1
|
Tu CL, Chang W, Sosa JA, Koh J. Digital spatial profiling of human parathyroid tumors reveals cellular and molecular alterations linked to vitamin D deficiency. PNAS NEXUS 2023; 2:pgad073. [PMID: 36992820 PMCID: PMC10042281 DOI: 10.1093/pnasnexus/pgad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
Primary hyperparathyroidism (PHPT) is a common endocrine neoplastic disorder characterized by disrupted calcium homeostasis secondary to inappropriately elevated parathyroid hormone (PTH) secretion. Low levels of serum 25-hydroxyvitamin D (25OHD) are significantly more prevalent in PHPT patients than in the general population (1-3), but the basis for this association remains unclear. We employed a spatially defined in situ whole-transcriptomics and selective proteomics profiling approach to compare gene expression patterns and cellular composition in parathyroid adenomas from vitamin D-deficient or vitamin D-replete PHPT patients. A cross-sectional panel of eucalcemic cadaveric donor parathyroid glands was examined in parallel as normal tissue controls. Here, we report that parathyroid tumors from vitamin D-deficient PHPT patients (Def-Ts) are intrinsically different from those of vitamin D-replete patients (Rep-Ts) of similar age and preoperative clinical presentation. The parathyroid oxyphil cell content is markedly higher in Def-Ts (47.8%) relative to Rep-Ts (17.8%) and normal donor glands (7.7%). Vitamin D deficiency is associated with increased expression of electron transport chain and oxidative phosphorylation pathway components. Parathyroid oxyphil cells, while morphologically distinct, are comparable to chief cells at the transcriptional level, and vitamin D deficiency affects the transcriptional profiles of both cell types in a similar manner. These data suggest that oxyphil cells are derived from chief cells and imply that their increased abundance may be induced by low vitamin D status. Gene set enrichment analysis reveals that pathways altered in Def-Ts are distinct from Rep-Ts, suggesting alternative tumor etiologies in these groups. Increased oxyphil content may thus be a morphological indicator of tumor-predisposing cellular stress.
Collapse
Affiliation(s)
- Chia-Ling Tu
- Endocrine Research Unit, Department of Medicine, San Francisco Department of Veterans Affairs Medical Center, University of California San Francisco, San Francisco, CA 94158
| | - Wenhan Chang
- Endocrine Research Unit, Department of Medicine, San Francisco Department of Veterans Affairs Medical Center, University of California San Francisco, San Francisco, CA 94158
| | - Julie A Sosa
- Endocrine Neoplasia Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA 94143
| | - James Koh
- Endocrine Neoplasia Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA 94143
| |
Collapse
|
2
|
Podgórska B, Wielogórska-Partyka M, Godzień J, Siemińska J, Ciborowski M, Szelachowska M, Krętowski A, Siewko K. Applications of Metabolomics in Calcium Metabolism Disorders in Humans. Int J Mol Sci 2022; 23:ijms231810407. [PMID: 36142318 PMCID: PMC9499180 DOI: 10.3390/ijms231810407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 12/13/2022] Open
Abstract
The pathogenesis of the disorders of calcium metabolism is not fully understood. This review discusses the studies in which metabolomics was applied in this area. Indeed, metabolomics could play an essential role in discovering biomarkers and elucidating pathological mechanisms. Despite the limited bibliography, the present review highlights the potential of metabolomics in identifying the biomarkers of some of the most common endocrine disorders, such as primary hyperparathyroidism (PHPT), secondary hyperparathyroidism (SHPT), calcium deficiency, osteoporosis and vitamin D supplementation. Metabolites related to above-mentioned diseorders were grouped into specific classes and mapped into metabolic pathways. Furthermore, disturbed metabolic pathways can open up new directions for the in-depth exploration of the basic mechanisms of these diseases at the molecular level.
Collapse
Affiliation(s)
- Beata Podgórska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
- Correspondence: ; Tel.: +48-85-831-83-12
| | - Marta Wielogórska-Partyka
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Joanna Godzień
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Julia Siemińska
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Michał Ciborowski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Małgorzata Szelachowska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Adam Krętowski
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Katarzyna Siewko
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| |
Collapse
|
3
|
Koh J, Zhang R, Roman S, Duh QY, Gosnell J, Shen W, Suh I, Sosa JA. Ex Vivo Intact Tissue Analysis Reveals Alternative Calcium-sensing Behaviors in Parathyroid Adenomas. J Clin Endocrinol Metab 2021; 106:3168-3183. [PMID: 34272844 PMCID: PMC8530711 DOI: 10.1210/clinem/dgab524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT The biochemical basis for clinical variability in primary hyperparathyroidism (PHPT) is poorly understood. OBJECTIVE This study aimed to define parathyroid tumor biochemical properties associated with calcium-sensing failure in PHPT patients, and to relate differences in these profiles to variations in clinical presentation. METHODS Preoperative clinical data from a sequential series of 39 patients undergoing surgery for PHPT at an endocrine surgery referral center in a large, public university hospital were evaluated for correlation to parathyroid tumor biochemical behavior. An intact tissue, ex vivo interrogative assay was employed to evaluate the calcium-sensing capacity of parathyroid adenomas relative to normal donor glands. Tumors were functionally classified based on calcium dose-response curve profiles, and clinical parameters were compared among the respective classes. Changes in the relative expression of 3 key components in the calcium/parathyroid hormone (PTH) signaling axis-CASR, RGS5, and RCAN1-were evaluated as potential mechanisms for calcium-sensing failure. RESULTS Parathyroid adenomas grouped into 3 distinct functional classes. Tumors with diminished calcium sensitivity were the most common (18 of 39) and were strongly associated with reduced bone mineral density (P = 0.0009). Tumors with no calcium-sensing deficit (11 of 39) were associated with higher preoperative PTH (P = 0.036). A third group (6/39) displayed a nonsigmoid calcium/PTH response curve; 4 of these 6 tumors expressed elevated RCAN1. CONCLUSION Calcium-sensing capacity varies among parathyroid tumors but downregulation of the calcium-sensing receptor (CASR) is not an obligate underlying mechanism. Differences in tumor calcium responsiveness may contribute to variations in PHPT clinical presentation.
Collapse
Affiliation(s)
- James Koh
- Endocrine Neoplasia Laboratory, Department of Surgery, University of California
at San Francisco, San Francisco, CA, USA
- Department of Surgery, University of California at San Francisco,
San Francisco, CA, USA
| | - Run Zhang
- Endocrine Neoplasia Laboratory, Department of Surgery, University of California
at San Francisco, San Francisco, CA, USA
| | - Sanziana Roman
- Department of Surgery, University of California at San Francisco,
San Francisco, CA, USA
| | - Quan-Yang Duh
- Department of Surgery, University of California at San Francisco,
San Francisco, CA, USA
| | - Jessica Gosnell
- Department of Surgery, University of California at San Francisco,
San Francisco, CA, USA
| | - Wen Shen
- Department of Surgery, University of California at San Francisco,
San Francisco, CA, USA
| | - Insoo Suh
- Department of Surgery, NYU Langone Health, New York,
NY, USA
| | - Julie A Sosa
- Endocrine Neoplasia Laboratory, Department of Surgery, University of California
at San Francisco, San Francisco, CA, USA
- Department of Surgery, University of California at San Francisco,
San Francisco, CA, USA
| |
Collapse
|
4
|
Sun M, Wu X, Yu Y, Wang L, Xie D, Zhang Z, Chen L, Lu A, Zhang G, Li F. Disorders of Calcium and Phosphorus Metabolism and the Proteomics/Metabolomics-Based Research. Front Cell Dev Biol 2020; 8:576110. [PMID: 33015068 PMCID: PMC7511772 DOI: 10.3389/fcell.2020.576110] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/20/2020] [Indexed: 12/19/2022] Open
Abstract
Since calcium and phosphorus play vital roles in a multitude of physiologic systems, disorders of calcium and phosphorus metabolism always lead to severe consequences such as skeletal-related and cardiovascular morbidity, or even life-threatening. Physiologically, the maintenance of calcium and phosphorus homeostasis is achieved via a variety of concerted actions of hormones such as parathyroid hormone (PTH), vitamin D, and fibroblast growth factor (FGF23), which could be regulated mainly at three organs, the intestine, kidney, and bone. Disruption of any organ or factor might lead to disorders of calcium and phosphorus metabolism. Currently, lacking of accurate diagnostic approaches and unknown molecular basis of pathophysiology will result in patients being unable to receive a precise diagnosis and personalized treatment timely. Therefore, it is urgent to identify early diagnostic biomarkers and develop therapeutic strategies. Fortunately, proteomics and metabolomics offer promising tools to discover novel indicators and further understanding of pathological mechanisms. Therefore, in this review, we will give a systematic introduction on PTH-1,25(OH)2D-FGF23 axis in the disorders of calcium and phosphorus metabolism, diagnostic biomarkers identified, and potential altered metabolic pathways involved.
Collapse
Affiliation(s)
- Meiheng Sun
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China.,Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Xiaoqiu Wu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Luyao Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Duoli Xie
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong
| | - Zhenlin Zhang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China.,Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Fangfei Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| |
Collapse
|
5
|
Arya AK, Singh P, Saikia UN, Sachdeva N, Dahiya D, Behera A, Rao SD, Bhadada SK. Dysregulated mitogen-activated protein kinase pathway mediated cell cycle disruption in sporadic parathyroid tumors. J Endocrinol Invest 2020; 43:247-253. [PMID: 31535356 DOI: 10.1007/s40618-019-01098-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 08/07/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The study was designed to evaluate expression profiling of mitogen-activated protein kinase (MAPK) signalling pathway genes in sporadic parathyroid adenoma. METHODS Expression of MAPK signalling pathway genes including activated transcription factors and cell cycle regulatory genes was analysed by real-time PCR- based array in parathyroid adenoma (N = 20) and normal parathyroid tissue (N = 4). RESULTS MAPK signalling pathway as studied by PCR array revealed that a total of 22 genes were differentially expressed (≥ twofold change, p ≤ 0.05) in parathyroid adenoma. Up-regulated genes were ARAF, MAPK12, CREBBP, MYC, HSPB1, HRAS, CDK4, CCND1, and E2F1, and down-regulated genes were MAP4K1, DLK1, MAP3K4, MAPK10, MAPK8, ATF2, SMAD4, MEF2C, LAMTOR3, FOS, CDKN2A CDKN2B, and RB1. The present study revealed that ERK1/2 signalling pathway with up-regulation of HRAS, ARAF, and MEK1 genes and up-regulation of positive regulators of cell cycle (CCND1, CDK4, and E2F1) and down-regulation negative regulators of cell cycle (CDKN2A, CDKN2B, and RB1) made highly dysregulated MAPK signalling pathway in parathyroid adenoma. Expression of CDK4 was positively associated with plasma PTH level (r = 0.60, p = 0.04) and tumor weight (r = 0.80, p = 0.02) of the adenoma patients, respectively. Expression of CDKN2A was correlated negatively with PTH level (r = - 0.52, p = 0.04) of the adenoma patients. CONCLUSION The current study revealed that ERK pathway and associated cell cycle regulator genes are dysregulated in sporadic parathyroid adenoma.
Collapse
Affiliation(s)
- A K Arya
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - P Singh
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - U N Saikia
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - N Sachdeva
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - D Dahiya
- Department of General Surgery, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - A Behera
- Department of General Surgery, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - S D Rao
- Bone and Mineral Research Laboratory, Henry Ford Hospital, Detroit, MI, USA
| | - S K Bhadada
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| |
Collapse
|
6
|
Arya AK, Bhadada SK, Singh P, Dahiya D, Kaur G, Sharma S, Saikia UN, Behera A, Rao SD, Bhasin M. Quantitative proteomics analysis of sporadic parathyroid adenoma tissue samples. J Endocrinol Invest 2019; 42:577-590. [PMID: 30284223 DOI: 10.1007/s40618-018-0958-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 09/19/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Molecular pathogenesis of parathyroid tumors is incompletely understood. Identification of novel molecules and understanding their role in parathyroid tumorigenesis by proteomics approach would be informative with potential clinical implications. METHOD Adenomatous (n = 5) and normal (n = 2) parathyroid tissue lysates were analyzed for protein profile by LC-MS/MS method and the proteins were classified using bioinformatics tools such as PANTHER and toppfun functional enrichment tool. Identified proteins were further validated by western blotting and qRT-PCR (n = 20). RESULT Comparative proteomics analysis revealed that a total of 206 proteins (74 upregulated and 132 downregulated) were differentially expressed (≥ twofold change) in adenomas. Bioinformatics analysis revealed that 48 proteins were associated with plasma membrane, 49 with macromolecular complex, 39 were cytoplasm, 38 were organelle related, 21 were cell junction and 10 were extracellular proteins. These proteins belonged to a diverse protein family such as enzymes, transcription factors, cell signalling, cell adhesion, cytoskeleton proteins, receptors, and calcium-binding proteins. The major biological processes predicted for the proteins were a cellular, metabolic and developmental process, cellular localization, and biological regulation. The differentially expressed proteins were found to be associated with MAPK, phospholipase C (PLC) and phosphatidylinositol (PI) signalling pathways, and with chromatin organization. Western blot and qRT-PCR analysis of three proteins (DNAJC2, ACO2, and PRDX2) validated the LC-MS/MS findings. CONCLUSION This exploratory study demonstrates the feasibility of proteomics approach in finding the dysregulated proteins in benign parathyroid adenomas, and our preliminary results suggest that MAPK, PLC and PI signalling pathways and chromatin organization are involved in parathyroid tumorigenesis.
Collapse
Affiliation(s)
- A K Arya
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Room No. 2, 4th Floor Block-F, Nehru Hospital, PGIMER, Chandigarh, 160012, India
| | - S K Bhadada
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Room No. 2, 4th Floor Block-F, Nehru Hospital, PGIMER, Chandigarh, 160012, India.
| | - P Singh
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Room No. 2, 4th Floor Block-F, Nehru Hospital, PGIMER, Chandigarh, 160012, India
| | - D Dahiya
- Department of General Surgery, PGIMER, Chandigarh, India
| | - G Kaur
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Room No. 2, 4th Floor Block-F, Nehru Hospital, PGIMER, Chandigarh, 160012, India
| | - S Sharma
- Department of Biochemistry, PGIMER, Chandigarh, India
| | - U N Saikia
- Department of Histopathology, PGIMER, Chandigarh, India
| | - A Behera
- Department of General Surgery, PGIMER, Chandigarh, India
| | - S D Rao
- Bone and Mineral Research Laboratory, Henry Ford Hospital, Detroit, USA
| | - M Bhasin
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Zhang X, Hu Y, Wang M, Zhang R, Wang P, Cui M, Su Z, Gao X, Liao Q, Zhao Y. Profiling analysis of long non-coding RNA and mRNA in parathyroid carcinoma. Endocr Relat Cancer 2019; 26:163-176. [PMID: 30403657 DOI: 10.1530/erc-18-0480] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/06/2018] [Indexed: 12/30/2022]
Abstract
Parathyroid carcinoma (PCa) is a rare endocrine neoplasia that typically has unfavourable outcomes. The contribution of long non-coding RNAs (lncRNAs) to the development of malignant and benign parathyroid tumours remains largely unknown. In this study, we explored transcriptomic profiling of lncRNA and mRNA expression in 6 PCa, 6 parathyroid adenoma (PAd) and 4 normal parathyroid (PaN) tissues. In total, 2641 lncRNA transcripts and 2165 mRNA transcripts were differentially expressed between PCa and PAd. Enrichment analysis demonstrated that dysregulated transcripts were involved mainly in the extracellular matrix (ECM)-receptor interaction and energy metabolism pathways. Bioinformatics analysis suggested that ATF3, ID1, FOXM1, EZH2 and MITF may be crucial to parathyroid carcinogenesis. Series test of cluster analysis segregated differentially expressed lncRNAs and mRNAs into several expression profile models, among which the 'plateau' profile representing components specific to parathyroid carcinogenesis was selected to build a co-expression network. Seven lncRNAs and three mRNAs were selected for quantitative RT-PCR validation in 16 PCa, 41 PAd and 4 PaN samples. Receiver-operator characteristic curves analysis showed that lncRNA PVT1 and GLIS2-AS1 yielded the area under the curve values of 0.871 and 0.860, respectively. Higher hybridization signals were observed in PCa for PVT1 and PAd for GLIS2-AS1. In conclusion, the current evidence indicates that PAd and PCa partially share common signalling molecules and pathways, but have independent transcriptional events. Differentially expressed lncRNAs and mRNAs have intricate interactions and are involved in parathyroid tumourigenesis. The lncRNA PVT1 and GLIS2-AS1 may be new potential markers for the diagnosis of PCa.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ya Hu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mengyi Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ronghua Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - PeiPei Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ming Cui
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhe Su
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiang Gao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Quan Liao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|