1
|
Jiang L, Liu X, Deng F, Wang Y, Fan Q. Edible bird's nest improves the premature ovarian failure induced by tripterygium glycosides. Food Sci Nutr 2024; 12:4713-4722. [PMID: 39055185 PMCID: PMC11266920 DOI: 10.1002/fsn3.4119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/03/2024] [Accepted: 03/09/2024] [Indexed: 07/27/2024] Open
Abstract
Premature ovarian failure (POF) is a common disease in the field of gynecological endocrinology that seriously affects the physical and mental health of patients. Previous studies found that edible bird's nest (EBN) could improve uterine function. These suggested that EBN might also have an ameliorating effect on POF. Therefore, in this study, tripterygium glycosides (TGs) were used to induce POF in rats, and the effect of EBN on the improvement of POF was investigated. After the administration of EBN for 14 days, ovarian index and uterine index, serum hormone levels, apoptosis rate of ovarian granulosa cells, follicle-stimulating hormone receptor (FSHR) protein expression level, and the histopathological examination of the ovaries were determined. It was found that administration of medium and high EBN dose groups increased the ovarian index and granular layer thickness of rats with POF. Particularly, higher follicle-stimulating hormone levels and lower corpus luteum content were observed in the high EBN dose group. In addition, there were lower luteinizing hormone levels and fewer atretic follicles but higher progesterone levels in the medium EBN dose group. These results indicated that EBN had preventive and curative effects on POF induced by TGs. Its mechanism of action might be related to the reduction of ovarian granulosa cell apoptosis, regulation of hormones and receptors, and inhibition of follicle closure.
Collapse
Affiliation(s)
- Lin Jiang
- School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Xuncai Liu
- Bird's Nest Research Institute, Xiamen Yan Palace Seelong Biotechnology Co., Ltd.XiamenChina
| | - Fenghong Deng
- Bird's Nest Research Institute, Xiamen Yan Palace Seelong Biotechnology Co., Ltd.XiamenChina
| | - Yaxin Wang
- Bird's Nest Research Institute, Xiamen Yan Palace Seelong Biotechnology Co., Ltd.XiamenChina
| | - Qunyan Fan
- Bird's Nest Research Institute, Xiamen Yan Palace Seelong Biotechnology Co., Ltd.XiamenChina
| |
Collapse
|
2
|
Sheikh S, Lo BKM, Kaune H, Bansal J, Deleva A, Williams SA. Rescue of follicle development after oocyte-induced ovary dysfunction and infertility in a model of POI. Front Cell Dev Biol 2023; 11:1202411. [PMID: 37614224 PMCID: PMC10443433 DOI: 10.3389/fcell.2023.1202411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/20/2023] [Indexed: 08/25/2023] Open
Abstract
The mechanisms and aetiology underlying the development of premature ovarian insufficiency (POI) are poorly understood. However, the oocyte clearly has a role as demonstrated by the Double Mutant (DM) mouse model where ovarian dysfunction (6 weeks) is followed by POI (3 months) due to oocyte-specific deletion of complex and hybrid N- and O-glycans. The ovaries of DM mice contain more primary follicles (3a stage) accompanied by fewer developing follicles, indicating a block in follicle development. To investigate this block, we first analysed early follicle development in postnatal (8-day), pre-pubertal (3-week) and post-pubertal (6-week and 3-month) DM (C1galt1 F/F Mgat1 F/F:ZP3Cre) and Control (C1galt1 F/F Mgat1 F/F) mice. Second, we investigated if transplantation of DM ovaries into a "normal" endocrine environment would restore follicle development. Third, we determined if replacing DM ovarian somatic cells would rescue development of DM oocytes. At 3-week, DM primary 3a follicles contain large oocytes accompanied by early development of a second GC layer and increased GC proliferation. At 6-week, DM primary 3a follicles contain abnormally large oocytes, accompanied with decreased GC proliferation. Transplantation of DM ovaries into a 'normal' endocrine environment did not restore normal follicle development. However, replacing somatic cells by generating reaggregated ovaries (ROs) did enable follicle development to progress and thus highlighted intra-ovarian factors were responsible for the onset of POI in DM females. Thus, these studies demonstrate oocyte-initiated altered communication between GCs and oocytes results in abnormal primary follicles which fail to progress and leads to POI.
Collapse
Affiliation(s)
| | | | | | | | | | - Suzannah A. Williams
- Nuffield Department of Women’s and Reproductive Health, Women’s Centre, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Asadi Zarch ME, Afshar A, Rahmanifar F, Jafarzadeh Shirazi MR, Baghban M, Dadpasand M, Mohammad Rezazadeh F, Khoradmehr A, Baharvand H, Tamadon A. Three-dimensional and two-dimensional relationships of gangliogenesis with folliculogenesis in mature mouse ovary: a Golgi-Cox staining approach. Sci Rep 2021; 11:5547. [PMID: 33692376 PMCID: PMC7970916 DOI: 10.1038/s41598-021-84835-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/19/2021] [Indexed: 01/31/2023] Open
Abstract
The present study was set out to investigate two-dimensional (2D) and three-dimensional (3D) evaluations of ovarian nervous network development and the structural relationship between folliculogenesis and gangliogenesis in mouse ovaries. Adult mice ovarian tissue samples were collected from follicular and luteal phases after cardiac perfusion. Ovarian samples were stained by a Golgi-Cox protocol. Following staining, tissues were serially sectioned for imaging. Neural filaments and ganglia were present in the ovaries. In both 2D and 3D studies, an increase in the number and area of ganglia was seen during the follicular growth. The same pattern was also seen in corpora lutea development. However, in some cases such as ratio of ganglia number to follicle area, the ratio of ganglia area to follicular area, 2D findings were different compared with the 3D results. 3D analysis of ovarian gangliogenesis showed the possible direct effect of them on folliculogenesis. Golgi-Cox staining was used in this study for 3D evaluation in non-brain tissue. The results of 3D analysis of the present study showed that, in some cases, the information provided by 2D analysis does not match the reality of ovarian neuronal function. This confirmed the importance of 3D analysis for evaluation of ovarian function.
Collapse
Affiliation(s)
| | - Alireza Afshar
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, 75146-33196, Bushehr, Iran
| | - Farhad Rahmanifar
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Mandana Baghban
- Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Dadpasand
- Department of Animal Sciences, College of Agriculture, Shiraz University, 71441-65186, Shiraz, Iran
| | | | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, 75146-33196, Bushehr, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Amin Tamadon
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, 75146-33196, Bushehr, Iran.
| |
Collapse
|
4
|
Mahalingam S, Gao L, Eisner J, Helferich W, Flaws JA. Effects of isoliquiritigenin on ovarian antral follicle growth and steroidogenesis. Reprod Toxicol 2016; 66:107-114. [PMID: 27773742 PMCID: PMC5125911 DOI: 10.1016/j.reprotox.2016.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/12/2016] [Accepted: 10/19/2016] [Indexed: 01/28/2023]
Abstract
Isoliquiritigenin is a botanical estrogen used as a dietary supplement. Previous studies show that other botanical estrogens affect ovarian estradiol synthesis, but isoliquiritigenin's effects on the ovary are unknown. Thus, this study tested the hypothesis that isoliquiritigenin inhibits ovarian antral follicle growth and steroidogenesis. Antral follicles from CD-1 mice were cultured with vehicle control (dimethyl sulfoxide; DMSO) or isoliquiritigenin (0.6μM, 6 μM, 36 μM, and 100 μM) for 48-96h. During culture, follicle diameters were measured daily to assess follicle growth. After culture, media were collected for hormone assays and follicles were collected for gene expression analysis of steroidogenic enzymes. Isoliquiritigenin inhibited antral follicle growth and altered estradiol, testosterone, and progesterone levels. Additionally, isoliquiritigenin altered the mRNA levels of cytochrome P450 steroid 17-α-hydroxylase 1, aromatase, 17β-hydroxysteroid dehydrogenase 1, and steroidogenic acute regulatory protein. These data indicate that exposure to isoliquiritigenin inhibits growth and disrupts steroid production in antral follicles.
Collapse
Affiliation(s)
- Sharada Mahalingam
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802, United States.
| | - Liying Gao
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802, United States.
| | - Jacqueline Eisner
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802, United States.
| | - William Helferich
- Department of Food Science and Human Nutrition, University of Illinois, 905 S. Goodwin, Urbana, IL 61801, United States.
| | - Jodi A Flaws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802, United States.
| |
Collapse
|
5
|
Mahalingam S, Gao L, Gonnering M, Helferich W, Flaws JA. Equol inhibits growth, induces atresia, and inhibits steroidogenesis of mouse antral follicles in vitro. Toxicol Appl Pharmacol 2016; 295:47-55. [PMID: 26876617 DOI: 10.1016/j.taap.2016.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 01/15/2023]
Abstract
Equol is a non-steroidal estrogen metabolite produced by microbial conversion of daidzein, a major soy isoflavone, in the gut of some humans and many animal species. Isoflavones and their metabolites can affect endogenous estradiol production, action, and metabolism, potentially influencing ovarian follicle function. However, no studies have examined the effects of equol on intact ovarian antral follicles, which are responsible for sex steroid synthesis and further development into ovulatory follicles. Thus, the present study tested the hypothesis that equol inhibits antral follicle growth, increases follicle atresia, and inhibits steroidogenesis in the adult mouse ovary. To test this hypothesis, antral follicles isolated from adult CD-1 mice were cultured with vehicle control (dimethyl sulfoxide; DMSO) or equol (600 nM, 6 μM, 36 μM, and 100 μM) for 48 and 96 h. Every 24h, follicle diameters were measured to monitor growth. At 48 and 96 h, the culture medium was subjected to measurement of hormone levels, and the cultured follicles were subjected to gene expression analysis. Additionally, follicles were histologically evaluated for signs of atresia after 96 h of culture. The results indicate that equol (100 μM) inhibited follicle growth, altered the mRNA levels of bcl2-associated X protein and B cell leukemia/lymphoma 2, and induced follicle atresia. Further, equol decreased the levels of estradiol, testosterone, androstenedione, and progesterone, and it decreased mRNA levels of cholesterol side-chain cleavage, steroid 17-α-hydroxalase, and aromatase. Collectively, these data indicate that equol inhibits growth, increases atresia, and inhibits steroidogenesis of cultured mouse antral follicles.
Collapse
Affiliation(s)
- Sharada Mahalingam
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802, United States.
| | - Liying Gao
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802, United States.
| | - Marni Gonnering
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802, United States.
| | - William Helferich
- Department of Food Science and Human Nutrition, University of Illinois, 905 S. Goodwin, Urbana, IL 61801, United States.
| | - Jodi A Flaws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802, United States.
| |
Collapse
|
6
|
Elliott-Sale KJ, Smith S, Bacon J, Clayton D, McPhilimey M, Goutianos G, Hampson J, Sale C. Examining the role of oral contraceptive users as an experimental and/or control group in athletic performance studies. Contraception 2013; 88:408-12. [DOI: 10.1016/j.contraception.2012.11.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 11/30/2012] [Accepted: 11/30/2012] [Indexed: 11/30/2022]
|
7
|
Adriaenssens T, Mazoyer C, Segers I, Wathlet S, Smitz J. Differences in collagen expression in cumulus cells after exposure to highly purified menotropin or recombinant follicle-stimulating hormone in a mouse follicle culture model. Biol Reprod 2009; 80:1015-25. [PMID: 19164180 DOI: 10.1095/biolreprod.107.067462] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Extracellular matrix (ECM) formation by cumulus cells is an important process that determines fertilization and embryo quality. Several collagen types are present in the ovarian follicular ECM and are related to proliferation, steroidogenesis, and luteinization. In vitro mouse follicles can optimally grow and provide developmentally competent oocytes with 10 IU/L recombinant follicle-stimulating hormone (rFSH). As a model for superovulation, experiments with 100 IU/L rFSH or 100 IU/L highly purified menotropin (HP-hMG) exposure during antral growth were undertaken. Col4a1, Col4a2, and Col6a2 expression levels were analyzed at three time points during antral growth and at a 4-h interval up to 16 h after ovulation induction using quantitative PCR. The presence and induction of the collagen mRNA and protein were confirmed in cumulus from in vivo- and in vitro-grown follicles, and TGFBs 1 and 2 were assayed as potential regulators. The study revealed that exposure to 100 IU/L FSH, as in both superovulation conditions, significantly influenced the follicle morphology and slowed down nuclear maturation and mucification (P < 0.05). This coincided with an increased expression of the three collagens in the cumulus-oocyte complex at the end of antral growth and in the first hours following the ovulatory dose of human chorionic gonadotropin (P < 0.05). The increased expression might reflect a differentiation but is most likely due to a precocious luteinization of the cumulus. Growth in HP-hMG resulted in higher Tgfb1 mRNA and protein levels, fewer COCs with an increased collagen expression and with a more synchronous nuclear maturation. This suggests that the presence of luteinizing hormone activity tempered the effect of the elevated FSH dose.
Collapse
|
8
|
Abstract
The assembly of the primordial follicles early in ovarian development and the subsequent development and transition of the primordial follicle to the primary follicle are critical processes in ovarian biology. These processes directly affect the number of oocytes available to a female throughout her reproductive life. Once the pool of primordial follicles is depleted a series of physiological changes known as menopause occur. The inappropriate coordination of these processes contributes to ovarian pathologies such as premature ovarian failure (POF) and infertility. Primordial follicle assembly and development are coordinated by locally produced paracrine and autocrine growth factors. Endocrine factors such as progesterone have also been identified that influence follicular assembly. Locally produced factors that promote the primordial to primary follicle transition include growth factors such as kit ligand (KL), leukaemia inhibitory factor (LIF), bone morphogenic proteins (BMP's), keratinocyte growth factor (KGF) and basic fibroblast growth factor (bFGF). Factors mediating both precursor theca-granulosa cell interactions and granulosa-oocyte interactions have been identified. A factor produced by preantral and antral follicles, Müllerian inhibitory substance, can act to inhibit the primordial to primary follicle transition. Observations suggest that a complex network of cell-cell interactions is required to control the primordial to primary follicle transition. Elucidation of the molecular and cellular control of primordial follicle assembly and the primordial to primary follicle transition provides therapeutic targets to regulate ovarian function and treat ovarian disease.
Collapse
Affiliation(s)
- Michael K Skinner
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4231, USA.
| |
Collapse
|
9
|
Beckman DA, Feuston M. Landmarks in the development of the female reproductive system. BIRTH DEFECTS RESEARCH. PART B, DEVELOPMENTAL AND REPRODUCTIVE TOXICOLOGY 2003; 68:137-43. [PMID: 12866705 DOI: 10.1002/bdrb.10016] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- David A Beckman
- Novartis Pharmaceuticals Corporation, Preclinical Safety, Toxicology, East Hanover, New Jersey 07936, USA.
| | | |
Collapse
|
10
|
Herath CB, Yamashita M, Watanabe G, Jin W, Tangtrongsup S, Kojima A, Groome NP, Suzuki AK, Taya K. Regulation of follicle-stimulating hormone secretion by estradiol and dimeric inhibins in the infantile female rat. Biol Reprod 2001; 65:1623-33. [PMID: 11717121 DOI: 10.1095/biolreprod65.6.1623] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Plasma and ovarian levels of the dimeric forms of inhibin and plasma estradiol-17beta were investigated and compared with changes in plasma gonadotropins from Postnatal Day (PND) 5 to PND 30 in the female rat. The inhibin subunit proteins were localized in follicular granulosa cells of the ovary. Plasma immunoreactive inhibin levels were low until PND 15 and increased thereafter. Plasma levels of inhibin B (alpha and beta(B) subunits) remained very low until PND 15 and then increased by approximately 24-fold. In contrast, plasma levels of inhibin A (alpha and beta(A) subunits) were relatively low and steady until PND 20, then increased by approximately 3-fold at PND 25. Changes in ovarian inhibin A and B levels closely resembled those in plasma levels. Plasma FSH levels were low at PND 10 but started to peak from PND 15 and remained high until PND 20, followed by a remarkable reduction at PNDs 25 and 30. This dramatic fall in FSH coincided with the rise of inhibin A. A significant inverse correlation was observed between plasma FSH and plasma inhibin A (r = -0.67, P < 0.0002), ovarian inhibin A (r = -0.48, P < 0.01), plasma inhibin B (r = -0.48, P < 0.05), and ovarian inhibin B (r = -0.54, P < 0.01). Plasma estradiol-17beta levels were elevated from PND 5 through PND 15, then fell sharply through PND 30. Plasma estradiol-17beta was significantly and positively (r = 0.75, P < 0.0002) correlated with plasma FSH. Plasma LH rose to higher levels at PND 15 and tended to be lower thereafter. The inhibin alpha, beta(A), and beta(B) subunits were localized to primary, secondary, and antral and large antral follicles, but the types of these immunopositive follicles varied with age. It appeared that, at PND 25 and afterward, all three subunits were mainly confined to large antral follicles in the ovary. We conclude that estradiol-17beta likely is the major candidate in stimulation of FSH secretion in the infantile female rat. We also conclude that inhibin regulation of pituitary FSH secretion through its negative feedback in the infantile female rat begins to operate after PND 20. We suggest that this negative feedback is achieved by increases in plasma levels of the two dimeric forms, and that inhibin A appears to be the major physiological regulator of FSH secretion at the initiation of this mechanism. We also conclude that large antral follicles in the ovary are the primary source of these bioactive inhibins that are secreted in large amounts into the circulation after PND 20.
Collapse
Affiliation(s)
- C B Herath
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Parrott JA, Skinner MK. Kit-ligand/stem cell factor induces primordial follicle development and initiates folliculogenesis. Endocrinology 1999; 140:4262-71. [PMID: 10465300 DOI: 10.1210/endo.140.9.6994] [Citation(s) in RCA: 243] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Initiation of folliculogenesis through the induction of primordial follicle development in the ovary has an important role in determining the fertility and reproductive fitness of most mammalian species. The factors that control this critical process are largely unknown. The hypothesis tested in the current study was that kit-ligand/stem cell factor (KL) promotes the initiation and progression of primordial follicle development in the ovary. Ovaries from 4-day-old rats were maintained in organ culture for 5 and 14 days and treated with no factor (control), recombinant kit-ligand (KL), or gonadotropins (FSH and hCG). Follicles in ovarian sections were counted and histologically classified as primordial (stage 0), early primary (stage 1), primary (stage 2), transitional (stage 3), or preantral (stage 4). Fresh ovaries from 4-day-old rats contained 68% primordial follicles (stage 0) and 32% developing follicles (stages 1-4) per section. After 5 and 14 days in culture, section from control ovaries contained approximately 41% and 55%, respectively, developing follicles (stage 1-4) per section due to spontaneous development of primordial follicles. Spontaneous primordial follicle development was completely blocked by ACK-2, a c-kit antibody that blocks KL actions. This observation suggests that endogenous KL is necessary for primordial follicle development in vitro. After 14 days of KL treatment, sections from ovaries contained 17% primordial follicles (stage 0) and 83% developing follicles (stage 1-4) per section demonstrating a dramatic induction of primordial follicle development by KL. Gonadotropins (FSH and hCG) did not induce primordial follicle development but did increase the percentage of preantral follicles (stage 4) per section. This small increase in preantral follicles in response to gonadotropins was blocked by ACK-2 suggesting that KL may in part mediate gonadotropin actions after the initiation of primordial follicle development. Ovaries contained an average of 309+/-10 follicles per section. The total number of follicles per section did not significantly vary between treatments suggesting that the effects of KL were not due to an alteration in follicle number (i.e. survival). KL appears to be one of the first factors identified to be involved in the promotion of primordial follicle development. Results suggest that KL is necessary and sufficient to induce primordial follicle development and initiate folliculogenesis.
Collapse
Affiliation(s)
- J A Parrott
- Department of Genetics and Cell Biology, Washington State University, Pullman 99163-4231, USA
| | | |
Collapse
|
12
|
Bokser L, Szende B, Schally AV. Protective effects of D-Trp6-luteinising hormone-releasing hormone microcapsules against cyclophosphamide-induced gonadotoxicity in female rats. Br J Cancer 1990; 61:861-5. [PMID: 2142603 PMCID: PMC1971695 DOI: 10.1038/bjc.1990.192] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The possible protective effect of an agonist of luteinising hormone-releasing hormone (LH-RH) against the ovarian damage caused by cyclophosphamide was investigated in rats. D-Trp6-LH-RH microcapsules were injected once a month for 3 months, in a dose calculated to release 25 micrograms day-1. Control animals received the injection vehicle. Sixty days after the first injection of microcapsules, cyclophosphamide was given at a loading dose of 50 mg kg-1 followed by 5 mg kg-1 day-1 for 30 days, while the treatment with D-Trp6-LH-RH was continued. When the ovaries were examined 3 months and 5 months after discontinuation of treatment, a significant reduction in the total number of follicles (P less than 0.01) was found in non-pretreated animals given cyclophosphamide. This reduction affected mainly follicles larger than 100 microns. An irreversible disintegration and destruction of granulosa cells was also observed in this group. In animals pretreated with D-Trp6-LH-RH, administration of cyclophosphamide caused no reduction in the number and diameter of follicles. Thus, the treatment with D-Trp6-LH-RH microcapsules before and during chemotherapy prevented the ovarian injury inflicted by cyclophosphamide. The suppression of gonadal function by LH-RH analogues could be possibly utilised for the protection of the ovaries against damage caused by cytotoxic drugs.
Collapse
Affiliation(s)
- L Bokser
- Endocrine, Polypeptide and Cancer Institute, Veterans Administration Medical Center, New Orleans, LA 70146
| | | | | |
Collapse
|
13
|
Hirshfield AN, Schmidt WA. Kinetic aspects of follicular development in the rat. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1987; 219:211-36. [PMID: 3324679 DOI: 10.1007/978-1-4684-5395-9_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- A N Hirshfield
- Department of Anatomy, University of Maryland, School of Medicine, Baltimore 21201
| | | |
Collapse
|
14
|
Tähkä KM. A histochemical study on the effects of photoperiod on gonadal and adrenal function in the female bank vole (Clethrionomys glareolus, Schreb.). Gen Comp Endocrinol 1980; 41:41-52. [PMID: 6993280 DOI: 10.1016/0016-6480(80)90030-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|