1
|
González A, Fernandino JI, Elisio M, Chalde T, Miranda LA, Hammond GL, Somoza GM. Sex hormone binding globulin during an annual reproductive cycle in the hepatopancreas and ovary of pejerrey (Odontesthes bonariensis). Gen Comp Endocrinol 2019; 272:52-56. [PMID: 30465767 DOI: 10.1016/j.ygcen.2018.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 10/27/2022]
Abstract
In the present study, we determined the hepatopancratic shbg transcript abundance and ovarian immunoreactive Shbg (ir-Shbg) localization in pejerrey females at different gonadal stages during an annual ovarian cycle. In the hepatopancreas, shbg expression remains was constant in pre-vitellogenic stages, decreased at final vitellogenesis to increase again in final maturation and atretic stages to previous levels at post-vitellogenic stages. Related to this, also we found a negative significant relation between sex steroid and shbg expression. On the other hand, in the ovary we found ir-Shbg inside of cortical alveoli, from previtellogenic stages to final maturation. This localization of Shbg in a teleost fish ovary suggests a new role for Shbg in oocytes, that may also extend the oocyte fertilization/development process.
Collapse
Affiliation(s)
- Anelisa González
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús "Dr. Raúl Alfonsín" (CONICET-UNSAM), Chascomús, Buenos Aires, Argentina
| | - Juan I Fernandino
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús "Dr. Raúl Alfonsín" (CONICET-UNSAM), Chascomús, Buenos Aires, Argentina
| | - Mariano Elisio
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús "Dr. Raúl Alfonsín" (CONICET-UNSAM), Chascomús, Buenos Aires, Argentina
| | - Tomás Chalde
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús "Dr. Raúl Alfonsín" (CONICET-UNSAM), Chascomús, Buenos Aires, Argentina
| | - Leandro A Miranda
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús "Dr. Raúl Alfonsín" (CONICET-UNSAM), Chascomús, Buenos Aires, Argentina
| | - Geoffrey L Hammond
- Department of Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, British Columbia, Canada
| | - Gustavo M Somoza
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús "Dr. Raúl Alfonsín" (CONICET-UNSAM), Chascomús, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Canesini G, Stoker C, Galoppo GH, Durando ML, Tschopp MV, Luque EH, Muñoz-de-Toro MM, Ramos JG. Temperature- vs. estrogen-induced sex determination in Caiman latirostris embryos: Both females, but with different expression patterns of key molecules involved in ovarian development. Gen Comp Endocrinol 2018; 259:176-188. [PMID: 29197555 DOI: 10.1016/j.ygcen.2017.11.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022]
Abstract
Caiman latirostris is a species with temperature dependent sex determination (TSD), which implies that the incubation temperature of the eggs is the main factor that determines the sex during a thermo-sensitive period (TSP). However, estrogens play a critical role in this process. The administration of 17β-estradiol (E2) previous to TSP overrides the effects of male incubation temperature, producing phenotypic females. This effect has been defined as sex reversal or estrogen-induced sex determination (E2SD). The aim of the present study is to describe similarities and differences in the effects of TSD and E2SD treatment conditions on ovary development. Our results show that the two treatment conditions studied are able to produce different ovaries. Treatment with E2 modified the expression pattern of estrogen receptor alpha and progesterone receptor, and expression of the enzyme aromatase. Moreover, in E2SD females, the proliferation/apoptosis dynamic was also altered and high expression of TAp63 was observed suggesting the presence of greater DNA damage in germ cells. To the best of our knowledge, this is the first report that describes the morphology of the female gonad of C. latirostris in three stages of embryonic development and shows the expression of TAp63 during the gonad development of a reptile. It is important to emphasize that the changes demonstrated in E2SD female gonads of embryos show that environmental compounds with proven estrogenic activity alter the follicular dynamics of C. latirostris in neonatal as much as in juvenile animals, endangering their reproductive health and possibly bringing consequences to ecology and evolution.
Collapse
Affiliation(s)
- Guillermina Canesini
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - Cora Stoker
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Germán H Galoppo
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - Milena L Durando
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - María V Tschopp
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - Mónica M Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - Jorge G Ramos
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
3
|
Arias Torres AJ, Páez JB, Zelarayán LI. Oocyte maturation in the toad Rhinella arenarum (Amphibia, Anura): Evidence of cAMP involvement in steroid production and action. Mol Reprod Dev 2018; 85:137-145. [PMID: 29247588 DOI: 10.1002/mrd.22944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/07/2017] [Indexed: 11/11/2022]
Abstract
In this work, we describe the participation of the adenylate cyclase/3'-5'-cyclic adenonsine monophosphate (cAMP) pathway in the seasonal follicular secretion of progesterone (P4 ) and testosterone (T), and its relationship with the maturation of Rhinella arenarum oocytes. Under gonadotropin stimulation, P4 secretion was the dominant steroid produced during the reproductive period, resulting in 100% germinal vesicle breakdown (GVBD) in oocytes in vitro; in contrast, T and estradiol (E2 ) secretion increased (∼16 nM/20 follicles and ∼80 pM/20 follicles, respectively) during the non-reproductive period, but only yielded 50% GVBD. Treatment of the follicles with dibutyryl-cAMP or forskolin induced a significant increase in T secretion during both periods, but P4 secretion did not significantly change and GVBD did not occur. These results suggest that high cAMP levels in the oocyte maintain meiotic arrest and prevent the induction effect of follicular steroids. An increase in cAMP levels in denuded oocytes, however, negatively regulated T-induced maturation since treatment with increasing db-cAMP or forskolin inhibited their maturation. Therefore, we hypothesize that an elevation in T during the non-reproductive period favors its aromatization to E2 , leading to follicle growth. During the reproductive period, P4 production might promote oocyte maturation when environmental conditions are favorable for reproduction. Together, the results indicate that steroidogenesis is seasonal and depends on gonadotropic activity in R. arenarum.
Collapse
Affiliation(s)
- Ana J Arias Torres
- Instituto Superior de Investigaciones Biológicas (INSIBIO)-CONICET-UNT, San Miguel de Tucumán, Tucumán, Argentina.,Instituto de Ambiente de Montaña y Regiones Áridas (IAMRA), Universidad Nacional de Chilecito (UNdeC), Chilecito, La Rioja, Argentina
| | - José B Páez
- Facultad de Bioquímica, Química y Farmacia, UNT, San Miguel de Tucumán, Tucumán, Argentina
| | - Liliana I Zelarayán
- Instituto Superior de Investigaciones Biológicas (INSIBIO)-CONICET-UNT, San Miguel de Tucumán, Tucumán, Argentina.,Facultad de Bioquímica, Química y Farmacia, UNT, San Miguel de Tucumán, Tucumán, Argentina
| |
Collapse
|
4
|
Arias Torres AJ, Páez JB, Zelarayán LI. Validation of Electrochemiluminiscence Immunoassay for Ovarian Steroid Determination inRhinella arenarum. ACTA ACUST UNITED AC 2016; 325:265-73. [DOI: 10.1002/jez.2013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Ana Josefina Arias Torres
- Instituto Superior de Investigaciones Biológicas (INSIBIO); CONICET-UNT; Chacabuco 461, 4000 San Miguel de Tucumán Tucumán Argentina
| | - José Bernardino Páez
- Facultad de Bioquímica; Química y Farmacia; UNT; Ayacucho 471, 4000 San Miguel de Tucumán Tucumán Argentina
| | - Liliana Isabel Zelarayán
- Instituto Superior de Investigaciones Biológicas (INSIBIO); CONICET-UNT; Chacabuco 461, 4000 San Miguel de Tucumán Tucumán Argentina
| |
Collapse
|
5
|
Poulsen R, Luong X, Hansen M, Styrishave B, Hayes T. Tebuconazole disrupts steroidogenesis in Xenopus laevis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 168:28-37. [PMID: 26432166 DOI: 10.1016/j.aquatox.2015.09.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/15/2015] [Accepted: 09/18/2015] [Indexed: 05/24/2023]
Abstract
A 27-day controlled exposure study of adult male African clawed frogs (Xenopus laevis) was conducted to examine the mechanism by which tebuconazole may disrupt steroidogenesis. The fungicide was measured by LC-MS/MS in tank water and in target tissues (adipose, kidney, liver, and brain), and we observed tissue-specific bioconcentration with BCF up to 238. Up to 10 different steroid hormones were quantified in gonads using LC-MS/MS and in plasma using GC-MS/MS and a radioimmunoassay was performed for further measurement of androgens. In order to assess whether effects increased with exposure or animals adapted to the xenobiotic, blood samples were collected 12 days into the study and at termination (day 27). After 12 days of exposure to 100 and 500μgL(-1) tebuconazole, plasma levels of testosterone (T) and dihydrotestosterone (DHT) were increased, while plasma 17β-estradiol (E2) concentrations were greatly reduced. Exposure to 0.1μgL(-1), on the other hand, resulted in decreased levels of T and DHT, with no effects observed for E2. After 27 days of exposure, effects were no longer observed in circulating androgen levels while the suppressive effect on E2 persisted in the two high-exposure groups (100 and 500μgL(-1)). Furthermore, tebuconazole increased gonadal concentrations of T and DHT as well as expression of the enzyme CYP17 (500μgL(-1), 27 days). These results suggest that tebuconazole exposure may supress the action of CYP17 at the lowest exposure (0.1μgL(-1)), while CYP19 suppression dominates at higher exposure concentrations (increased androgens and decreased E2). Increased androgen levels in plasma half-way into the study and in gonads at termination may thus be explained by compensatory mechanisms, mediated through increased enzymatic expression, as prolonged exposure had no effect on circulating androgen levels.
Collapse
Affiliation(s)
- Rikke Poulsen
- Laboratory for Integrative Studies in Amphibian Biology, Department of Integrative Biology, University of California, Berkeley, CA 94720, USA; Toxicology Laboratory, Section of Advanced Drug Analysis, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | - Xuan Luong
- Laboratory for Integrative Studies in Amphibian Biology, Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Martin Hansen
- Laboratory for Integrative Studies in Amphibian Biology, Department of Integrative Biology, University of California, Berkeley, CA 94720, USA; Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA; Toxicology Laboratory, Section of Advanced Drug Analysis, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Bjarne Styrishave
- Toxicology Laboratory, Section of Advanced Drug Analysis, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Tyrone Hayes
- Laboratory for Integrative Studies in Amphibian Biology, Department of Integrative Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
6
|
Hypogonadism Associated with Cyp19a1 (Aromatase) Posttranscriptional Upregulation in Celf1 Knockout Mice. Mol Cell Biol 2015; 35:3244-53. [PMID: 26169831 DOI: 10.1128/mcb.00074-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 07/06/2015] [Indexed: 12/19/2022] Open
Abstract
CELF1 is a multifunctional RNA-binding protein that controls several aspects of RNA fate. The targeted disruption of the Celf1 gene in mice causes male infertility due to impaired spermiogenesis, the postmeiotic differentiation of male gametes. Here, we investigated the molecular reasons that underlie this testicular phenotype. By measuring sex hormone levels, we detected low concentrations of testosterone in Celf1-null mice. We investigated the effect of Celf1 disruption on the expression levels of steroidogenic enzyme genes, and we observed that Cyp19a1 was upregulated. Cyp19a1 encodes aromatase, which transforms testosterone into estradiol. Administration of testosterone or the aromatase inhibitor letrozole partly rescued the spermiogenesis defects, indicating that a lack of testosterone associated with excessive aromatase contributes to the testicular phenotype. In vivo and in vitro interaction assays demonstrated that CELF1 binds to Cyp19a1 mRNA, and reporter assays supported the conclusion that CELF1 directly represses Cyp19a1 translation. We conclude that CELF1 downregulates Cyp19a1 (Aromatase) posttranscriptionally to achieve high concentrations of testosterone compatible with spermiogenesis completion. We discuss the implications of these findings with respect to reproductive defects in men, including patients suffering from isolated hypogonadotropic hypogonadism and myotonic dystrophy type I.
Collapse
|
7
|
Mawaribuchi S, Ikeda N, Fujitani K, Ito Y, Onuma Y, Komiya T, Takamatsu N, Ito M. Cell-mass structures expressing the aromatase gene Cyp19a1 lead to ovarian cavities in Xenopus laevis. Endocrinology 2014; 155:3996-4005. [PMID: 25051437 DOI: 10.1210/en.2014-1096] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The African clawed frog, Xenopus laevis, has a ZZ/ZW-type sex-determination system. We previously reported that a W-linked gene, Dm-W, can determine development as a female. However, the mechanisms of early sex differentiation remain unclear. We used microarrays to screen for genes with sexually dimorphic expression in ZZ and ZW gonads during early sex differentiation in X laevis and found several steroidogenic genes. Importantly, the steroid 17α-hydroxylase gene Cyp17a1 and the aromatase gene Cyp19a1 were highly expressed in ZZ and ZW gonads, respectively, just after sex determination. At this stage, we found that Cyp17a1, Cyp19a1, or both were expressed in the ZZ and ZW gonads in a unique mass-in-line structure, in which several masses of cells, each surrounded by a basement membrane, were aligned along the anteroposterior axis. In fact, during sex differentiation, ovarian cavities formed inside each mass of Cyp17a1- and Cyp19a1-positive cells in the ZW gonads. However, the mass-in-line structure disappeared during testicular development in the ZZ testes. These results suggested that the mass-in-line structure found in both ZZ and ZW gonads just after sex determination might be formed in advance to produce ovarian cavities and then oocytes. Consequently, we propose a view that the default sex may be female in the morphological aspect of gonads in X laevis.
Collapse
Affiliation(s)
- Shuuji Mawaribuchi
- Department of Biosciences (S.M., N.I., K.F., N.T., M.I.), School of Science, Kitasato University, Sagamihara 252-0373, Japan; Research Center for Stem Cell Engineering (Y.I., Y.O.), National Institute of Advanced Industrial Science and Technology, Tsukuba Central 4, Tsukuba 305-8562, Japan; and Department of Biological Function (T.K.), Osaka City University, Sumiyoshi 558-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Coumailleau P, Kah O. Cyp19a1 (aromatase) expression in the Xenopus brain at different developmental stages. J Neuroendocrinol 2014; 26:226-36. [PMID: 24612124 PMCID: PMC4238815 DOI: 10.1111/jne.12142] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/17/2014] [Accepted: 02/22/2014] [Indexed: 12/24/2022]
Abstract
Cytochrome P450 aromatase (P450arom; aromatase) is a microsomal enzyme involved in the production of endogeneous sex steroids by converting testosterone into oestradiol. Aromatase is the product of the cyp19a1 gene and plays a crucial role in the sexual differentiation of the brain and in the regulation of reproductive functions. In the brain of mammals and birds, expression of cyp19a1 has been demonstrated in neuronal populations of the telencephalon and diencephalon. By contrast, a wealth of evidence established that, in teleost fishes, aromatase expression in the brain is restricted to radial glial cells. The present study investigated the precise neuroanatomical distribution of cyp19a1 mRNA during brain development in Xenopus laevis (late embryonic to juvenile stages). For this purpose, we used in situ hybridisation alone or combined with the detection of a proliferative (proliferating cell nuclear antigen), glial (brain lipid binding protein, Vimentin) or neuronal (acetylated tubulin; HuC/D; NeuroβTubulin) markers. We provide evidence that cyp19a1 expression in the brain is initiated from the very early larval stage and remains strongly detected until the juvenile and adult stages. At all stages analysed, we found the highest expression of cyp19a1 in the preoptic area and the hypothalamus compared to the rest of the brain. In these two brain regions, cyp19a1-positive cells were never detected in the ventricular layers. Indeed, no co-labelling could be observed with radial glial (brain lipid binding protein, Vimentin) or dividing progenitors (proliferating cell nuclear antigen) markers. By contrast, cyp19a1-positive cells perfectly matched with the distribution of post-mitotic neurones as shown by the use of specific markers (HuC/D, acetylated tubulin and NeuroβTubulin). These data suggest that, similar to that found in other tetrapods, aromatase in the brain of amphibians is found in post-mitotic neurones and not in radial glia as reported in teleosts.
Collapse
Affiliation(s)
- P Coumailleau
- Neuroendocrine Effects of Endocrine Disruptors, IRSET, INSERM U1085, SFR Biosit, Université de Rennes 1, Rennes, France
| | | |
Collapse
|
9
|
Konduktorova VV, Luchinskaya NN. Follicular cells of the amphibian ovary: Origin, structure, and functions. Russ J Dev Biol 2013. [DOI: 10.1134/s1062360413040024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Zapater C, Chauvigné F, Scott AP, Gómez A, Katsiadaki I, Cerdà J. Piscine Follicle-Stimulating Hormone Triggers Progestin Production in Gilthead Seabream Primary Ovarian Follicles1. Biol Reprod 2012; 87:111. [DOI: 10.1095/biolreprod.112.102533] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|