1
|
Aßfalg M, Güner G, Müller SA, Breimann S, Langosch D, Muhle-Goll C, Frishman D, Steiner H, Lichtenthaler SF. Cleavage efficiency of the intramembrane protease γ-secretase is reduced by the palmitoylation of a substrate's transmembrane domain. FASEB J 2024; 38:e23442. [PMID: 38275103 DOI: 10.1096/fj.202302152r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024]
Abstract
The intramembrane protease γ-secretase has broad physiological functions, but also contributes to Notch-dependent tumors and Alzheimer's disease. While γ-secretase cleaves numerous membrane proteins, only few nonsubstrates are known. Thus, a fundamental open question is how γ-secretase distinguishes substrates from nonsubstrates and whether sequence-based features or post-translational modifications of membrane proteins contribute to substrate recognition. Using mass spectrometry-based proteomics, we identified several type I membrane proteins with short ectodomains that were inefficiently or not cleaved by γ-secretase, including 'pituitary tumor-transforming gene 1-interacting protein' (PTTG1IP). To analyze the mechanism preventing cleavage of these putative nonsubstrates, we used the validated substrate FN14 as a backbone and replaced its transmembrane domain (TMD), where γ-cleavage occurs, with the one of nonsubstrates. Surprisingly, some nonsubstrate TMDs were efficiently cleaved in the FN14 backbone, demonstrating that a cleavable TMD is necessary, but not sufficient for cleavage by γ-secretase. Cleavage efficiencies varied by up to 200-fold. Other TMDs, including that of PTTG1IP, were still barely cleaved within the FN14 backbone. Pharmacological and mutational experiments revealed that the PTTG1IP TMD is palmitoylated, which prevented cleavage by γ-secretase. We conclude that the TMD sequence of a membrane protein and its palmitoylation can be key factors determining substrate recognition and cleavage efficiency by γ-secretase.
Collapse
Affiliation(s)
- Marlene Aßfalg
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Gökhan Güner
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stephan Breimann
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Bioinformatics, School of Life Sciences, Technical University of Munich, Freising, Germany
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, LMU Munich, Munich, Germany
| | | | - Claudia Muhle-Goll
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Dmitrij Frishman
- Department of Bioinformatics, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Harald Steiner
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
2
|
Wang Z, Lin Y, Jiang Y, Fu R, Wang Y, Zhang Q. The associations between thyroid-related hormones and the risk of thyroid cancer: An overall and dose-response meta-analysis. Front Endocrinol (Lausanne) 2022; 13:992566. [PMID: 36568112 PMCID: PMC9768331 DOI: 10.3389/fendo.2022.992566] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Objective Thyroid cancer (TC) is one of the most common malignant tumours of the endocrine system. Thyroid-stimulating hormone (TSH) is known as being a risk factor for TC, but other thyroid-related hormones are inconsistently associated with TC. The purpose of this study was to comprehensively evaluate the relationships between thyroid-related hormones and the risk of TC. Methods This study utilized searches of PubMed, Embase, Web of Science and Cochrane library up to the date of March 31st, 2022. Additionally, we performed a systematic review of related original studies combining overall and dose-response meta-analyses. Results A total of 30, 5 and 7 articles were included in the meta-analyses of TSH, Free triiodothyronine (FT3), free thyroxine (FT4) and TC risk with 58437, 6813 and 7118 participants respectively. An increased risk of TC was associated with high TSH exposure (OR=1.28, 95% CI: 1.19-1.37, P < 0.001) in the overall meta-analysis. For every 1 mU/L increase in TSH, the risk of TC increased by 16%. However, in those studies that used healthy subjects as controls, the association was not statistically significant(P=0.62). Additionally, high serum FT3 demonstrated a reduced risk of TC, with a combined OR of 0.86 in the fixed-effect model (95% CI: 0.81-0.90, P < 0.001). In addition, a statistically significant increase in TC risk was found when FT4 concentrations reached a certain threshold (approximately 2.2 ng/dL) in the dose-response meta-analysis. Conclusions Significant associations between thyroid-related hormones and the risk of TC were found in this study. Further research is needed to understand the underlying mechanisms.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Thyroid and Breast Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Yuxin Lin
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yixian Jiang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Rong Fu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yabing Wang
- Department of Thyroid and Breast Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Qian Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
3
|
Yu Q, Zhang X, Li L, Zhang C, Huang J, Huang W. Molecular basis and targeted therapies for radioiodine refractory thyroid cancer. Asia Pac J Clin Oncol 2022; 19:279-289. [PMID: 35950297 DOI: 10.1111/ajco.13836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/26/2021] [Accepted: 07/06/2022] [Indexed: 11/30/2022]
Abstract
Patients diagnosed with radioiodine refractory thyroid cancer (RAIR-TC) are not amenable to novel 131 I therapy due to the reduced expression of sodium iodide symporter (Na+/I- symporter, NIS) and/or the impairment of NIS trafficking to the plasma membrane. RAIR-TC patients have a relatively poor prognosis with a mean life expectancy of 3-5 years, contributing to the majority of TC-associated mortality. Identifying RAIR-TC patients and selecting proper treatment strategies remain challenging for clinicians. In this review, we demonstrate the updated clinical scenarios or the so-called "definitions" of RAIR-TC suggested by several associations based on 131 I uptake ability and tumor response post-131 I therapy. We also discuss current knowledge of the molecular alterations involved in membrane-localized NIS loss, which provides a preclinical basis for the development of targeted therapies, in particular, tyrosine kinase inhibitors (TKIs), redifferentiation approaches, and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Qiuxiao Yu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, P. R. China
| | - Xuwen Zhang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, P. R. China
| | - Li Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, P. R. China
| | - Chi Zhang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, P. R. China
| | - Jian Huang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, P. R. China
| | - Wenting Huang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, P. R. China
| |
Collapse
|
4
|
Xu S, Cheng X, Wu J, Wang Y, Wang X, Wu L, Yu H, Bao J, Zhang L. Capsaicin restores sodium iodine symporter-mediated radioiodine uptake through bypassing canonical TSH‒TSHR pathway in anaplastic thyroid carcinoma cells. J Mol Cell Biol 2021; 13:791-807. [PMID: 34751390 PMCID: PMC8782610 DOI: 10.1093/jmcb/mjab072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 09/21/2021] [Indexed: 11/14/2022] Open
Abstract
Anaplastic thyroid cancer (ATC) is a rare but highly lethal disease. ATCs are resistant to standard therapies and are extremely difficult to manage. The stepwise cell dedifferentiation results in the impairment of the iodine-metabolizing machinery and the infeasibility of radioiodine treatment in ATC. Hence, re-inducing iodine-metabolizing gene expression to restore radioiodine avidity is considered as a promising strategy to fight against ATC. In the present study, capsaicin (CAP), a natural potent transient receptor potential vanilloid type 1 (TRPV1) agonist, was discovered to re-induce ATC cell differentiation and to increase the expression of thyroid transcription factors (TTFs including TTF-1, TTF-2, and PAX8) and iodine-metabolizing proteins, including thyroid stimulating hormone receptor (TSHR), thyroid peroxidase, and sodium iodine symporter (NIS), in two ATC cell lines, 8505C and FRO. Strikingly, CAP treatment promoted NIS glycosylation and its membrane trafficking, resulting in a significant enhancement of radioiodine uptake of ATC cells in vitro. Mechanistically, CAP activated TRPV1 channel and subsequently triggered Ca2+ influx, cyclic adenosine monophosphate (cAMP) generation, and cAMP responsive element binding protein (CREB) signal activation. Next, CREB recognized and bound to the promoter of SLC5A5 to facilitate its transcription. Moreover, the TRPV1 antagonist CPZ, the calcium chelator BAPTA, and the PKA inhibitor H-89 effectively alleviated the re-differentiation exerted by CAP, demonstrating that CAP might improve radioiodine avidity through the activation of the TRPV1‒Ca2+/cAMP/PKA/CREB signaling pathway. In addition, our study indicated that CAP might trigger a novel cascade to re-differentiate ATC cells and provide unprecedented opportunities for radioiodine therapy in ATC, bypassing canonical TSH‒TSHR pathway.
Collapse
Affiliation(s)
- Shichen Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063 China
| | - Xian Cheng
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063 China
| | - Jing Wu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063 China
| | - Yunping Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Xiaowen Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Liying Wu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Huixin Yu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063 China
| | - Jiandong Bao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063 China
| | - Li Zhang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063 China.,Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166 China.,School of Life Science and Technology, Southeast University, Nanjing, 210096 China
| |
Collapse
|
5
|
Faria M, Domingues R, Bugalho MJ, Silva AL, Matos P. Analysis of NIS Plasma Membrane Interactors Discloses Key Regulation by a SRC/RAC1/PAK1/PIP5K/EZRIN Pathway with Potential Implications for Radioiodine Re-Sensitization Therapy in Thyroid Cancer. Cancers (Basel) 2021; 13:5460. [PMID: 34771624 PMCID: PMC8582450 DOI: 10.3390/cancers13215460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/14/2021] [Accepted: 10/27/2021] [Indexed: 12/25/2022] Open
Abstract
The functional expression of the sodium-iodide symporter (NIS) at the membrane of differentiated thyroid cancer (DTC) cells is the cornerstone for the use of radioiodine (RAI) therapy in these malignancies. However, NIS gene expression is frequently downregulated in malignant thyroid tissue, and 30% to 50% of metastatic DTCs become refractory to RAI treatment, which dramatically decreases patient survival. Several strategies have been attempted to increase the NIS mRNA levels in refractory DTC cells, so as to re-sensitize refractory tumors to RAI. However, there are many RAI-refractory DTCs in which the NIS mRNA and protein levels are relatively abundant but only reduced levels of iodide uptake are detected, suggesting a posttranslational failure in the delivery of NIS to the plasma membrane (PM), or an impaired residency at the PM. Because little is known about the molecules and pathways regulating NIS delivery to, and residency at, the PM of thyroid cells, we here employed an intact-cell labeling/immunoprecipitation methodology to selectively purify NIS-containing macromolecular complexes from the PM. Using mass spectrometry, we characterized and compared the composition of NIS PM complexes to that of NIS complexes isolated from whole cell (WC) lysates. Applying gene ontology analysis to the obtained MS data, we found that while both the PM-NIS and WC-NIS datasets had in common a considerable number of proteins involved in vesicle transport and protein trafficking, the NIS PM complexes were particularly enriched in proteins associated with the regulation of the actin cytoskeleton. Through a systematic validation of the detected interactions by co-immunoprecipitation and Western blot, followed by the biochemical and functional characterization of the contribution of each interactor to NIS PM residency and iodide uptake, we were able to identify a pathway by which the PM localization and function of NIS depends on its binding to SRC kinase, which leads to the recruitment and activation of the small GTPase RAC1. RAC1 signals through PAK1 and PIP5K to promote ARP2/3-mediated actin polymerization, and the recruitment and binding of the actin anchoring protein EZRIN to NIS, promoting its residency and function at the PM of normal and TC cells. Besides providing novel insights into the regulation of NIS localization and function at the PM of TC cells, our results open new venues for therapeutic intervention in TC, namely the possibility of modulating abnormal SRC signaling in refractory TC from a proliferative/invasive effect to the re-sensitization of these tumors to RAI therapy by inducing NIS retention at the PM.
Collapse
Affiliation(s)
- Márcia Faria
- Serviço de Endocrinologia, Diabetes e Metabolismo do CHULN-Hospital Santa Maria, 1649-028 Lisboa, Portugal; (M.F.); (R.D.); (M.J.B.); (A.L.S.)
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
| | - Rita Domingues
- Serviço de Endocrinologia, Diabetes e Metabolismo do CHULN-Hospital Santa Maria, 1649-028 Lisboa, Portugal; (M.F.); (R.D.); (M.J.B.); (A.L.S.)
- ISAMB-Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Maria João Bugalho
- Serviço de Endocrinologia, Diabetes e Metabolismo do CHULN-Hospital Santa Maria, 1649-028 Lisboa, Portugal; (M.F.); (R.D.); (M.J.B.); (A.L.S.)
- Serviço de Endocrinologia, Diabetes e Metabolismo, CHULN and Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana Luísa Silva
- Serviço de Endocrinologia, Diabetes e Metabolismo do CHULN-Hospital Santa Maria, 1649-028 Lisboa, Portugal; (M.F.); (R.D.); (M.J.B.); (A.L.S.)
- ISAMB-Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Serviço de Endocrinologia, Diabetes e Metabolismo, CHULN and Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Paulo Matos
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
| |
Collapse
|
6
|
Xiong Z, Li X, Yang Q. PTTG has a Dual Role of Promotion-Inhibition in the Development of Pituitary Adenomas. Protein Pept Lett 2019; 26:800-818. [PMID: 37020362 DOI: 10.2174/0929866526666190722145449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 11/22/2022]
Abstract
Pituitary Tumor Transforming Gene (PTTG) of human is known as a checkpoint gene in the middle and late stages of mitosis, and is also a proto-oncogene that promotes cell cycle progression. In the nucleus, PTTG works as securin in controlling the mid-term segregation of sister chromatids. Overexpression of PTTG, entering the nucleus with the help of PBF in pituitary adenomas, participates in the regulation of cell cycle, interferes with DNA repair, induces genetic instability, transactivates FGF-2 and VEGF and promotes angiogenesis and tumor invasion. Simultaneously, overexpression of PTTG induces tumor cell senescence through the DNA damage pathway, making pituitary adenoma possessing the potential self-limiting ability. To elucidate the mechanism of PTTG in the regulation of pituitary adenomas, we focus on both the positive and negative function of PTTG and find out key factors interacted with PTTG in pituitary adenomas. Furthermore, we discuss other possible mechanisms correlate with PTTG in pituitary adenoma initiation and development and the potential value of PTTG in clinical treatment.
Collapse
Affiliation(s)
- Zujian Xiong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qi Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
7
|
Imruetaicharoenchoke W, Fletcher A, Lu W, Watkins RJ, Modasia B, Poole VL, Nieto HR, Thompson RJ, Boelaert K, Read ML, Smith VE, McCabe CJ. Functional consequences of the first reported mutations of the proto-oncogene PTTG1IP/PBF. Endocr Relat Cancer 2017; 24:459-474. [PMID: 28676500 PMCID: PMC5551380 DOI: 10.1530/erc-16-0340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 07/03/2017] [Indexed: 12/25/2022]
Abstract
Pituitary tumor-transforming gene 1-binding factor (PTTG1IP; PBF) is a multifunctional glycoprotein, which is overexpressed in a wide range of tumours, and significantly associated with poorer oncological outcomes, such as early tumour recurrence, distant metastasis, extramural vascular invasion and decreased disease-specific survival. PBF transforms NIH 3T3 fibroblasts and induces tumours in nude mice, while mice harbouring transgenic thyroidal PBF expression show hyperplasia and macrofollicular lesions. Our assumption that PBF becomes an oncogene purely through increased expression has been challenged by the recent report of mutations in PBF within the Catalogue of Somatic Mutations in Cancer (COSMIC) database. We therefore sought to determine whether the first 10 PBF missense substitutions in human cancer might be oncogenic. Anisomycin half-life studies revealed that most mutations were associated with reduced protein stability compared to wild-type (WT) PBF. Proliferation assays narrowed our interest to two mutational events which significantly altered cell turnover: C51R and R140W. C51R was mainly confined to the endoplasmic reticulum while R140W was apparent in the Golgi apparatus. Both C51R and R140W lost the capacity to induce cellular migration and significantly reduced cell invasion. Colony formation and soft agar assays demonstrated that, in contrast to WT PBF, both mutants were unable to elicit significant colony formation or anchorage-independent growth. However, C51R and R140W retained the ability to repress radioiodide uptake, a functional hallmark of PBF. Our data reveal new insight into PBF function and confirm that, rather than being oncogenic, mutations in PBF are likely to be passenger effects, with overexpression of PBF the more important aetiological event in human cancer.
Collapse
Affiliation(s)
- W Imruetaicharoenchoke
- Institute of Metabolism and Systems ResearchUniversity of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
- Department of SurgeryFaculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - A Fletcher
- Institute of Metabolism and Systems ResearchUniversity of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - W Lu
- Institute of Metabolism and Systems ResearchUniversity of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - R J Watkins
- Institute of Cancer and Genomic SciencesUniversity of Birmingham, Birmingham, UK
| | - B Modasia
- Institute of Metabolism and Systems ResearchUniversity of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - V L Poole
- Institute of Metabolism and Systems ResearchUniversity of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - H R Nieto
- Institute of Metabolism and Systems ResearchUniversity of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - R J Thompson
- Institute of Metabolism and Systems ResearchUniversity of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - K Boelaert
- Institute of Metabolism and Systems ResearchUniversity of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - M L Read
- Institute of Metabolism and Systems ResearchUniversity of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - V E Smith
- Institute of Metabolism and Systems ResearchUniversity of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - C J McCabe
- Institute of Metabolism and Systems ResearchUniversity of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| |
Collapse
|
8
|
Zhong J, Lei J, Jiang K, Li Z, Gong R, Zhu J. Synchronous papillary thyroid carcinoma and breast ductal carcinoma: A rare case report and literature review. Medicine (Baltimore) 2017; 96:e6114. [PMID: 28207532 PMCID: PMC5319521 DOI: 10.1097/md.0000000000006114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The incidences of both thyroid cancer and breast cancer have been rising in recent years; however, it is very rare to find a single person with both of these cancers. Only a few cases of synchronous thyroid and breast cancer have been published, and even fewer cases have been reported in older patients (>60 years). CASE SUMMARY The current study presents a case of synchronous papillary thyroid carcinoma and breast ductal carcinoma in an elderly patient. The patient first underwent a mastectomy and axillary lymphadenectomy in our department, followed by a total thyroidectomy and lymphadenectomy of the left lateral region of the neck 1 month later. Postoperative pathological examination identified invasive ductal carcinoma of the breast and papillary carcinoma of the thyroid. Over almost half a year of follow-up, the patient has exhibited no evidence of recurrence or metastasis, as demonstrated by careful ultrasound examinations. Herein, we not only report this case but also present a systematic review of the causes, diagnosis, and treatment of synchronous breast and thyroid cancer. CONCLUSION Although synchronous primary tumors of the thyroid and breast are very rare, they remain a possibility; therefore, more attention should be paid to these cases.
Collapse
Affiliation(s)
- Jinjing Zhong
- Department of Pathology, West China Hospital of Sichuan University
| | - Jianyong Lei
- Thyroid and Parathyroid Surgery Group, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ke Jiang
- Thyroid and Parathyroid Surgery Group, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zhihui Li
- Thyroid and Parathyroid Surgery Group, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Rixiang Gong
- Thyroid and Parathyroid Surgery Group, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jingqiang Zhu
- Thyroid and Parathyroid Surgery Group, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Shen CT, Qiu ZL, Song HJ, Wei WJ, Luo QY. miRNA-106a directly targeting RARB associates with the expression of Na(+)/I(-) symporter in thyroid cancer by regulating MAPK signaling pathway. J Exp Clin Cancer Res 2016; 35:101. [PMID: 27342319 PMCID: PMC4919890 DOI: 10.1186/s13046-016-0377-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/14/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Serum miRNAs profiles between papillary thyroid carcinoma (PTC) patients with non-(131)I and (131)I-avid lung metastases are differentially expressed. These miRNAs have to be further validated and the role of these miRNAs in the molecular function level of thyroid cancer cell lines has not been investigated. METHODS Expression levels of six identified miRNAs were assessed via quantitative real-time PCR (qRT-PCR) in the serum of eligible patients. Dual-luciferase reporter assay was used to determine the potential target of miR-106a. Cell viability and apoptosis were evaluated by MTT assay and flow cytometry analysis, respectively. The change of gene expression was detected by qRT-PCR and western blotting analysis. In vitro iodine uptake assay was conducted by a γ-counter. RESULTS Compared to PTC patients with (131)I-avid lung metastases, miR-106a was up-regulated in the serum of patients with non-(131)I-avid lung metastases. The results of dual-luciferase reporter assay demonstrated that miR-106a directly targeted retinoic acid receptor beta (RARB) 3'-UTR. miR-106a-RARB promoted viability of thyroid cancer cells by regulating MEKK2-ERK1/2 and MEKK2-ERK5 pathway. miR-106a-RARB inhibited apoptosis of thyroid cancer cells by regulating ASK1-p38 pathway. Moreover, miR-106a-RARB could regulate the expression of sodium iodide symporter, TSH receptor and alter the iodine uptake function of thyroid cancer cells. CONCLUSIONS miRNA-106a, directly targeting RARB, associates with the viability, apoptosis, differentiation and the iodine uptake function of thyroid cancer cell lines by regulating MAPK signaling pathway in vitro. These findings in the present study may provide new strategies for the diagnosis and treatment in radioiodine-refractory differentiated thyroid carcinoma.
Collapse
Affiliation(s)
- Chen-Tian Shen
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 People’s Republic of China
| | - Zhong-Ling Qiu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 People’s Republic of China
| | - Hong-Jun Song
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 People’s Republic of China
| | - Wei-Jun Wei
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 People’s Republic of China
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 People’s Republic of China
| |
Collapse
|
10
|
Gao Y, Qu N, Zhang L, Chen JY, Ji QH. Preoperative ultrasonography and serum thyroid-stimulating hormone on predicting central lymph node metastasis in thyroid nodules as or suspicious for papillary thyroid microcarcinoma. Tumour Biol 2015; 37:7453-9. [DOI: 10.1007/s13277-015-4535-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 11/28/2014] [Indexed: 12/23/2022] Open
|
11
|
Shi RL, Liao T, Qu N, Liang F, Chen JY, Ji QH. The Usefulness of Preoperative Thyroid-Stimulating Hormone for Predicting Differentiated Thyroid Microcarcinoma. Otolaryngol Head Neck Surg 2015; 154:256-62. [PMID: 26598500 DOI: 10.1177/0194599815618388] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/30/2015] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Thyroid-stimulating hormone (TSH) is a known thyroid growth factor, but the pathogenic role of TSH in thyroid tumorigenesis is controversial. The aim of this study is to examine the relationship between preoperative TSH and differentiated thyroid microcarcinoma (DTMC). DATA SOURCES We searched PubMed, EMBASE, Ovid, Web of Science, and the Cochrane Library from their inception to March 2015 and performed a systematic literature review of original studies. REVIEW METHODS Published studies that explored the relationship between preoperative TSH and DTMC were included for the review. We calculated odds ratio referring to different TSH concentrations between DTMC and control groups and used random effects model for the meta-analysis. RESULTS Nine eligible studies that included 6523 patients were identified. Meta-analysis revealed that DTMC was associated with high TSH concentration (odds ratio = 1.23, 95% confidence interval = 1.03-1.46, P = .001). Metaregression analysis indicated that the disparity of control groups was the possible factor resulting in heterogeneity among the studies. CONCLUSIONS The risk of DTMC increases significantly in parallel with TSH concentration. These results support the hypothesis that TSH is involved in tumorgenesis of differentiated thyroid cancer.
Collapse
Affiliation(s)
- Rong-Liang Shi
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China Department of General Surgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Tian Liao
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ning Qu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fei Liang
- Department of General Surgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Jia-Ying Chen
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qing-Hai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Liu L, Shi J, Mao F, Wei J, Fu D, Zhang J. Synchronous primary cancers of the thyroid and breast: A case report and review of the literature. Oncol Lett 2014; 9:351-354. [PMID: 25435991 PMCID: PMC4246699 DOI: 10.3892/ol.2014.2625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 09/08/2014] [Indexed: 11/06/2022] Open
Abstract
The current report presents the case of a 41-year-old female exhibiting synchronous primary cancers of the thyroid and breast. Pathological examination of a tissue sample following biopsy identified papillary carcinoma of the thyroid and invasive ductal carcinoma of the breast to provide a definitive diagnosis of synchronous primary tumors. The patient underwent a modified radical mastectomy and total thyroidectomy. Following regular adjuvant chemotherapy with cyclophosphamide (800 mg), doxorubicin (100 mg) and paclitaxel (120 mg), once every three weeks for 3.5 months, oral levothyroxine and endocrinotherapy was recommended. Two years after the initial diagnosis, the patient was healthy with no disease recurrence. To the best of our knowledge, no association has been identified between the etiology and diagnoses of the two synchronous primary tumors. Thus, the aim of the current report was to improve the understanding of synchronous primary tumors of the thyroid and breast by presenting a review of the associated literature regarding breast and thyroid cancer. The mechanisms of synchronous neoplasms have only recently been elucidated, however, misdiagnosis is common. Clinicians are, therefore, advised to carefully examine patients with thyroid or breast cancer to avoid an incorrect or misdiagnosis. Furthermore, the present report aims to provide a reference for the cancer database, since the majority of analyses of rare diseases are derived from case reports. To improve the understanding of synchronous primary cancers of the thyroid and breast, an analysis of recent studies regarding the underlying mechanisms of synchronous primary cancers was also undertaken.
Collapse
Affiliation(s)
- Li Liu
- Department of Thyroid and Breast Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| | - Jing Shi
- Department of Thyroid and Breast Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| | - Fengfeng Mao
- Department of Thyroid and Breast Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| | - Jinli Wei
- Department of Thyroid and Breast Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| | - Deyuan Fu
- Department of Thyroid and Breast Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| | - Jiaxin Zhang
- Department of Thyroid and Breast Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| |
Collapse
|
13
|
Spitzweg C, Bible KC, Hofbauer LC, Morris JC. Advanced radioiodine-refractory differentiated thyroid cancer: the sodium iodide symporter and other emerging therapeutic targets. Lancet Diabetes Endocrinol 2014; 2:830-42. [PMID: 24898835 DOI: 10.1016/s2213-8587(14)70051-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Approximately 30% of patients with advanced, metastatic differentiated thyroid cancer have radioiodine-refractory disease, based on decreased expression of the sodium iodide symporter SLC5A5 (NIS), diminished membrane targeting of NIS, or both. Patients with radioiodine-refractory disease, therefore, are not amenable to (131)I therapy, which is the initial systemic treatment of choice for non-refractory metastatic thyroid cancer. Patients with radioiodine-refractory cancer have historically had poor outcomes, partly because these cancers often respond poorly to cytotoxic chemotherapy. In the past decade, however, considerable progress has been made in delineating the molecular pathogenesis of radioiodine-refractory thyroid cancer. As a result of the identification of key genetic and epigenetic alterations and dysregulated signalling pathways, multiple biologically targeted drugs, in particular tyrosine-kinase inhibitors, have been evaluated in clinical trials with promising results and have begun to meaningfully impact clinical practice. In this Review, we summarise the current knowledge of the molecular pathogenesis of advanced differentiated thyroid cancer and discuss findings from clinical trials of targeted drugs in patients with radioiodine-refractory disease. Additionally, we focus on the molecular basis of loss of NIS expression, function, or both in refractory disease, and discuss preclinical and clinical data on restoration of radioiodine uptake.
Collapse
Affiliation(s)
- Christine Spitzweg
- Department of Internal Medicine II - Campus Grosshadern, University Hospital of Munich, Munich, Germany.
| | - Keith C Bible
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Lorenz C Hofbauer
- Division of Endocrinology and Metabolic Bone Disease, Department of Medicine III, Technische Universität, Dresden, Germany
| | - John C Morris
- Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
14
|
WU BINGLI, LI CHUNQUAN, DU ZEPENG, ZHOU FEI, XIE JIANJUN, LUO LIEWEI, WU JIANYI, ZHANG PIXIAN, XU LIYAN, LI ENMIN. Functional analysis of the mRNA profile of neutrophil gelatinase‑associated lipocalin overexpression in esophageal squamous cell carcinoma using multiple bioinformatic tools. Mol Med Rep 2014; 10:1800-12. [PMID: 25109818 PMCID: PMC4148386 DOI: 10.3892/mmr.2014.2465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 07/11/2014] [Indexed: 02/05/2023] Open
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL) is a member of the lipocalin superfamily; dysregulated expression of NGAL has been observed in several benign and malignant diseases. In the present study, differentially expressed genes, in comparison with those of control cells, in the mRNA expression profile of EC109 esophageal squamous cell carcinoma (ESCC) cells following NGAL overexpression were analyzed by multiple bioinformatic tools for a comprehensive understanding. A total of 29 gene ontology (GO) terms associated with immune function, chromatin structure and gene transcription were identified among the differentially expressed genes (DEGs) in NGAL overexpressing cells. In addition to the detected GO categories, the results from the functional annotation chart revealed that the differentially expressed genes were also associated with 101 functional annotation category terms. A total of 59 subpathways associated locally with the differentially expressed genes were identified by subpathway analysis, a markedly greater total that detected by traditional pathway enrichment analysis only. Promoter analysis indicated that the potential transcription factors Snail, deltaEF1, Mycn, Arnt, MNB1A, PBF, E74A, Ubx, SPI1 and GATA2 were unique to the downregulated DEG promoters, while bZIP910, ZNF42 and SOX9 were unique for the upregulated DEG promoters. In conclusion, the understanding of the role of NGAL overexpression in ESCC has been improved through the present bioinformatic analysis.
Collapse
Affiliation(s)
- BING-LI WU
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - CHUN-QUAN LI
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - ZE-PENG DU
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, Guangdong 515041, P.R. China
| | - FEI ZHOU
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - JIAN-JUN XIE
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - LIE-WEI LUO
- Department of Biochemistry and Molecular Biology, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510000, P.R. China
| | - JIAN-YI WU
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - PI-XIAN ZHANG
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - LI-YAN XU
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Correspondence to: Professor Li-Yan Xu, Institute of Oncologic Pathology, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, P.R. China, E-mail: . Professor En-Min Li, Department of Biochemistry and Molecular Biology, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, P.R. China, E-mail:
| | - EN-MIN LI
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Correspondence to: Professor Li-Yan Xu, Institute of Oncologic Pathology, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, P.R. China, E-mail: . Professor En-Min Li, Department of Biochemistry and Molecular Biology, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, P.R. China, E-mail:
| |
Collapse
|
15
|
The sodium/iodide symporter NIS is a transcriptional target of the p53-family members in liver cancer cells. Cell Death Dis 2013; 4:e807. [PMID: 24052075 PMCID: PMC3789165 DOI: 10.1038/cddis.2013.302] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/24/2013] [Accepted: 07/01/2013] [Indexed: 02/06/2023]
Abstract
Thyroid iodide accumulation via the sodium/iodide symporter (NIS; SLC5A5) has been the basis for the longtime use of radio-iodide in the diagnosis and treatment of thyroid cancers. NIS is also expressed, but poorly functional, in some non-thyroid human cancers. In particular, it is much more strongly expressed in cholangiocarcinoma (CCA) and hepatocellular carcinoma (HCC) cell lines than in primary human hepatocytes (PHH). The transcription factors and signaling pathways that control NIS overexpression in these cancers is largely unknown. We identified two putative regulatory clusters of p53-responsive elements (p53REs) in the NIS core promoter, and investigated the regulation of NIS transcription by p53-family members in liver cancer cells. NIS promoter activity and endogenous NIS mRNA expression are stimulated by exogenously expressed p53-family members and significantly reduced by member-specific siRNAs. Chromatin immunoprecipitation analysis shows that the p53–REs clusters in the NIS promoter are differentially occupied by the p53-family members to regulate basal and DNA damage-induced NIS transcription. Doxorubicin strongly induces p53 and p73 binding to the NIS promoter, leading to an increased expression of endogenous NIS mRNA and protein in HCC and CCA cells, but not in PHH. Silencing NIS expression reduced doxorubicin-induced apoptosis in HCC cells, pointing to a possible role of a p53-family-dependent expression of NIS in apoptotic cell death. Altogether, these results indicate that the NIS gene is a direct target of the p53 family and suggests that the modulation of NIS by DNA-damaging agents is potentially exploitable to boost NIS upregulation in vivo.
Collapse
|
16
|
Lima Gonçalves CF, de Souza dos Santos MC, Ginabreda MG, Soares Fortunato R, Pires de Carvalho D, Freitas Ferreira AC. Flavonoid rutin increases thyroid iodide uptake in rats. PLoS One 2013; 8:e73908. [PMID: 24023911 PMCID: PMC3762709 DOI: 10.1371/journal.pone.0073908] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/25/2013] [Indexed: 11/19/2022] Open
Abstract
Thyroid iodide uptake through the sodium-iodide symporter (NIS) is not only an essential step for thyroid hormones biosynthesis, but also fundamental for the diagnosis and treatment of different thyroid diseases. However, part of patients with thyroid cancer is refractory to radioiodine therapy, due to reduced ability to uptake iodide, which greatly reduces the chances of survival. Therefore, compounds able to increase thyroid iodide uptake are of great interest. It has been shown that some flavonoids are able to increase iodide uptake and NIS expression in vitro, however, data in vivo are lacking. Flavonoids are polyhydroxyphenolic compounds, found in vegetables present in human diet, and have been shown not only to modulate NIS, but also thyroperoxidase (TPO), the key enzyme in thyroid hormones biosynthesis, besides having antiproliferative effect in thyroid cancer cell lines. Therefore, we aimed to evaluate the effect of some flavonoids on thyroid iodide uptake in Wistar rats in vivo. Among the flavonoids tested, rutin was the only one able to increase thyroid iodide uptake, so we decided to evaluate the effect of this flavonoid on some aspects of thyroid hormones synthesis and metabolism. Rutin led to a slight reduction of serum T4 and T3 without changes in serum thyrotropin (TSH), and significantly increased hypothalamic, pituitary and brown adipose tissue type 2 deiodinase and decreased liver type 1 deiodinase activities. Moreover, rutin treatment increased thyroid iodide uptake probably due to the increment of NIS expression, which might be secondary to increased response to TSH, since TSH receptor expression was increased. Thus, rutin might be useful as an adjuvant in radioiodine therapy, since this flavonoid increased thyroid iodide uptake without greatly affecting thyroid function.
Collapse
Affiliation(s)
- Carlos Frederico Lima Gonçalves
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Maria Carolina de Souza dos Santos
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Maria Gloria Ginabreda
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Rodrigo Soares Fortunato
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Denise Pires de Carvalho
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Andrea Claudia Freitas Ferreira
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| |
Collapse
|
17
|
Hepatitis B virus mRNA-mediated miR-122 inhibition upregulates PTTG1-binding protein, which promotes hepatocellular carcinoma tumor growth and cell invasion. J Virol 2012; 87:2193-205. [PMID: 23221562 DOI: 10.1128/jvi.02831-12] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
As the most abundant liver-specific microRNA, miR-122 is involved in diverse aspects of hepatic function and neoplastic transformation. Our previous study showed that miR-122 levels are significantly decreased in hepatitis B virus (HBV)-infected patients, which may facilitate viral replication and persistence (S. Wang, L. Qiu, X. Yan, W. Jin, Y. Wang, L. Chen, E. Wu, X. Ye, G. F. Gao, F. Wang, Y. Chen, Z. Duan, and S. Meng, Hepatology 55:730-741, 2012). Loss of miR-122 expression in patients with hepatitis B enhances hepatitis B virus replication through cyclin G1-modulated P53 activity.). In this study, we provide evidence that all HBV mRNAs harboring an miR-122 complementary site act as sponges to bind and sequester endogenous miR-122, indicating that the highly redundant HBV transcripts are involved in HBV-mediated miR-122 suppression. We next identified pituitary tumor-transforming gene 1 (PTTG1) binding factor (PBF) as a target of miR-122 and demonstrated that HBV replication causes an obvious increase in PBF levels. Furthermore, we observed that the miR-122 levels were decreased and PBF was upregulated in chronic hepatitis B (CHB) and hepatocellular carcinoma (HCC). Overexpression and knockdown studies both revealed that PBF enhances proliferation and invasion of HCC cells, and silencing PBF resulted in a dramatic reduction of HCC tumor growth in vivo. Mechanistic analysis demonstrated that PBF interacts with PTTG1 and facilitates PTTG1 nuclear translocation, subsequently increasing its transcriptional activities. Therefore, we identified a novel HBV mRNA-miR-122-PBF regulatory pathway that facilitates malignant hepatocyte growth and invasion in CHB which may contribute to CHB-induced HCC development and progression. Our work underscores the reciprocal interplay of host miRNA sequestration and depletion by viral mRNAs, which may contribute to chronic-infection-related cancer.
Collapse
|
18
|
Penheiter AR, Russell SJ, Carlson SK. The sodium iodide symporter (NIS) as an imaging reporter for gene, viral, and cell-based therapies. Curr Gene Ther 2012; 12:33-47. [PMID: 22263922 PMCID: PMC3367315 DOI: 10.2174/156652312799789235] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 01/04/2012] [Accepted: 01/06/2012] [Indexed: 02/06/2023]
Abstract
Preclinical and clinical tomographic imaging systems increasingly are being utilized for non-invasive imaging of reporter gene products to reveal the distribution of molecular therapeutics within living subjects. Reporter gene and probe combinations can be employed to monitor vectors for gene, viral, and cell-based therapies. There are several reporter systems available; however, those employing radionuclides for positron emission tomography (PET) or singlephoton emission computed tomography (SPECT) offer the highest sensitivity and the greatest promise for deep tissue imaging in humans. Within the category of radionuclide reporters, the thyroidal sodium iodide symporter (NIS) has emerged as one of the most promising for preclinical and translational research. NIS has been incorporated into a remarkable variety of viral and non-viral vectors in which its functionality is conveniently determined by in vitro iodide uptake assays prior to live animal imaging. This review on the NIS reporter will focus on 1) differences between endogenous NIS and heterologously-expressed NIS, 2) qualitative or comparative use of NIS as an imaging reporter in preclinical and translational gene therapy, oncolytic viral therapy, and cell trafficking research, and 3) use of NIS as an absolute quantitative reporter.
Collapse
Affiliation(s)
- Alan R Penheiter
- Department of Molecular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | |
Collapse
|
19
|
Smith VE, Read ML, Turnell AS, Sharma N, Lewy GD, Fong JCW, Seed RI, Kwan P, Ryan G, Mehanna H, Chan SY, Darras VM, Boelaert K, Franklyn JA, McCabe CJ. PTTG-binding factor (PBF) is a novel regulator of the thyroid hormone transporter MCT8. Endocrinology 2012; 153:3526-36. [PMID: 22535767 DOI: 10.1210/en.2011-2030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Within the basolateral membrane of thyroid follicular epithelial cells, two transporter proteins are central to thyroid hormone (TH) biosynthesis and secretion. The sodium iodide symporter (NIS) delivers iodide from the bloodstream into the thyroid, and after TH biosynthesis, monocarboxylate transporter 8 (MCT8) mediates TH secretion from the thyroid gland. Pituitary tumor-transforming gene-binding factor (PBF; PTTG1IP) is a protooncogene that is up-regulated in thyroid cancer and that binds NIS and modulates its subcellular localization and function. We now show that PBF binds MCT8 in vitro, eliciting a marked shift in MCT8 subcellular localization and resulting in a significant reduction in the amount of MCT8 at the plasma membrane as determined by cell surface biotinylation assays. Colocalization and interaction between PBF and Mct8 was also observed in vivo in a mouse model of thyroid-specific PBF overexpression driven by a bovine thyroglobulin (Tg) promoter (PBF-Tg). Thyroidal Mct8 mRNA and protein expression levels were similar to wild-type mice. Critically, however, PBF-Tg mice demonstrated significantly enhanced thyroidal TH accumulation and reduced TH secretion upon TSH stimulation. Importantly, Mct8-knockout mice share this phenotype. These data show that PBF binds and alters the subcellular localization of MCT8 in vitro, with PBF overexpression leading to an accumulation of TH within the thyroid in vivo. Overall, these studies identify PBF as the first protein to interact with the critical TH transporter MCT8 and modulate its function in vivo. Furthermore, alongside NIS repression, PBF may thus represent a new regulator of TH biosynthesis and secretion.
Collapse
Affiliation(s)
- V E Smith
- School of Clinical and Experimental Medicine, Institute for Biomedical Research, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|