’s were performed for P-S6, LC-3B, P53, Bcl-2, Bcl-xl and Survivin. Results were correlated with the number of γ-H2AX foci. Results Chondrosarcoma cell lines were variably γ-radiation resistant. No difference in radiosensitivity, nor glutathione levels was observed after treatment with AGI-5198. Irradiated chondrosarcoma patient tissue presented a variable increase in γ-H2AX foci compared to non-radiated tissue. Samples were divided into two groups, high and low radioresistant, based on the amount of γ-H2AX foci. All four highly resistant tumors exhibited mutations in the pRb pathway, while none of the less radioresistant tumors showed mutations in these genes. Conclusions Chondrosarcoma cell lines as well as primary tumors are variably radioresistant, particularly in case of a defective Rb pathway. Whether selection for radiotherapy can be based upon an intact Rb pathway should be further investigated. Electronic supplementary material The online version of this article (10.1186/s13569-019-0119-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yvonne de Jong
- 1Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Martha Ingola
- 2Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Inge H Briaire-de Bruijn
- 1Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Alwine B Kruisselbrink
- 1Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Sanne Venneker
- 1Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Ieva Palubeckaite
- 1Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Bram P A M Heijs
- 2Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Anne-Marie Cleton-Jansen
- 1Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Rick L M Haas
- 3Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands.,4Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Judith V M G Bovée
- 1Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
16
|
Abstract
Hürthle cell tumors (HCT), including Hürthle cell adenomas (HCA) and Hürthle cell carcinomas (HCCs), arise in the thyroid gland and are defined in part by an accumulation of mitochondria. These neoplasms were long considered a subtype of follicular neoplasm, although HCT is now generally considered a distinct entity. HCTs exhibit overlapping but distinct clinical features compared to follicular tumors, and several studies have demonstrated that HCTs harbor distinct genomic alterations compared to other forms of thyroid cancer. Two studies recently reported the most complete characterization of the HCC genome to date. These studies assessed complementary cohorts of HCC specimens. The study by Ganly et al. consisted of a large panel of primary HCCs, including 32 widely invasive and 24 minimally invasive primary tumors. Exome and RNA sequencing of material isolated from fresh-frozen tumor specimens was performed. The study by Gopal et al. utilized exome and targeted sequencing to characterize the nuclear and mitochondrial genomes of 32 primary tumors and 38 resected regional and distant metastases using DNA isolated from formalin-fixed paraffin-embedded tissues. Here, HCC is briefly reviewed in the context of these studies.
Collapse
Affiliation(s)
- Ian Ganly
- 1 Human Oncology and Pathogenesis Program, Department of Surgery, Head and Neck Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David G McFadden
- 2 Department of Internal Medicine, Division of Endocrinology, Department of Biochemistry, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|