1
|
Fischer SV, Siqueira BS, Cancian CRC, Montes EG, Vicari VN, Svidnicki PV, Grassiolli S. Swimming training prevents obesity installation and normalizes hypothalamic expressions of GLP1 and leptin receptors in adult offspring born in small litters. EINSTEIN-SAO PAULO 2024; 22:eAO0619. [PMID: 39258689 PMCID: PMC11461006 DOI: 10.31744/einstein_journal/2024ao0619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/27/2023] [Indexed: 09/12/2024] Open
Abstract
OBJECTIVE Glucagon-like peptide-1 (GLP1) and leptin (Lep) are afferent signals that regulate energy metabolism. Lactational hypernutrition results in hyperphagia and adiposity in adult life, and these events can be prevented by exercise. We evaluated the effects of swimming training on hypothalamic (GLP1-R) and Lep receptor (Lep-R) gene expressions in lactational hypernutrition-induced obesity. METHODS On the 3rd postnatal day, the litter sizes of lactating dams were adjusted to small litters (SL; 3 pups/dams) or normal litters (NL; 9 pups/dams). After weaning (21 days), NL and SL male rats were randomly distributed to sedentary (Sed) and exercised (Exe) groups. Exercised mice swam (30 min/3 times/week) for 68 days. Food intake and body weight gain were registered. At 92 days, intraperitoneal glucose and insulin tolerance tests were performed and rats were euthanized at 93 days; adipose tissue depots were weighed, and blood counts and plasma biochemical analyses performed. Hypothalamus were isolated to evaluate Lep-R and GLP1-R gene expressions. RESULTS Small litters sedentary rats presented increased body weight gain, adiposity, insulin sensibility and higher fasting values of glucose and triglycerides, besides higher hypothalamic gene expressions of Lep-R and GLP1-R, compared to NLSed animals. SLExe rats did not develop obesity or metabolic abnormalities and Lep-R and GLP1-R hypothalamic gene expressions were normalized. CONCLUSION Lactational hypernutrition induces obesity and metabolic dysfunction in adult life, in association with higher hypothalamic expressions of the Lep-R and GLP1-R genes. Exercise prevented obesity and improved metabolic state in SL overnourished rats, and normalized their hypothalamic Lep-R and GLP1-R gene expressions.
Collapse
Affiliation(s)
- Stefani Valeria Fischer
- Department of General BiologyUniversidade Estadual de Ponta GrossaPonta GrossaPRBrazilDepartment of General Biology, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil.
| | - Bruna Schumaker Siqueira
- Postgraduate Program in Biosciences and HealthDepartment of Center for Biological and Health SciencesUniversidade Estadual do Oeste do ParanáCascavelPRBrazil Postgraduate Program in Biosciences and Health, Department of Center for Biological and Health Sciences, Universidade Estadual do Oeste do Paraná, Cascavel, PR, Brazil.
| | - Claudia Regina Capriglioni Cancian
- Department of General BiologyUniversidade Estadual de Ponta GrossaPonta GrossaPRBrazilDepartment of General Biology, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil.
| | - Elisangela Gueiber Montes
- Department of General BiologyUniversidade Estadual de Ponta GrossaPonta GrossaPRBrazilDepartment of General Biology, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil.
| | - Viviane Nogaroto Vicari
- Department of General BiologyUniversidade Estadual de Ponta GrossaPonta GrossaPRBrazilDepartment of General Biology, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil.
| | - Paulo Vinicius Svidnicki
- Department of General BiologyUniversidade Estadual de Ponta GrossaPonta GrossaPRBrazilDepartment of General Biology, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil.
| | - Sabrina Grassiolli
- Postgraduate Program in Biosciences and HealthDepartment of Center for Biological and Health SciencesUniversidade Estadual do Oeste do ParanáCascavelPRBrazil Postgraduate Program in Biosciences and Health, Department of Center for Biological and Health Sciences, Universidade Estadual do Oeste do Paraná, Cascavel, PR, Brazil.
| |
Collapse
|
2
|
Ruswandi YAR, Lesmana R, Rosdianto AM, Gunadi JW, Goenawan H, Zulhendri F. Understanding the Roles of Selenium on Thyroid Hormone-Induced Thermogenesis in Adipose Tissue. Biol Trace Elem Res 2024; 202:2419-2441. [PMID: 37758980 DOI: 10.1007/s12011-023-03854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
Brown adipose tissue (BAT) and white adipose tissue (WAT) are known to regulate lipid metabolism. A lower amount of BAT compared to WAT, along with adipose tissue dysfunction, can result in obesity. Studies have shown that selenium supplementation protects against adipocyte dysfunction, decreases WAT triglycerides, and increases BAT triiodothyronine (T3). In this review, we discuss the relationship between selenium and lipid metabolism regulation through selenoprotein deiodinases and the role of deiodinases and thyroid hormones in the induction of adipose tissue thermogenesis. Upon 22 studies included in our review, we found that studies investigating the relationship between selenium and deiodinases demonstrated that selenium supplementation affects the iodothyronine deiodinase 2 (DIO2) protein and the expression of its associated gene, DIO2, proportionally. However, its effect on DIO1 is inconsistent while its effect on DIO3 activity is not detected. Studies have shown that the activity of deiodinases especially DIO2 protein and DIO2 gene expression is increased along with other browning markers upon white adipose tissue browning induction. Studies showed that thermogenesis is stimulated by the thyroid hormone T3 as its activity is correlated to the expression of other thermogenesis markers. A proposed mechanism of thermogenesis induction in selenium supplementation is by autophagy control. However, more studies are needed to establish the role of T3 and autophagy in adipose tissue thermogenesis, especially, since some studies have shown that thermogenesis can function even when T3 activity is lacking and studies related to autophagy in adipose tissue thermogenesis have contradictory results.
Collapse
Affiliation(s)
- Yasmin Anissa R Ruswandi
- Graduate School of Master Program in Anti-Aging and Aesthetic Medicine, Faculty of Medicine, Universitas Padjadjaran, Kabupaten Sumedang, West Java, Indonesia
| | - Ronny Lesmana
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang, KM.21, Hegarmanah, Kec. Jatinangor, Kabupaten Sumedang, West Java, 45363, Indonesia.
| | - Aziiz Mardanarian Rosdianto
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang, KM.21, Hegarmanah, Kec. Jatinangor, Kabupaten Sumedang, West Java, 45363, Indonesia
- Veterinary Medicine Study Program, Faculty of Medicine, Universitas Padjadjaran, Kabupaten Sumedang, West Java, Indonesia
| | - Julia Windi Gunadi
- Department of Physiology, Faculty of Medicine, Maranatha Christian University, Bandung, West Java, Indonesia
| | - Hanna Goenawan
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang, KM.21, Hegarmanah, Kec. Jatinangor, Kabupaten Sumedang, West Java, 45363, Indonesia
| | - Felix Zulhendri
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Kabupaten Sumedang, West Java, Indonesia
- Kebun Efi, Kabanjahe, 22171, North Sumatra, Indonesia
| |
Collapse
|
3
|
Miranda RA, de Moura EG, Lisboa PC. Adverse perinatal conditions and the developmental origins of thyroid dysfunction-Lessons from Animal Models. Endocrine 2023; 79:223-234. [PMID: 36036880 DOI: 10.1007/s12020-022-03177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/17/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE Nutritional, hormonal, and environmental status during development can predispose the individual to obesity and endocrine diseases later in life, an association known as metabolic programming. In general, weight loss or gain are seen in thyroid disorders, and thyroid function can be affected by body adiposity. In addition, hyper- and hypothyroidism can be related to metabolic programming. Our aim was to gather evidence that regardless of the type or critical window of metabolic imprinting, offspring exposed to certain adverse perinatal conditions have a higher risk of developing thyroid dysfunction. METHODS We reviewed literature data that relate insults occurring during pregnancy and/or lactation to short- and long-term offspring thyroid dysfunction in animal models. RESULTS Few studies have addressed the hypothalamic-pituitary-thyroid axis and thyroid dysfunction related to metabolic programming. The literature shows that under- and overnutrition, exposure to endocrine disruptors, early weaning, maternal thyroid disease and maternal high-fat diet can induce alterations in offspring thyroid function in a sex-dependent manner. CONCLUSION Based on the few available data, mainly in rodent models, we can conclude that diet, hormones, and environmental contaminants are related to the developmental origins of later thyroid dysfunction by interrupting the normal maturation of the thyroid gland.
Collapse
Affiliation(s)
- Rosiane Aparecida Miranda
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Egberto Gaspar de Moura
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Patrícia Cristina Lisboa
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
4
|
Litter Size Reduction as a Model of Overfeeding during Lactation and Its Consequences for the Development of Metabolic Diseases in the Offspring. Nutrients 2022; 14:nu14102045. [PMID: 35631188 PMCID: PMC9145223 DOI: 10.3390/nu14102045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
Overfeeding during lactation has a deleterious impact on the baby’s health throughout life. In humans, early overnutrition has been associated with higher susceptibility to obesity and metabolic disorders in childhood and adulthood. In rodents, using a rodent litter size reduction model (small litter) to mimic early overfeeding, the same metabolic profile has been described. Therefore, the rodent small litter model is an efficient tool to investigate the adaptive mechanisms involved in obesogenesis. Besides central and metabolic dysfunctions, studies have pointed to the contribution of the endocrine system to the small litter phenotype. Hormones, especially leptin, insulin, and adrenal hormones, have been associated with satiety, glucose homeostasis, and adipogenesis, while hypothyroidism impairs energy metabolism, favoring obesity. Behavioral modifications, hepatic metabolism changes, and reproductive dysfunctions have also been reported. In this review, we update these findings, highlighting the interaction of early nutrition and the adaptive features of the endocrine system. We also report the sex-related differences and epigenetic mechanisms. This model highlights the intense plasticity during lactation triggering many adaptive responses, which are the basis of the developmental origins of health and disease (DOHaD) concept. Our review demonstrates the complexity of the adaptive mechanisms involved in the obesity phenotype promoted by early overnutrition, reinforcing the necessity of adequate nutritional habits during lactation.
Collapse
|
5
|
Lisboa PC, Miranda RA, Souza LL, Moura EG. Can breastfeeding affect the rest of our life? Neuropharmacology 2021; 200:108821. [PMID: 34610290 DOI: 10.1016/j.neuropharm.2021.108821] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/17/2021] [Accepted: 09/30/2021] [Indexed: 12/31/2022]
Abstract
The breastfeeding period is one of the most important critical windows in our development, since milk, our first food after birth, contains several compounds, such as macronutrients, micronutrients, antibodies, growth factors and hormones that benefit human health. Indeed, nutritional, and environmental alterations during lactation, change the composition of breast milk and induce alterations in the child's development, such as obesity, leading to the metabolic dysfunctions, cardiovascular diseases and neurobehavioral disorders. This review is based on experimental animal models, most of them in rodents, and summarizes the impact of an adequate breast milk supply in view of the developmental origins of health and disease (DOHaD) concept, which has been proposed by researchers in the areas of epidemiology and basic science from around the world. Here, experimental advances in understanding the programming during breastfeeding were compiled with the purpose of generating knowledge about the genesis of chronic noncommunicable diseases and to guide the development of public policies to deal with and prevent the problems arising from this phenomenon. This review article is part of the special issue on "Cross talk between periphery and brain".
Collapse
Affiliation(s)
- Patricia C Lisboa
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Rosiane A Miranda
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luana L Souza
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Egberto G Moura
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
6
|
HECHT FABIO, CAZARIN JULIANA, ROSSETTI CAMILAL, ROSENTHAL DORIS, ARAUJO RENATAL, CARVALHO DENISEP. Leptin negatively regulates thyroid function of Wistar rats. AN ACAD BRAS CIENC 2021. [DOI: 10.1590/0001-3765202120201551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- FABIO HECHT
- Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
7
|
Early overnutrition sensitizes the growth hormone axis to the impact of diet-induced obesity via sex-divergent mechanisms. Sci Rep 2020; 10:13898. [PMID: 32807904 PMCID: PMC7431568 DOI: 10.1038/s41598-020-70898-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/13/2020] [Indexed: 12/30/2022] Open
Abstract
In addition to its essential role in the physiological control of longitudinal growth, growth-hormone (GH) is endowed with relevant metabolic functions, including anabolic actions in muscle, lipolysis in adipose-tissue and glycemic modulation. Adult obesity is known to negatively impact GH-axis, thereby promoting a vicious circle that may contribute to the exacerbation of the metabolic complications of overweight. Yet, to what extent early-overnutrition sensitizes the somatotropic-axis to the deleterious effects of obesity remains largely unexplored. Using a rat-model of sequential exposure to obesogenic insults, namely postnatal-overfeeding during lactation and high-fat diet (HFD) after weaning, we evaluated in both sexes the individual and combined impact of these nutritional challenges upon key elements of the somatotropic-axis. While feeding HFD per se had a modest impact on the adult GH-axis, early overnutrition had durable effects on key elements of the somatotropic-system, which were sexually different, with a significant inhibition of pituitary gene expression of GH-releasing hormone-receptor (GHRH-R) and somatostatin receptor-5 (SST5) in males, but an increase in pituitary GHRH-R, SST2, SST5, GH secretagogue-receptor (GHS-R) and ghrelin expression in females. Notably, early-overnutrition sensitized the GH-axis to the deleterious impact of HFD, with a significant suppression of pituitary GH expression in both sexes and lowering of circulating GH levels in females. Yet, despite their similar metabolic perturbations, males and females displayed rather distinct alterations of key somatotropic-regulators/ mediators. Our data document a synergistic effect of postnatal-overnutrition on the detrimental impact of HFD-induced obesity on key elements of the adult GH-axis, which is conducted via mechanisms that are sexually-divergent.
Collapse
|
8
|
Abstract
The activity of the hypothalamus-pituitary-thyroid axis (HPT) is coordinated by hypophysiotropic thyrotropin releasing hormone (TRH) neurons present in the paraventricular nucleus of the hypothalamus. Hypophysiotropic TRH neurons act as energy sensors. TRH controls the synthesis and release of thyrotropin, which activates the synthesis and secretion of thyroid hormones; in target tissues, transporters and deiodinases control their local availability. Thyroid hormones regulate many functions, including energy homeostasis. This review discusses recent evidence that covers several aspects of TRH role in HPT axis regulation. Knowledge about the mechanisms of TRH signaling has steadily increased. New transcription factors engaged in TRH gene expression have been identified, and advances made on how they interact with signaling pathways and define the dynamics of TRH neurons response to acute and/or long-term influences. Albeit yet incomplete, the relationship of TRH neurons activity with positive energy balance has emerged. The importance of tanycytes as a central relay for the feedback control of the axis, as well as for HPT responses to alterations in energy balance, and other stimuli has been reinforced. Finally, some studies have started to shed light on the interference of prenatal and postnatal stress and nutrition on HPT axis programing, which have confirmed the axis susceptibility to early insults.
Collapse
Affiliation(s)
- Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, 62250, Cuernavaca MOR, Morelos, México.
| | - Lorraine Jaimes-Hoy
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, 62250, Cuernavaca MOR, Morelos, México
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, 62250, Cuernavaca MOR, Morelos, México
| |
Collapse
|
9
|
Jaimes-Hoy L, Gutiérrez-Mariscal M, Vargas Y, Pérez-Maldonado A, Romero F, Sánchez-Jaramillo E, Charli JL, Joseph-Bravo P. Neonatal Maternal Separation Alters, in a Sex-Specific Manner, the Expression of TRH, of TRH-Degrading Ectoenzyme in the Rat Hypothalamus, and the Response of the Thyroid Axis to Starvation. Endocrinology 2016; 157:3253-65. [PMID: 27323240 DOI: 10.1210/en.2016-1239] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hypothalamic-pituitary-thyroid (HPT) axis activity is important for energy homeostasis, and is modified by stress. Maternal separation (MS) alters the stress response and predisposes to metabolic disturbances in the adult. We therefore studied the effect of MS on adult HPT axis activity. Wistar male and female pups were separated from their mothers 3 h/d during postnatal day (PND)2-PND21 (MS), or left nonhandled (NH). Open field and elevated plus maze tests revealed increased locomotion in MS males and anxiety-like behavior in MS females. At PND90, MS females had increased body weight gain, Trh expression in the hypothalamic paraventricular nucleus, and white adipose tissue mass. MS males had increased expression of TRH-degrading enzyme in tanycytes, reduced TSH and T3, and enhanced corticosterone serum concentrations. MS stimulated brown adipose tissue deiodinase 2 activity in either sex. Forty-eight hours of fasting (PND60) augmented serum corticosterone levels similarly in MS or NH females but more in MS than in NH male rats. MS reduced the fasting-induced drop in hypothalamic paraventricular nucleus-Trh expression of males but not of females and abolished the fasting-induced increase in Trh expression in both sexes. Fasting reduced serum concentrations of TSH, T4, and T3, less in MS than in NH males, whereas in females, TSH decreased in MS but not in NH rats, but T4 and T3 decreased similarly in NH and MS rats. In conclusion, MS produced long-term changes in the activity of the HPT axis that were sex specific; response to fasting was partially blunted in males, which could affect their adaptive response to negative energy balance.
Collapse
Affiliation(s)
- Lorraine Jaimes-Hoy
- Departamento de Genética del Desarrollo y Fisiología Molecular (L.J.-H., M.G.-M., Y.V., A.P.-M., F.R., J.-L.C., P.J.-B.), Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, C.P. 62210 México; and Dirección de Investigaciones en Neurociencias (E.S.-J.), Instituto Nacional de Psiquiatría, Ramón de la Fuente Muñíz, Ciudad de México, C.P. 14370 México
| | - Mariana Gutiérrez-Mariscal
- Departamento de Genética del Desarrollo y Fisiología Molecular (L.J.-H., M.G.-M., Y.V., A.P.-M., F.R., J.-L.C., P.J.-B.), Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, C.P. 62210 México; and Dirección de Investigaciones en Neurociencias (E.S.-J.), Instituto Nacional de Psiquiatría, Ramón de la Fuente Muñíz, Ciudad de México, C.P. 14370 México
| | - Yamili Vargas
- Departamento de Genética del Desarrollo y Fisiología Molecular (L.J.-H., M.G.-M., Y.V., A.P.-M., F.R., J.-L.C., P.J.-B.), Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, C.P. 62210 México; and Dirección de Investigaciones en Neurociencias (E.S.-J.), Instituto Nacional de Psiquiatría, Ramón de la Fuente Muñíz, Ciudad de México, C.P. 14370 México
| | - Adrián Pérez-Maldonado
- Departamento de Genética del Desarrollo y Fisiología Molecular (L.J.-H., M.G.-M., Y.V., A.P.-M., F.R., J.-L.C., P.J.-B.), Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, C.P. 62210 México; and Dirección de Investigaciones en Neurociencias (E.S.-J.), Instituto Nacional de Psiquiatría, Ramón de la Fuente Muñíz, Ciudad de México, C.P. 14370 México
| | - Fidelia Romero
- Departamento de Genética del Desarrollo y Fisiología Molecular (L.J.-H., M.G.-M., Y.V., A.P.-M., F.R., J.-L.C., P.J.-B.), Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, C.P. 62210 México; and Dirección de Investigaciones en Neurociencias (E.S.-J.), Instituto Nacional de Psiquiatría, Ramón de la Fuente Muñíz, Ciudad de México, C.P. 14370 México
| | - Edith Sánchez-Jaramillo
- Departamento de Genética del Desarrollo y Fisiología Molecular (L.J.-H., M.G.-M., Y.V., A.P.-M., F.R., J.-L.C., P.J.-B.), Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, C.P. 62210 México; and Dirección de Investigaciones en Neurociencias (E.S.-J.), Instituto Nacional de Psiquiatría, Ramón de la Fuente Muñíz, Ciudad de México, C.P. 14370 México
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular (L.J.-H., M.G.-M., Y.V., A.P.-M., F.R., J.-L.C., P.J.-B.), Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, C.P. 62210 México; and Dirección de Investigaciones en Neurociencias (E.S.-J.), Instituto Nacional de Psiquiatría, Ramón de la Fuente Muñíz, Ciudad de México, C.P. 14370 México
| | - Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología Molecular (L.J.-H., M.G.-M., Y.V., A.P.-M., F.R., J.-L.C., P.J.-B.), Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, C.P. 62210 México; and Dirección de Investigaciones en Neurociencias (E.S.-J.), Instituto Nacional de Psiquiatría, Ramón de la Fuente Muñíz, Ciudad de México, C.P. 14370 México
| |
Collapse
|