1
|
Sun JL, Kim YJ, Cho W, Park SS, Abd El-Aty A, Mobarak EH, Jung TW, Jeong JH. The Extract of Humulus japonicus Inhibits Lipogenesis and Promotes Lipolysis via PKA/p38 Signaling. Obes Facts 2024; 17:513-523. [PMID: 39102791 PMCID: PMC11458159 DOI: 10.1159/000540699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024] Open
Abstract
INTRODUCTION Previous research has shown that an aqueous extract of Humulus japonicus (EH) can ameliorate hypertension, nonalcoholic fatty liver disease, and oxidative stress in adipocytes by activating the thermogenic pathway. However, the effects of an ethanol (30%) extract of EH on obesity are unknown. METHODS Various protein expression levels in fully differentiated 3T3-L1 adipocytes were assessed by Western blotting. Lipid deposition in 3T3-L1 adipocytes was examined by oil red O staining. The MTT assay was used to evaluate adipocyte viability. Caspase 3 activity and glycerol release were determined using commercial assay kits. RESULTS In this study, we discovered that EH treatment inhibited lipogenesis and promoted lipolysis in both differentiated 3T3-L1 adipocytes and adipose tissue of mice fed a high-fat diet. EH treatment also increased phosphorylated protein kinase A (PKA) levels while reducing p38 phosphorylation. When H89, a PKA inhibitor, was used, the effects of EH on lipogenic lipid accumulation and lipolysis in 3T3-L1 adipocytes were eliminated. Treatment with luteolin 7-O-β-d-glucoside (LU), the major active compound in EH, also suppressed lipid deposition and p38 phosphorylation but enhanced lipolysis in 3T3-L1 adipocytes. These changes were abrogated by H89. CONCLUSION These findings indicate that EH containing LU reduces lipogenesis and stimulates lipolysis via the PKA/p38 signaling pathway, leading to an improvement in obesity in mice. Therefore, our study suggested that EH could be a promising therapeutic agent for treating obesity.
Collapse
Affiliation(s)
- Jaw Long Sun
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Young Jin Kim
- Department of Surgery, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Wonjun Cho
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Sung Su Park
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - A.M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Enas H. Mobarak
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Cho W, Park SY, Oh H, Abd El-Aty AM, Hacimüftüoğlu A, Kim DS, Jung TW, Jeong JH. Humulus japonicus Extract Ameliorates Hepatic Steatosis Through the PPAR α-Mediated Suppression of Alcohol-Induced Oxidative Stress. J Med Food 2023; 26:193-200. [PMID: 36827085 DOI: 10.1089/jmf.2022.k.0093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Humulus japonicus has been used to treat obesity, hypertension, and nonalcoholic fatty liver and to alleviate inflammation and oxidative stress. In the present study, we aimed to investigate the effects of H. japonicus ethanol extracts (HE) and luteolin 7-O-β-d-glucoside (LU), which is identified as a major active component of H. japonicus, on ethanol-induced oxidative stress and lipid accumulation in primary hepatocytes. Mouse primary hepatocytes were treated with HE and stimulated with ethanol. The MTT test was used to determine cell viability. By using Western blotting, the effects of HE on the expression of different proteins were investigated. Experimental mice were given a 5% alcohol liquid Lieber-DeCarli diet to induce alcoholic fatty liver. We found that both HE and LU individually attenuated ethanol-induced lipid accumulation, lipogenic protein expression, and cellular oxidative stress in hepatocytes. Treatment with HE or LU increased PPARα and SOD1 expression and catalase activity in a dose-dependent manner. Small interfering RNA of PPARα reduced the effects of HE on oxidative stress, lipid metabolism, and levels of antioxidants. We also observed that orally administered HE treatment alleviated hepatic steatosis in a diet containing ethanol-fed mice. This study suggests HE as a functional food that can improve hepatic steatosis, thereby preventing hepatic injury caused by alcohol consumption.
Collapse
Affiliation(s)
- Wonjun Cho
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Seung Yeon Park
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea.,Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Korea
| | - Heeseung Oh
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.,Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkiye
| | - Ahmet Hacimüftüoğlu
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkiye.,Vaccine Development Application and Research Center, Ataturk University, Erzurum, Turkiye
| | - Dae-Sung Kim
- Hanpoong Pharm and Foods Co., Ltd., Wanju, Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea.,Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Korea
| |
Collapse
|
3
|
Kang CM, Bang JS, Park SY, Jung TW, Kim HC, Chung YH, Jeong JH. The Aqueous Extract of Humulus japonicus Ameliorates Cognitive Dysfunction in Alzheimer's Disease Models via Modulating the Cholinergic System. J Med Food 2022; 25:943-951. [PMID: 36178947 DOI: 10.1089/jmf.2021.k.0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Humulus japonicus (HJ) is an herbal medicine, which has been reported as being antioxidative and anti-inflammatory. The present study aimed to investigate the effect of oral administration of HJ water extract (HJW) on cognitive function through the cholinergic system in Alzheimer's disease (AD) mouse models. Institute of Cancer Research mice injected with beta-amyloid (Aβ) (1-42) (i.c.v.) and APP/PS1 transgenic (TG) mice were orally administered with HJW at 500 mg/kg/day for 3 weeks. Aβ-injected mice and APP/PS1 TG mice showed cognitive dysfunction, which was evaluated by various behavioral tests. HJW treatment significantly attenuated memory impairments in Aβ-injected mice and APP/PS1 TG mice. Aβ injection decreased acetylcholine (ACh) concentrations and choline acetyltransferase (ChAT) activity, and increased acetylcholinesterase (AChE) activity. These cholinergic impairments were also found in APP/PS1 TG mice. HJW significantly attenuated cholinergic alterations in Aβ-injected mice and TG mice. In addition, HJW significantly decreased Aβ plaque deposition in the cerebral cortex and hippocampus of TG mice. Therefore, the present study demonstrated that HJW protected against AD-related memory impairments via enhancing the cholinergic system and inhibiting Aβ plaque deposition.
Collapse
Affiliation(s)
- Chang Muk Kang
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Joon Seok Bang
- College of Pharmacy, Sookmyung Women's University, Seoul, Korea
| | - Seung Yeon Park
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea.,Department of Global Innovative Drug, The Graduate School of Chung-Ang University, Seoul, Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, Korea
| | - Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea.,Department of Global Innovative Drug, The Graduate School of Chung-Ang University, Seoul, Korea
| |
Collapse
|
4
|
Ameliorative Effects of Humulus japonicus Extract and Polysaccharide-Rich Extract of Phragmites rhizoma in Rats with Gastrointestinal Dysfunctions Induced by Water Avoidance Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9993743. [PMID: 35096122 PMCID: PMC8799342 DOI: 10.1155/2022/9993743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 12/16/2022]
Abstract
Chronic stress can cause the gastrointestinal disorders characterized by an altered bowel movement and abdominal pain. Studies have shown that Humulus japonicus extract (HJE) has anti-inflammatory and antidiarrheal effects, and Phragmites rhizoma extract (PEP) has antioxidative and antistress effects. The present study aimed to investigate the possible effects of HJE and PEP in rat models with stress-induced gastrointestinal dysfunctions. The rats were exposed to water avoidance stress (WAS, 1 h/day) for 10 days to induce gastrointestinal disorders. We found that WAS significantly increased fecal pellet output during 1 h stress, gastric emptying, colonic contractility, and permeability compared to the normal rats. Pretreatment with HJE and PEP (0.25 and 0.5 mL/kg, both administered separately) improved the increased gastric emptying and colonic contractility induced by electrical field stimulation, acetylcholine, and serotonin and also alleviated the increased colonic permeability. HJE and PEP also increased the claudin-1 and occludin expressions, reduced by WAS. WAS increased the concentration of TNF-α and TBARS and reduced FRAP. HJE and PEP recovered these effects. HJE and PEP improved the gastrointestinal disorders induced by WAS by upregulating the tight junction protein, possibly acting on cholinergic and serotonergic receptors to abolish the colonic hypercontractility and hyperpermeability and degradation of inflammatory cytokines via an antioxidant effect.
Collapse
|
5
|
Jung TW, Hwang EJ, Pyun DH, Kim TJ, Lee HJ, Abd El-Aty AM, Bang JS, Kim HC, Jeong JH. 3-hydroxymorphinan enhances mitochondrial biogenesis and adipocyte browning through AMPK-dependent pathway. Biochem Biophys Res Commun 2021; 577:17-23. [PMID: 34487960 DOI: 10.1016/j.bbrc.2021.08.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022]
Abstract
3-hydroxymorphinan (3-HM), a metabolite of dextromethorphan, has previously been reported to have anti-inflammatory, anti-oxidative stress, and neuroprotective effects. However, its effect on energy metabolism in adipocytes remains unclear. Herein, we investigated 3-hydroxymorphinan (3-HM) effects on mitochondrial biogenesis, oxidative stress, and lipid accumulation in 3T3-L1 adipocytes. Further, we explored 3-HM-associated molecular mechanisms. Mouse adipocyte 3T3-L1 cells were treated with 3-HM, and various protein expression levels were determined by western blotting analysis. Mitochondria accumulation and lipid accumulation were measured by staining methods. Cell toxicity was assessed by cell viability assay. We found that treatment of 3T3-L1 adipocytes with 3-HM increased expression of brown adipocyte markers, such as uncoupling protein-1 (UCP-1) and peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α). 3-HM promotes mitochondrial biogenesis and its-mediated gene expression. Additionally, 3-HM treatment suppressed mitochondrial ROS generation and superoxide along with improved mitochondrial complex I activity. We found that treatment of 3-HM enhanced AMPK phosphorylation. siRNA-mediated suppression of AMPK reversed all these changes in 3T3-L1 adipocytes. In sum, 3-HM promotes mitochondrial biogenesis and browning and attenuates oxidative stress and lipid accumulation in 3T3-L1 adipocytes via AMPK signaling. Thus, 3-HM-mediated AMPK activation can be considered a therapeutic approach for treating obesity and related diseases.
Collapse
Affiliation(s)
- Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Eui Jin Hwang
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Do Hyeon Pyun
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Tae Jin Kim
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Hyun Jung Lee
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, China; Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey.
| | - Joon Seok Bang
- College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea.
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Zhang Z, Yang D, Xiang J, Zhou J, Cao H, Che Q, Bai Y, Guo J, Su Z. Non-shivering Thermogenesis Signalling Regulation and Potential Therapeutic Applications of Brown Adipose Tissue. Int J Biol Sci 2021; 17:2853-2870. [PMID: 34345212 PMCID: PMC8326120 DOI: 10.7150/ijbs.60354] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/23/2021] [Indexed: 12/25/2022] Open
Abstract
In mammals, thermogenic organs exist in the body that increase heat production and enhance energy regulation. Because brown adipose tissue (BAT) consumes energy and generates heat, increasing energy expenditure via BAT might be a potential strategy for new treatments for obesity and obesity-related diseases. Thermogenic differentiation affects normal adipose tissue generation, emphasizing the critical role that common transcriptional regulation factors might play in common characteristics and sources. An understanding of thermogenic differentiation and related factors could help in developing ways to improve obesity indirectly or directly through targeting of specific signalling pathways. Many studies have shown that the active components of various natural products promote thermogenesis through various signalling pathways. This article reviews recent major advances in this field, including those in the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA), cyclic guanosine monophosphate-GMP-dependent protein kinase G (cGMP-AKT), AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), transforming growth factor-β/bone morphogenic protein (TGF-β/BMP), transient receptor potential (TRP), Wnt, nuclear factor-κ-light-chain-enhancer of activated B cells (NF-κΒ), Notch and Hedgehog (Hh) signalling pathways in brown and brown-like adipose tissue. To provide effective information for future research on weight-loss nutraceuticals or drugs, this review also highlights the natural products and their active ingredients that have been reported in recent years to affect thermogenesis and thus contribute to weight loss via the above signalling pathways.
Collapse
Affiliation(s)
- Zhengyan Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Di Yang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Junwei Xiang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jingwen Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hua Cao
- Guangdong Cosmetics Engineering & Technology Research Center, School of Chemistry and Chemical Engneering, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Guangzhou 510663, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
7
|
Lee MK, Lee B, Kim CY. Natural Extracts That Stimulate Adipocyte Browning and Their Underlying Mechanisms. Antioxidants (Basel) 2021; 10:antiox10020308. [PMID: 33671335 PMCID: PMC7922619 DOI: 10.3390/antiox10020308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/05/2021] [Accepted: 02/12/2021] [Indexed: 12/20/2022] Open
Abstract
Despite progress in understanding the developmental lineage and transcriptional factors regulating brown and beige adipocytes, the role of environmental modifiers, such as food components and natural extracts, remains to be elucidated. Furthermore, the undesirable pleiotropic effects produced by synthetic drugs targeting adipose tissue browning and thermogenesis necessitate research into alternative natural sources to combat obesity and related metabolic disorders. The current review, therefore, focused on the effects of various extracts from foods, plants, and marine products on adipose tissue browning and obesity. In particular, the recent findings of food components and marine products on adipose tissue browning will be discussed here.
Collapse
Affiliation(s)
- Min-Kyeong Lee
- Department of Food Science and Nutrition, Pukyong National University, Nam-gu, Daeyeon Dong, Busan 608737, Korea;
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Nam-gu, Daeyeon Dong, Busan 608737, Korea;
- Correspondence: (B.L.); (C.Y.K.); Tel.: +82-51-629-5852 (B.L.); +82-53-810-2871 (C.Y.K.)
| | - Choon Young Kim
- Department of Food and Nutrition, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
- Correspondence: (B.L.); (C.Y.K.); Tel.: +82-51-629-5852 (B.L.); +82-53-810-2871 (C.Y.K.)
| |
Collapse
|