1
|
Ye J, Gao X, Huang X, Huang S, Zeng D, Luo W, Zeng C, Lu C, Lu L, Huang H, Mo K, Huang J, Li S, Tang M, Wu T, Mai R, Luo M, Xie M, Wang S, Li Y, Lin Y, Liang R. Integrating Single-Cell and Spatial Transcriptomics to Uncover and Elucidate GP73-Mediated Pro-Angiogenic Regulatory Networks in Hepatocellular Carcinoma. RESEARCH (WASHINGTON, D.C.) 2024; 7:0387. [PMID: 38939041 PMCID: PMC11208919 DOI: 10.34133/research.0387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/21/2024] [Indexed: 06/29/2024]
Abstract
Hepatocellular carcinoma (HCC) was characterized as being hypervascular. In the present study, we generated a single-cell spatial transcriptomic landscape of the vasculogenic etiology of HCC and illustrated overexpressed Golgi phosphoprotein 73 (GP73) HCC cells exerting cellular communication with vascular endothelial cells with high pro-angiogenesis potential via multiple receptor-ligand interactions in the process of tumor vascular development. Specifically, we uncovered an interactive GP73-mediated regulatory network coordinated with c-Myc, lactate, Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway, and endoplasmic reticulum stress (ERS) signals in HCC cells and elucidated its pro-angiogenic roles in vitro and in vivo. Mechanistically, we found that GP73, the pivotal hub gene, was activated by histone lactylation and c-Myc, which stimulated the phosphorylation of downstream STAT3 by directly binding STAT3 and simultaneously enhancing glucose-regulated protein 78 (GRP78)-induced ERS. STAT3 potentiates GP73-mediated pro-angiogenic functions. Clinically, serum GP73 levels were positively correlated with HCC response to anti-angiogenic regimens and were essential for a prognostic nomogram showing good predictive performance for determining 6-month and 1-year survival in patients with HCC treated with anti-angiogenic therapy. Taken together, the aforementioned data characterized the pro-angiogenic roles and mechanisms of a GP73-mediated network and proved that GP73 is a crucial tumor angiogenesis niche gene with favorable anti-angiogenic potential in the treatment of HCC.
Collapse
Affiliation(s)
- Jiazhou Ye
- Department of Hepatobiliary Surgery,
Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Nanning 530021, China
| | - Xing Gao
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Xi Huang
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Shilin Huang
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Dandan Zeng
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Wenfeng Luo
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Can Zeng
- Department of Hepatobiliary Surgery,
Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
| | - Cheng Lu
- Department of Hepatobiliary Surgery,
Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
| | - Lu Lu
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Hongyang Huang
- Department of Hepatobiliary Surgery,
Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
| | - Kaixiang Mo
- Department of Hepatobiliary Surgery,
Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
| | - Julu Huang
- Department of Hepatobiliary Surgery,
Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
| | - Shizhou Li
- Department of Hepatobiliary Surgery,
Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
| | - Minchao Tang
- Department of Hepatobiliary Surgery,
Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
| | - Tianzhun Wu
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Rongyun Mai
- Department of Hepatobiliary Surgery,
Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
| | - Min Luo
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Mingzhi Xie
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Shan Wang
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Nanning 530021, China
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Yongqiang Li
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Yan Lin
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Nanning 530021, China
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Rong Liang
- Guangxi Liver Cancer Diagnosis and Treatment Project Technology Research Center, Nanning 530021, China
- Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Nanning 530021, China
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| |
Collapse
|
2
|
Xing Y, Gao Z, Bai Y, Wang W, Chen C, Zheng Y, Meng Y. Golgi Protein 73 Promotes LPS-Induced Cardiac Dysfunction via Mediating Myocardial Apoptosis and Autophagy. J Cardiovasc Pharmacol 2024; 83:116-125. [PMID: 37755435 DOI: 10.1097/fjc.0000000000001487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023]
Abstract
ABSTRACT Sepsis-induced cardiac dysfunction represents a major cause of high mortality in intensive care units with limited therapeutic options. Golgi protein 73 (GP73) has been implicated in various diseases. However, the role of GP73 in lipopolysaccharide (LPS)-induced cardiac dysfunction is unclear. In this study, we established a sepsis-induced cardiac dysfunction model by LPS administration in wild-type and GP73 knockout ( GP73-/- ) mice. We found that GP73 was increased in LPS-treated mouse hearts and LPS-cultured neonatal rat cardiomyocytes (NRCMs). Knockout of GP73 alleviated myocardial injury and improved cardiac dysfunction. Moreover, depletion of GP73 in NRCMs relieved LPS-induced cardiomyocyte apoptosis and activated myocardial autophagy. Therefore, GP73 is a negative regulator in LPS-induced cardiac dysfunction by promoting cardiomyocyte apoptosis and inhibiting cardiomyocyte autophagy.
Collapse
Affiliation(s)
- Yaqi Xing
- Department of Pathology, Capital Medical University, Beijing, China
| | - Zhenqiang Gao
- Department of Pathology, Capital Medical University, Beijing, China
| | - Yunfei Bai
- Department of Pathology, Capital Medical University, Beijing, China
| | - Wen Wang
- Department of Pathology, Capital Medical University, Beijing, China
- National Demonstration Center for Experimental Basic Medical Education, Experimental Teaching Center of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chen Chen
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China; and
| | - Yuanyuan Zheng
- Department of Pharmacology, Capital Medical University, Beijing, China
| | - Yan Meng
- Department of Pathology, Capital Medical University, Beijing, China
| |
Collapse
|