1
|
Li S, Liu G, Hu S. Osteoporosis: interferon-gamma-mediated bone remodeling in osteoimmunology. Front Immunol 2024; 15:1396122. [PMID: 38817601 PMCID: PMC11137183 DOI: 10.3389/fimmu.2024.1396122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
As the world population ages, osteoporosis, the most common disease of bone metabolism, affects more than 200 million people worldwide. The etiology is an imbalance in bone remodeling process resulting in more significant bone resorption than bone remodeling. With the advent of the osteoimmunology field, the immune system's role in skeletal pathologies is gradually being discovered. The cytokine interferon-gamma (IFN-γ), a member of the interferon family, is an important factor in the etiology and treatment of osteoporosis because it mediates bone remodeling. This review starts with bone remodeling process and includes the cellular and key signaling pathways of bone remodeling. The effects of IFN-γ on osteoblasts, osteoclasts, and bone mass are discussed separately, while the overall effects of IFN-γ on primary and secondary osteoporosis are summarized. The net effect of IFN-γ on bone appears to be highly dependent on the environment, dose, concentration, and stage of cellular differentiation. This review focuses on the mechanisms of bone remodeling and bone immunology, with a comprehensive discussion of the relationship between IFN-γ and osteoporosis. Finding the paradoxical balance of IFN-γ in bone immunology and exploring the potential of its clinical application provide new ideas for the clinical treatment of osteoporosis and drug development.
Collapse
Affiliation(s)
- Siying Li
- The Orthopaedic Center, The First People’s Hospital of Wenling, Taizhou University Affiliated Wenling Hospital, Wenling, Zhejiang, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Siwang Hu
- The Orthopaedic Center, The First People’s Hospital of Wenling, Taizhou University Affiliated Wenling Hospital, Wenling, Zhejiang, China
| |
Collapse
|
2
|
Qin M, Gao Y, Zhang M, Wu J, Liu Y, Jiang Y, Zhang X, Wang X, Yang Y, Gao Y. Association between ADAMTS14_rs4747096 gene polymorphism and bone mineral density of Chinese Han population residing in fluorine exposed areas in ShanXi Province, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106059-106067. [PMID: 37725302 DOI: 10.1007/s11356-023-29698-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
This study aimed to investigate the effects of fluorine and ADAMTS14_rs4747096 on bone mineral density (BMD). The survey was explored in a cross-sectional case-control study conducted in Shanxi, China. The BMD was measured by an ultrasonic bone mineral density instrument. The urine fluoride concentration was detected using the fluoride ion electrode. ADAMTS14_rs4747096 polymorphism was examined by multiplex polymerase chain reaction (PCR) and sequencing. The multinomial logistic regressions found that the urine fluoride was a risk factor for osteopenia (OR = 1.379, 95% CI: 1.127-1.687, P = 0.0018), osteoporosis (OR = 1.480, 95% CI: 1.1138-1.926, P = 0.0035), and rs4747096 AG + GG genotype increased the risk of osteoporosis (OR = 2.017, 95% CI: 1.208-3.369, P = 0.0073). In addition, the interaction between urine fluoride and rs4747096 polymorphism on the risk of decreased BMD also was observed. The study suggests that fluoride exposure and mutation G allele in ADAMTS14_rs4747096 may be risk factors for the decrease of BMD. And there is an interaction between the two influencing factors.
Collapse
Affiliation(s)
- Ming Qin
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health of P. R. China, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
| | - Yue Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health of P. R. China, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
| | - Meichen Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health of P. R. China, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
| | - Junhua Wu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health of P. R. China, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
| | - Yang Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health of P. R. China, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
| | - Yuting Jiang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health of P. R. China, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
| | - Xiaodi Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health of P. R. China, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
| | - Xin Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health of P. R. China, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health of P. R. China, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China.
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health of P. R. China, Harbin Medical University, Heilongjiang Province, Harbin, 150081, China.
| |
Collapse
|
3
|
Agas D, Marchegiani A, Laus F, Gabai V, Sufianov AA, Shneider A, Sabbieti MG. p62/SQSTM1 indirectly mediates remote multipotent mesenchymal cells and rescues bone loss and bone marrow integrity in ovariectomized rats. J Cell Physiol 2023; 238:407-419. [PMID: 36565474 DOI: 10.1002/jcp.30937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022]
Abstract
Intramuscular administration of p62/SQSTM1 (sequestosome1)-encoding plasmid demonstrated an anticancer effect in rodent models and dogs as well as a high safety profile and the first evidence of clinical benefits in humans. Also, an anti-inflammatory effect of the plasmid was reported in several rodent disease models. Yet, the mechanisms of action for the p62 plasmid remain unknown. Here, we tested a hypothesis that the p62-plasmid can act through the modulation of bone marrow multipotent mesenchymal cells (MSCs). We demonstrated that a p62 plasmid can affect MSCs indirectly by stimulating p62-transfected cells to secrete an active ingredient(s) sensed by untransfected MSCs. When we transfected MSCs with the p62-plasmid, collected their supernatant, and added it to an untransfected MSCs culture, it switched the differentiation state and prompt osteogenic responses of the untransfected MSCs. According to an accepted viewpoint, ovariectomy leads to bone pathology via dysregulation of MSCs, and restoring the MSC homeostasis would restore ovariectomy-induced bone damage. To validate our in vitro observations in a clinically relevant in vivo model, we administered the p62 plasmid to ovariectomized rats. It partially reversed bone loss and notably reduced adipogenesis with concurrent reestablishing of the MSC subpopulation pool within the bone marrow. Overall, our study suggests that remote modulation of progenitor MSCs via administering a p62-encoding plasmid may constitute a mechanism for its previously reported effects and presents a feasible disease-preventing and/or therapeutic strategy.
Collapse
Affiliation(s)
- Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| | - Andrea Marchegiani
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| | - Fulvio Laus
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| | | | - Albert A Sufianov
- Federal Center of Neurosurgery, Tyumen, Russian Federation.,Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Alexander Shneider
- CureLab Oncology Inc., Dedham, Massachusetts, USA.,Department of Molecular Biology, Ariel University, Ariel, Israel
| | | |
Collapse
|
4
|
Agas D, Gabai V, Sufianov AA, Shneider A, Giovanna Sabbieti M. P62/SQSTM1 enhances osteogenesis and attenuates inflammatory signals in bone marrow microenvironment. Gen Comp Endocrinol 2022; 320:114009. [PMID: 35227727 DOI: 10.1016/j.ygcen.2022.114009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/04/2022]
Abstract
Bone marrow-derived mesenchymal/stromal stem cells (MSCs) became a major focus of research since the anti-inflammatory features and the osteogenic commitment of these cells can prevent the inflamm-aging and various form of osteopenia in humans and animals. We previously showed that p62/SQSTM1 plasmid can prompt release of anti-inflammatory cytokines/chemokines by MSC when injected in adult mice. Furthermore, it can enhance osteoblastogenesis at the expense of adipogenesis and ameliorate bone density and bone remodeling. On the other hand, absence of p62 partially exhausted MSC pool caused expansion of fat cells within bone marrow and pro-inflammatory mediator's accumulation. Given the critical function of p62 as molecular hub of MSC dynamics, here, using MSCs from p62 knockout adult mice, we investigated the effect of this protein on MSC survival and bone-forming molecule cascades. We found that the main osteogenic routes are impaired in absence of p62. In particular, lack of p62 can suppress Smads activation, and Osterix and CREBs expression, thus significantly modifying the schedule of MSCs differentiation. MSCs obtained from p62-/- mice have also demonstrate an amplified NFκB/ Smad1/5/8 colocalization along with NFκB activation in the nucleus, which precludes Smads binding to target promoters. Considering the "teamwork" of TGFβ, PTH and BMP2 on MSC homeostatic behavior, we consider that p62 exerts an essential role as a hub protein. Lastly, ex vivo pulsing p62-deficient MSCs, which then will be administered to a patient as a cell therapy, may be considered as a treatment for bone and bone marrow disorders.
Collapse
Affiliation(s)
- Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, (MC), Italy.
| | | | - Albert A Sufianov
- Federal Center of Neurosurgery, Tyumen, Russian Federation; Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Alexander Shneider
- CureLab Oncology Inc, Dedham, MA, USA; Ariel University, Department of Molecular Biology, Israel; Peter the Great St. Petersburg Polytechnic University, Institute of Biomedical Systems and Biotechnology, Russian Federation
| | - Maria Giovanna Sabbieti
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, (MC), Italy.
| |
Collapse
|
5
|
Agas D, Sabbieti MG. Autophagic Mediators in Bone Marrow Niche Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:61-75. [PMID: 34480334 DOI: 10.1007/5584_2021_666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bone marrow serves as a reservoir for a multifunctional assortment of stem, progenitor, and mature cells, located in functional anatomical micro-areas termed niches. Within the niche, hematopoietic and mesenchymal progenies establish a symbiotic relationship characterized by interdependency and interconnectedness. The fine-tuned physical and molecular interactions that occur in the niches guarantee physiological bone turnover, blood cell maturation and egression, and moderation of inflammatory and oxidative intramural stressful conditions. The disruption of bone marrow niche integrity causes severe local and systemic pathological settings, and thus bone marrow inhabitants have been the object of extensive study. In this context, research has revealed the importance of the autophagic apparatus for niche homeostatic maintenance. Archetypal autophagic players such as the p62 and the Atg family proteins have been found to exert a variety of actions, some autophagy-related and others not; they moderate the essential features of mesenchymal and hematopoietic stem cells and switch their operational schedules. This chapter focuses on our current understanding of bone marrow functionality and the role of the executive autophagic apparatus in the niche framework. Autophagic mediators such as p62 and Atg7 are currently considered the most important orchestrators of stem and mature cell dynamics in the bone marrow.
Collapse
Affiliation(s)
- Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, MC, Italy.
| | | |
Collapse
|
6
|
Agas D, Sabbieti MG. Archetypal autophagic players through new lenses for bone marrow stem/mature cells regulation. J Cell Physiol 2021; 236:6101-6114. [PMID: 33492700 DOI: 10.1002/jcp.30296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022]
Abstract
The bone marrow landscape consists of specialized and stem/progenitor cells, which coordinate important tissue-related and systemic physiological features. Within the marrow cavity, stem/progenitor and differentiated hematopoietic and skeletal cells congregate into dynamic functional assemblies throughout specific anatomical regions, termed niches. There is a need for better understanding of the bone marrow microareas, through exploration of the intramural physical and molecular interactions of the distinctive cell populations. The elective liaisons established among the mesenchymal/stromal stem cell and hematopoietic stem cell lineage trees play a key role in orchestrating the stem/mature cell behavior and customized hierarchies within bone marrow cell populations. Recently, the autophagic apparatus has been discovered to be an important feature of bone marrow homeostasis. Autophagy-related factors involved in the labyrinthic and highly dynamic bone marrow workshop redesign the niche framework by coordinating the operational schedule of pluripotent stem and mature cells. The following report summarizes the most recent breakthroughs in our understanding of the intramural relationships between bone marrow cells and key autophagic mediators. Doubtless, the consideration of the autophagy-related and unrelated functions of main players, such as p62, Atg7, Atg5, and Beclin-1 remains a compelling task to thoroughly understand the complex relations between the heterogenic cell types that populate bone marrow.
Collapse
Affiliation(s)
- Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Macerata, Italy
| | - Maria Giovanna Sabbieti
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Macerata, Italy
| |
Collapse
|
7
|
Lacava G, Laus F, Amaroli A, Marchegiani A, Censi R, Di Martino P, Yanagawa T, Sabbieti MG, Agas D. P62 deficiency shifts mesenchymal/stromal stem cell commitment toward adipogenesis and disrupts bone marrow homeostasis in aged mice. J Cell Physiol 2019; 234:16338-16347. [PMID: 30740681 DOI: 10.1002/jcp.28299] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 01/24/2023]
Abstract
With advancing age have been observed bone and bone marrow phenotypic alterations due to the impaired bone tissue homeostatic features, involving bone remodeling, and bone marrow niche ontogeny. The complex "inflamm-aging" pathological scenario that culminates with osteopenia and mesenchymal/stromal and hematopoietic stem cell commitment breakdown, is controlled by cellular and molecular intramural components comprising adapter proteins such as the sequestosome 1 (p62/SQSTM1). p62, a "multiway function" protein, has been reported as an effective anti-inflammatory, bone-building factor. In this view, we considered for the first time the involvement of p62 in aging bone and bone marrow of 1 year and 2 years p62-/- mice. Interestingly, p62 deficiency provoked accelerated osteopenia and impaired niche operational activities within the bone marrow. The above findings unearthed the importance of p62 in mesenchymal stem cell maintenance/differentiation schedule in old animals and provide, at least in part, a mechanistic scenario of p62 action.
Collapse
Affiliation(s)
- Giovanna Lacava
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Fulvio Laus
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Andrea Amaroli
- Department of Surgical and Diagnostic Sciences, University of Genova, Genova, Italy
| | - Andrea Marchegiani
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Roberta Censi
- School of Pharmacy, University of Camerino, Camerino, Italy
| | | | - Toru Yanagawa
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | | | - Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| |
Collapse
|
8
|
Agas D, Laus F, Lacava G, Marchegiani A, Deng S, Magnoni F, Silva GG, Di Martino P, Sabbieti MG, Censi R. Thermosensitive hybrid hyaluronan/p(HPMAm-lac)-PEG hydrogels enhance cartilage regeneration in a mouse model of osteoarthritis. J Cell Physiol 2019; 234:20013-20027. [PMID: 30968404 DOI: 10.1002/jcp.28598] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA), due to cartilage degeneration, is one of the leading causes of disability worldwide. Currently, there are not efficacious therapies to reverse cartilage degeneration. In this study we evaluated the potential of hybrid hydrogels, composed of a biodegradable and thermosensitive triblock copolymer cross-linked via Michael addition to thiolated hyaluronic acid, in contrasting inflammatory processes underlying OA. Hydrogels composed of different w/w % concentrations of hyaluronan were investigated for their degradation behavior and capacity to release the polysaccharide in a sustained fashion. It was found that hyaluronic acid was controllably released during network degradation with a zero-order release kinetics, and the release rate depended on cross-link density and degradation kinetics of the hydrogels. When locally administered in vivo in an OA mouse model, the hydrogels demonstrated the ability to restore, to some extent, bone remineralization, proteoglycan production, levels of Sox-9 and Runx-2. Furthermore, the downregulation of proinflammatory mediators, such as TNF-α, NFkB, and RANKL and proinflammatory cytokines was observed. In summary, the investigated hydrogel technology represents an ideal candidate for the potential encapsulation and release of drugs relevant in the field of OA. In this context, the hydrogel matrix could act in synergy with the drug, in reversing phenomena of inflammation, cartilage disruption, and bone demineralization associated with OA.
Collapse
Affiliation(s)
- Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Macerata, Italy
| | - Fulvio Laus
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Macerata, Italy
| | - Giovanna Lacava
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Macerata, Italy
| | - Andrea Marchegiani
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Macerata, Italy
| | - Siyuan Deng
- School of Pharmacy, University of Camerino, Camerino, Macerata, Italy
| | - Federico Magnoni
- School of Pharmacy, University of Camerino, Camerino, Macerata, Italy
| | - Guilherme Gusmão Silva
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Macerata, Italy.,Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Piera Di Martino
- School of Pharmacy, University of Camerino, Camerino, Macerata, Italy
| | - Maria Giovanna Sabbieti
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Macerata, Italy
| | - Roberta Censi
- School of Pharmacy, University of Camerino, Camerino, Macerata, Italy
| |
Collapse
|
9
|
Sabbieti MG, Lacava G, Amaroli A, Marchetti L, Censi R, Di Martino P, Agas D. Molecular Adjuvants Based on Plasmids Encoding Protein Aggregation Domains Affect Bone Marrow Niche Homeostasis. Curr Gene Ther 2019; 17:391-397. [PMID: 29303078 PMCID: PMC6751345 DOI: 10.2174/1566523218666180105122626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/12/2017] [Accepted: 12/29/2017] [Indexed: 12/19/2022]
Abstract
Background: During last years, DNA vaccine immunogenicity has been optimized by the employment of co-stimulatory molecules and molecular adjuvants. It has been reported that plasmid (pATRex), encompassing the DNA sequence for the von Willebrand A (vWA/A) domain of the An-thrax Toxin Receptor-1 (ANTXR-1, alias TEM8, Tumor Endothelial Marker 8), acts as strong immune adjuvant by inducing formation of insoluble intracellular aggregates. Markedly, we faced with upsetting findings regarding the safety of pATRex as adjuvant since the aggregosome formation prompted to os-teopenia in mice. Objective: The present study provides additional evidences about the proteinaceous adjuvants action within bone marrow and questioned regarding the self-aggregation protein adjuvants immunotoxicity on marrow niches. Methods & Results: Using histological, biochemical and proteomic assays we shed light on pATRex effects within bone marrow niche and specifically we evidenced an aplastic-like bone marrow with dis-rupted cytokine/chemokine production. Conclusion: The above findings provide compelling support to the thesis that adjuvants based on plas-mids encoding protein aggregation domains disrupt the physiological features of the bone marrow ele-ments.
Collapse
Affiliation(s)
- Maria Giovanna Sabbieti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino (MC), Italy
| | - Giovanna Lacava
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino (MC), Italy
| | - Andrea Amaroli
- Department of Surgical and Diagnostic Sciences, University of Genova, Genova, Italy
| | - Luigi Marchetti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino (MC), Italy
| | - Roberta Censi
- School of Pharmacy, University of Camerino, Camerino, (MC), Italy
| | - Piera Di Martino
- School of Pharmacy, University of Camerino, Camerino, (MC), Italy
| | - Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino (MC), Italy
| |
Collapse
|