1
|
Montgomery GW. Genetic regulation of ovulation rate and multiple births. Reprod Fertil Dev 2024; 36:RD24083. [PMID: 39222471 DOI: 10.1071/rd24083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Ovulation rate in many mammalian species is controlled to regulate the numbers of offspring and maximise reproductive success. Pathways that regulate ovulation rate still respond to genetic and environmental factors and show considerable variation within and between species. Genetic segregation, positional cloning, and association studies have discovered numerous mutations and genetic risk factors that contribute to this variation. Notable among the discoveries has been the role of mutations in bone morphogenetic protein 15 (BMP15 ), growth differentiation factor 9 (GDF9 ) and bone morphogenetic protein receptor type 1B (BMPR1B ) from the intra-ovarian signalling pathway contributing to the evidence that signalling from the oocyte is the key driver in follicle regulation rather than circulating gonadotrophin concentrations. Multiple variants in different domains of BMP15 and GDF9 result in partial or complete loss of function of the proteins providing insights into their functional roles and differential regulation contributing to species differences in ovulation rate. Early success encouraged many more studies in prolific strains of sheep, cattle and goats providing a valuable catalogue of genetic variants of large effect increasing ovulation rate and litter size. More recently, genetic association studies are beginning to identify genetic risk factors with smaller effects. Most genes implicated are from pathways with defined roles in regulation of the ovarian function. However, some genomic regions suggest regulation by novel genes. Continuing genetic and related functional studies will add further to our understanding of the detailed regulation of ovulation rate and litter size with implications for health and animal production systems.
Collapse
Affiliation(s)
- G W Montgomery
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
2
|
Huang Y, Zhang H, Mei C, Yang M, Zhao S, Zhu H, Wang Y. Phenotypic and Genetic Analyses of In Vitro Embryo Production Traits in Chinese Holstein Cattle. Animals (Basel) 2023; 13:3539. [PMID: 38003156 PMCID: PMC10668646 DOI: 10.3390/ani13223539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Ovum pick up and in vitro embryo production (OPU-IVEP) is an essential technique in the dairy industry. The production efficiency of OPU-IVEP is significantly influenced by various factors, and phenotypic and genetic characteristics are highly variable in different populations. The objectives of this study were (1) to reveal the phenotypic characteristics, including population distribution, and impacts of donor age and month on in vitro embryo production and (2) to estimate genetic parameters for five in vitro embryo production traits in Chinese Holstein cattle. A total of 7311 OPU-IVEP records of 867 Holstein heifers from August 2021 to March 2023 were collected in this study. Five in vitro embryo production traits were defined, including the number of cumulus-oocyte complexes (NCOC), the number of cleaved embryos (NCLV), the number of grade I embryos (NGE), and the proportion of NCLV to NCOC (PCLV) and NGE to NCOC (PGE). A univariate repeatability animal model was employed to estimate heritability and repeatability, and a bivariate repeatability animal model was employed to estimate the genetic correlations among five in vitro embryo production traits. It was found that the in vitro embryo production traits were significantly influenced by season, as the NGE and PGE were significantly decreased from June to August. In addition, the production efficiency of OPU-IVEP was also influenced by donor age. On the observed scale, the estimates of heritability were 0.33 for NCOC, 0.24 for NCLV, 0.16 for NGE, 0.06 for PCLV, and 0.10 for PGE, respectively. On the log-transformed scale, the estimates of heritability of NCOC, NCLV, and NGE were 0.34, 0.18, and 0.13. The genetic correlations among NCOC, NCLV, and NGE ranged from 0.61 (NCLV and NGE) to 0.95 (NCOC and NCLV), considering both scales. However, there were low genetic correlations between NCOC and proportion traits (PCLV and PGE) on both the observed scale and the log-transformed scale. In the end, the variation in Chinese Holstein cattle was found to be considerable. The EBV value and average NCOC, NGE, and PGE for the top 10% donors presented extreme differences to those for the bottom 10% donors for NCOC (24.02 versus 2.60), NGE (3.42 versus 0.36), and PGE (30.54% versus 3.46%). Overall, the results of this study reveal that in vitro embryo production traits are heritable with low to high heritability, and the count traits (NCOC, NCLV, and NGE) and proportion traits (PCLV and PGE) reflect different aspects of in vitro embryo production and should be incorporated into genetic selection for improving the embryo production efficiency of dairy cattle.
Collapse
Affiliation(s)
- Yuechuan Huang
- State Key Laboratory of Farm Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproductive of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.H.); (H.Z.)
- College of Animal Science and Technology, Xinjiang Agricultural University, Urumqi 830052, China
| | - Hailiang Zhang
- State Key Laboratory of Farm Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproductive of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.H.); (H.Z.)
| | - Cheng Mei
- Dongying Auatasia Modern Animal Husbandry Co., Ltd., Dongying 257300, China; (C.M.); (M.Y.)
| | - Minglu Yang
- Dongying Auatasia Modern Animal Husbandry Co., Ltd., Dongying 257300, China; (C.M.); (M.Y.)
| | - Shanjiang Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Huabin Zhu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Yachun Wang
- State Key Laboratory of Farm Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproductive of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.H.); (H.Z.)
| |
Collapse
|
3
|
Zhang J, Sun J, Xiao L, Ouyang Y, Shi D, Lu F. Testosterone supplementation improves estrogen synthesis of buffalo (Bubalus bubalis) granulosa cells. Reprod Domest Anim 2023; 58:1628-1635. [PMID: 37668268 DOI: 10.1111/rda.14467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/26/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023]
Abstract
Granulosa cells (GCs) synthesize estrogens needed for follicular growth. However, the effects of androgen on estrogen production in buffalo GCs remain unclear. In this study, the impacts of testosterone on estrogen synthesis in buffalo GCs were examined. The results showed that testosterone that was added to cell medium at a concentration of 10-7 mol/L and applied to GCs for 48 or 72 h enhanced the estrogen synthesis of buffalo GCs. This study provides a theoretical basis for further exploration of ovarian endocrine mechanism for steroidogenesis.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Junming Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Linlin Xiao
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Yiqiang Ouyang
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Fenghua Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| |
Collapse
|
4
|
Maugrion E, Shedova EN, Uzbekov R, Teixeira-Gomes AP, Labas V, Tomas D, Banliat C, Singina GN, Uzbekova S. Extracellular Vesicles Contribute to the Difference in Lipid Composition between Ovarian Follicles of Different Size Revealed by Mass Spectrometry Imaging. Metabolites 2023; 13:1001. [PMID: 37755281 PMCID: PMC10538054 DOI: 10.3390/metabo13091001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Follicular fluid (FF) ensures a safe environment for oocyte growth and maturation inside the ovarian follicle in mammals. In each cycle, the large dominant follicle (LF) contains the oocyte designated to be ovulated, whereas the small subordinate follicles (SFs) of the same wave will die through atresia. In cows, the oocytes from the SF, being 2 mm in size, are suitable for in vitro reproduction biotechnologies, and their competence in developing an embryo depends on the size of the follicles. FF contains proteins, metabolites, fatty acids, and a multitude of extracellular vesicles (ffEVs) of different origins, which may influence oocyte competence through bidirectional exchanges of specific molecular cargo between follicular cells and enclosed oocytes. FF composition evolves along with follicle growth, and the abundance of different lipids varies between the LF and SF. Here, significant differences in FF lipid content between the LFs and SFs within the same ovary were demonstrated by MALD-TOF mass spectrometry imaging on bovine ovarian sections. We then aimed to enlighten the lipid composition of FF, and MALDI-TOF lipid profiling was performed on cellular, vesicular, and liquid fractions of FF. Differential analyses on the abundance of detected lipid features revealed specific enrichment of phospholipids in different ffEV types, such as microvesicles (MVs) and exosomes (Exo), compared to depleted FF. MALDI-TOF lipid profiling on MVs and Exo from the LF and SF samples (n = 24) revealed that more than 40% of detected features were differentially abundant between the groups of MVs and Exo from the different follicles (p < 0.01, fold change > 2). Glycerophospholipid and sphingolipid features were more abundant in ffEVs from the SFs, whereas different lysophospholipids, including phosphatidylinositols, were more abundant in the LFs. As determined by functional analysis, the specific lipid composition of ffEVs suggested the involvement of vesicular lipids in cell signaling pathways and largely contributed to the differentiation of the dominant and subordinate follicles.
Collapse
Affiliation(s)
- Emilie Maugrion
- CNRS, INRAE, University of Tours, PRC, 37380 Nouzilly, France (A.-P.T.-G.); (V.L.); (D.T.)
- PIXANIM, INRAE, University of Tours, CHU of Tours, 37380 Nouzilly, France
| | | | - Rustem Uzbekov
- Laboratory of Cell Biology and Electron Microscopy, Medical Faculty, University of Tours, 37032 Tours, France
- Faculty of Bioengineering and Bioinformatics, Moscow State University, 119992 Moscow, Russia
| | - Ana-Paula Teixeira-Gomes
- CNRS, INRAE, University of Tours, PRC, 37380 Nouzilly, France (A.-P.T.-G.); (V.L.); (D.T.)
- PIXANIM, INRAE, University of Tours, CHU of Tours, 37380 Nouzilly, France
| | - Valerie Labas
- CNRS, INRAE, University of Tours, PRC, 37380 Nouzilly, France (A.-P.T.-G.); (V.L.); (D.T.)
- PIXANIM, INRAE, University of Tours, CHU of Tours, 37380 Nouzilly, France
| | - Daniel Tomas
- CNRS, INRAE, University of Tours, PRC, 37380 Nouzilly, France (A.-P.T.-G.); (V.L.); (D.T.)
- PIXANIM, INRAE, University of Tours, CHU of Tours, 37380 Nouzilly, France
| | - Charles Banliat
- PIXANIM, INRAE, University of Tours, CHU of Tours, 37380 Nouzilly, France
- Ecole Supérieure d’Agricultures (ESA), 49007 Angers, France
| | - Galina N. Singina
- L.K. Ernst Federal Research Center for Animal Husbandry, 142132 Podolsk, Russia
| | - Svetlana Uzbekova
- CNRS, INRAE, University of Tours, PRC, 37380 Nouzilly, France (A.-P.T.-G.); (V.L.); (D.T.)
| |
Collapse
|
5
|
The effect of melatonin on the mouse ameloblast-lineage cell line ALCs. Sci Rep 2022; 12:8225. [PMID: 35581244 PMCID: PMC9114102 DOI: 10.1038/s41598-022-11912-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/13/2022] [Indexed: 01/17/2023] Open
Abstract
Melatonin plays a critical role in promoting the proliferation of osteoblasts and the growth and development of dental papilla cells. However, the effect and mechanism of melatonin on the growth and development of ALCs still need to be explored. CCK8 assay was used for the evaluation of cell numbers. qRT-PCR was used to identify the differentially expressed genes in ALCs after melatonin treatment. The number and morphology of ALCs were investigated by confocal microscopy. Alkaline phosphatase assay and Alizarin red S staining were used for measuring mineralization. Then, we focused on observing the crucial factors of the signaling pathway by RNA-seq and qRT-PCR. Melatonin limited the cell number of ALCs in a dose-dependent manner and promoted the production of actin fibers. A high concentration of melatonin significantly promoted the mRNA levels of enamel matrix proteins and the formation of mineralized nodules. RNA-seq data showed that Wnt signaling pathway may be involved in the differentiation of ALCs under the influence of melatonin. This study suggests that melatonin plays a regulatory role in the cell number, differentiation, and mineralization of the ALCs, and then shows the relationship between the Wnt signaling pathway with the ALCs under melatonin.
Collapse
|
6
|
Uzbekova S, Bertevello PS, Dalbies-Tran R, Elis S, Labas V, Monget P, Teixeira-Gomes AP. Metabolic exchanges between the oocyte and its environment: focus on lipids. Reprod Fertil Dev 2021; 34:1-26. [PMID: 35231385 DOI: 10.1071/rd21249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Finely regulated fatty acid (FA) metabolism within ovarian follicles is crucial to follicular development and influences the quality of the enclosed oocyte, which relies on the surrounding intra-follicular environment for its growth and maturation. A growing number of studies have examined the association between the lipid composition of follicular compartments and oocyte quality. In this review, we focus on lipids, their possible exchanges between compartments within the ovarian follicle and their involvement in different pathways during oocyte final growth and maturation. Lipidomics provides a detailed snapshot of the global lipid profiles and identified lipids, clearly discriminating the cells or fluid from follicles at distinct physiological stages. Follicular fluid appears as a main mediator of lipid exchanges between follicular somatic cells and the oocyte, through vesicle-mediated and non-vesicular transport of esterified and free FA. A variety of expression data allowed the identification of common and cell-type-specific actors of lipid metabolism in theca cells, granulosa cells, cumulus cells and oocytes, including key regulators of FA uptake, FA transport, lipid transformation, lipoprotein synthesis and protein palmitoylation. They act in harmony to accompany follicular development, and maintain intra-follicular homeostasis to allow the oocyte to accumulate energy and membrane lipids for subsequent meiotic divisions and first embryo cleavages.
Collapse
Affiliation(s)
- Svetlana Uzbekova
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; and LK Ernst Federal Science Centre for Animal Husbandry, Podolsk, Russia
| | | | | | - Sebastien Elis
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France
| | - Valerie Labas
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; and INRAE, Université de Tours, CHRU Tours, Plate-Forme PIXANIM, F-37380 Nouzilly, France
| | - Philippe Monget
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France
| | - Ana-Paula Teixeira-Gomes
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; and INRAE, Université de Tours, CHRU Tours, Plate-Forme PIXANIM, F-37380 Nouzilly, France
| |
Collapse
|
7
|
Bertevello PS, Teixeira-Gomes AP, Labas V, Cordeiro L, Blache MC, Papillier P, Singina G, Uzbekov R, Maillard V, Uzbekova S. MALDI-TOF Mass Spectrometry Revealed Significant Lipid Variations in Follicular Fluid and Somatic Follicular Cells but Not in Enclosed Oocytes between the Large Dominant and Small Subordinate Follicles in Bovine Ovary. Int J Mol Sci 2020; 21:E6661. [PMID: 32932995 PMCID: PMC7554725 DOI: 10.3390/ijms21186661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022] Open
Abstract
Lipid metabolism in ovarian follicular cells supports the preparation of an enclosed oocyte to ovulation. We aimed to compare lipid composition of a dominant large follicle (LF) and subordinated small follicles (SFs) within the same ovaries. Mass spectrometry imaging displayed the differences in the distribution of several lipid features between the different follicles. Comparison of lipid fingerprints between LF and SF by Matrix Assisted Laser Desorption/Ionisation Time-Of-Flight (MALDI-TOF) mass spectrometry revealed that in the oocytes, only 8 out of 468 detected lipids (1.7%) significantly changed their abundance (p < 0.05, fold change > 2). In contrast, follicular fluid (FF), granulosa, theca and cumulus cells demonstrated 55.5%, 14.9%, 5.3% and 9.8% of significantly varied features between LF and SF, respectively. In total, 25.2% of differential lipids were identified and indicated potential changes in membrane and signaling lipids. Tremendous changes in FF lipid composition were likely due to the stage specific secretions from somatic follicular cells that was in line with the differences observed from FF extracellular vesicles and gene expression of candidate genes in granulosa and theca cells between LF and SF. In addition, lipid storage in granulosa and theca cells varied in relation to follicular size and atresia. Differences in follicular cells lipid profiles between LF and SF may probably reflect follicle atresia degree and/or accumulation of appropriate lipids for post-ovulation processes as formation of corpus luteum. In contrast, the enclosed oocyte seems to be protected during final follicular growth, likely due in part to significant lipid transformations in surrounding cumulus cells. Therefore, the enclosed oocyte could likely keep lipid building blocks and energy resources to support further maturation and early embryo development.
Collapse
Affiliation(s)
- Priscila Silvana Bertevello
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (P.S.B.); (V.L.); (L.C.); (M.-C.B.); (P.P.); (V.M.)
| | - Ana-Paula Teixeira-Gomes
- INRAE, Université de Tours, ISP, 37380 Nouzilly, France;
- CHU de Tours, INRAE, Université de Tours, PRC, CIRE, 37380 Nouzilly, France
| | - Valerie Labas
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (P.S.B.); (V.L.); (L.C.); (M.-C.B.); (P.P.); (V.M.)
- CHU de Tours, INRAE, Université de Tours, PRC, CIRE, 37380 Nouzilly, France
| | - Luiz Cordeiro
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (P.S.B.); (V.L.); (L.C.); (M.-C.B.); (P.P.); (V.M.)
| | - Marie-Claire Blache
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (P.S.B.); (V.L.); (L.C.); (M.-C.B.); (P.P.); (V.M.)
| | - Pascal Papillier
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (P.S.B.); (V.L.); (L.C.); (M.-C.B.); (P.P.); (V.M.)
| | - Galina Singina
- L.K. Ernst Institute of Animal Husbandry, Dubrovitzy 60, Podolsk, 142132 Moscow, Russia;
| | - Rustem Uzbekov
- Laboratoire Biologie Cellulaire et Microscopie Électronique, Faculté de Médecine, Université de Tours, 10, bd Tonnellé, 37032 Tours, France;
| | - Virginie Maillard
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (P.S.B.); (V.L.); (L.C.); (M.-C.B.); (P.P.); (V.M.)
- Laboratoire Biologie Cellulaire et Microscopie Électronique, Faculté de Médecine, Université de Tours, 10, bd Tonnellé, 37032 Tours, France;
| | - Svetlana Uzbekova
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (P.S.B.); (V.L.); (L.C.); (M.-C.B.); (P.P.); (V.M.)
- CHU de Tours, INRAE, Université de Tours, PRC, CIRE, 37380 Nouzilly, France
| |
Collapse
|
8
|
Yang L, Lv Q, Liu J, Qi S, Fu D. miR-431 regulates granulosa cell function through the IRS2/PI3K/AKT signaling pathway. J Reprod Dev 2020; 66:231-239. [PMID: 32051352 PMCID: PMC7297634 DOI: 10.1262/jrd.2019-155] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/21/2020] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs (miRNAs) regulate the functions of granulosa cells by interacting with their target mRNAs. Insulin receptor substrate 2 (IRS2) is one of the targets of miR-431 and can be regulated by ovarian hormones. However, the role of miR-431 and the associated signal transduction pathway in ovarian development has not been studied previously. In this study, we first analyzed the expression of miR-431 and IRS2 following stimulation with pregnant mare serum gonadotropin (PMSG) during the estrous cycle or different stages of ovarian development in mice. Subsequently, we investigated the role, function, and signaling pathway of miR-431 in the human granulosa cell line, COV434. The results showed that follicle stimulating hormone (FSH) gradually decreased miR-431 levels, induced IRS2, and promoted pAKT expression. Moreover, miR-431 overexpression and IRS2 knockdown attenuated AKT activation, inhibited cell proliferation, and decreased estradiol (E2) and progesterone (P4) synthesis. Further, luciferase reporter assay demonstrated that IRS2 was a direct target of miR-431. In conclusion, this study demonstrated that miR-431 regulates granulosa cell function through the IRS2/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Lei Yang
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiangxi 332000, PR China
- College of Basic Medical Science, Jiujiang University, Jiangxi 332000, PR China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Guangxi 537000, PR China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin 537000, PR China
| | - Jianyun Liu
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiangxi 332000, PR China
- College of Basic Medical Science, Jiujiang University, Jiangxi 332000, PR China
| | - Shikai Qi
- College of Electric Engineering, Jiujiang University, Jiujiang 332000, PR China
| | - Denggang Fu
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiangxi 332000, PR China
- College of Basic Medical Science, Jiujiang University, Jiangxi 332000, PR China
| |
Collapse
|
9
|
Tahir MS, Nguyen LT, Schulz BL, Boe-Hansen GA, Thomas MG, Moore SS, Lau LY, Fortes MRS. Proteomics Recapitulates Ovarian Proteins Relevant to Puberty and Fertility in Brahman Heifers ( Bos indicus L.). Genes (Basel) 2019; 10:E923. [PMID: 31726744 PMCID: PMC6895798 DOI: 10.3390/genes10110923] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022] Open
Abstract
High fertility and early puberty in Bos indicus heifers are desirable and genetically correlated traits in beef production. The hypothalamus-pituitary-ovarian (HPO) axis synthesizes steroid hormones, which contribute to the shift from the pre-pubertal state into the post-pubertal state and influence subsequent fertility. Understanding variations in abundance of proteins that govern steroid synthesis and ovarian signaling pathways remains crucial to understanding puberty and fertility. We used whole ovaries of six pre-pubertal and six post-pubertal Brahman heifers to conduct differential abundance analyses of protein profiles between the two physiological states. Extracted proteins were digested into peptides followed by identification and quantification with massspectrometry (MS) by sequential window acquisition of all instances of theoretical fragment ion mass spectrometry (SWATH-MS). MS and statistical analysis identified 566 significantly differentially abundant (DA) proteins (adjusted p < 0.05), which were then analyzed for gene ontology and pathway enrichment. Our data indicated an up-regulation of steroidogenic proteins contributing to progesterone synthesis at luteal phase post-puberty. Proteins related to progesterone signaling, TGF-β, retinoic acid, extracellular matrix, cytoskeleton, and pleiotrophin signaling were DA in this study. The DA proteins probably relate to the formation and function of the corpus luteum, which is only present after ovulation, post-puberty. Some DA proteins might also be related to granulosa cells signaling, which regulates oocyte maturation or arrest in ovaries prior to ovulation. Ten DA proteins were coded by genes previously associated with reproductive traits according to the animal quantitative trait loci (QTL) database. In conclusion, the DA proteins and their pathways were related to ovarian activity in Bos indicus cattle. The genes that code for these proteins may explain some known QTLs and could be targeted in future genetic studies.
Collapse
Affiliation(s)
- Muhammad S. Tahir
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia; (M.S.T.); (B.L.S.); (L.Y.L.)
| | - Loan T. Nguyen
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Queensland, Australia; (L.T.N.); (S.S.M.)
| | - Benjamin L. Schulz
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia; (M.S.T.); (B.L.S.); (L.Y.L.)
| | - Gry A. Boe-Hansen
- School of Veterinary Sciences, University of Queensland, Brisbane 4343, Queensland, Australia;
| | - Milton G. Thomas
- Department of Animal Science, Colorado State University, Fort Collins, CO 80523, USA;
| | - Stephen S. Moore
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Queensland, Australia; (L.T.N.); (S.S.M.)
| | - Li Yieng Lau
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia; (M.S.T.); (B.L.S.); (L.Y.L.)
| | - Marina R. S. Fortes
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia; (M.S.T.); (B.L.S.); (L.Y.L.)
| |
Collapse
|
10
|
Ishak GMA, Dutra GA, Gastal GDA, Gastal MO, Feugang JM, Gastal EL. Transition to the ovulatory season in mares: An investigation of antral follicle receptor gene expression in vivo. Mol Reprod Dev 2019; 86:1832-1845. [PMID: 31571308 DOI: 10.1002/mrd.23277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/08/2019] [Indexed: 11/08/2022]
Abstract
The inability to obtain in vivo samples of antral follicle wall layers without removing the ovaries or sacrificing the animals has limited more in-depth studies on folliculogenesis. In this study, a novel ultrasound-guided follicle wall biopsy (FWB) technique was used to obtain in vivo follicle wall layers and follicular fluid samples of growing antral follicles. The expression of proliferative, hormonal, angiogenic, and pro-/antiapoptotic receptors and proteins in the follicular wall among three follicle classes were compared during the spring transitional anovulatory (SAN) and spring ovulatory (SOV) seasons in mares. The main findings observed in the granulosa, theca interna, and/or all follicle layers during the SOV season compared with the SAN season were (a) small-sized follicles (10-14 mm) had greater epidermal growth factor receptor (EGFR) and Bcl-2 expression; (b) medium-sized follicles during the expected deviation/selection diameter (20-24 mm) had greater expression of EGFR, Ki-67, luteinizing hormone receptor (LHR), and Bcl-2; and (c) dominant follicles (30-34 mm) had greater EGFR, Ki-67, vascular endothelial growth factor, LHR, and Bcl-2 expression. Estradiol related receptor alpha expression and intrafollicular estradiol concentration increased, along with an increase in follicle diameter in both seasons. In this study, the application of the FWB technique allowed a direct comparison of different receptors' expression among follicles in different stages of development and between two seasons using the same individuals, without jeopardizing their ovarian function. The successful utilization of the FWB technique and the mare as an experimental animal offer a great combination for future folliculogenesis studies on mechanisms of follicle selection, development, and ovulation in different species, including women.
Collapse
Affiliation(s)
- Ghassan M A Ishak
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois.,Department of Surgery and Obstetrics, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - Gabriel A Dutra
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois
| | - Gustavo D A Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois
| | - Melba O Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois
| | - Jean M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, Mississippi
| | - Eduardo L Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois
| |
Collapse
|
11
|
Michalovic L, Currin L, Gutierrez K, Bellefleur A, Glanzner WG, Schuermann Y, Macedo MP, Bohrer RC, Dicks N, Lopez R, Taibi M, Madogwe E, St‐Yves A, Mondadori RG, Gourdon J, Vigneault C, Baldassarre H, Bordignon V. Granulosa cells of prepubertal cattle respond to gonadotropin signaling and upregulate genes that promote follicular growth and prevent cell apoptosis. Mol Reprod Dev 2018; 85:909-920. [DOI: 10.1002/mrd.23066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/05/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Laura Michalovic
- Department of Animal ScienceMcGill UniversitySainte‐Anne‐de‐Bellevue Quebec Canada
| | - Luke Currin
- Department of Animal ScienceMcGill UniversitySainte‐Anne‐de‐Bellevue Quebec Canada
| | - Karina Gutierrez
- Department of Animal ScienceMcGill UniversitySainte‐Anne‐de‐Bellevue Quebec Canada
| | | | - Werner G. Glanzner
- Department of Animal ScienceMcGill UniversitySainte‐Anne‐de‐Bellevue Quebec Canada
| | - Yasmin Schuermann
- Department of Animal ScienceMcGill UniversitySainte‐Anne‐de‐Bellevue Quebec Canada
| | - Mariana P. Macedo
- Department of Animal ScienceMcGill UniversitySainte‐Anne‐de‐Bellevue Quebec Canada
| | - Rodrigo C. Bohrer
- Department of Animal ScienceMcGill UniversitySainte‐Anne‐de‐Bellevue Quebec Canada
| | - Naomi Dicks
- Department of Animal ScienceMcGill UniversitySainte‐Anne‐de‐Bellevue Quebec Canada
| | - Rosalba Lopez
- Department of Animal ScienceMcGill UniversitySainte‐Anne‐de‐Bellevue Quebec Canada
| | - Milena Taibi
- Department of Animal ScienceMcGill UniversitySainte‐Anne‐de‐Bellevue Quebec Canada
| | - Ejimedo Madogwe
- Department of Animal ScienceMcGill UniversitySainte‐Anne‐de‐Bellevue Quebec Canada
| | - Audrey St‐Yves
- Department of Animal ScienceMcGill UniversitySainte‐Anne‐de‐Bellevue Quebec Canada
| | - Rafael G. Mondadori
- Department of Animal ScienceMcGill UniversitySainte‐Anne‐de‐Bellevue Quebec Canada
| | - Jim Gourdon
- Department of Animal ScienceMcGill UniversitySainte‐Anne‐de‐Bellevue Quebec Canada
- Comparative Medicine and Animal Resources Centre, McGill UniversityMontreal Quebec Canada
| | | | - Hernan Baldassarre
- Department of Animal ScienceMcGill UniversitySainte‐Anne‐de‐Bellevue Quebec Canada
| | - Vilceu Bordignon
- Department of Animal ScienceMcGill UniversitySainte‐Anne‐de‐Bellevue Quebec Canada
| |
Collapse
|
12
|
Ishak GM, Bashir ST, Dutra GA, Gastal GDA, Gastal MO, Cavinder CA, Feugang JM, Gastal EL. In vivo antral follicle wall biopsy: a new research technique to study ovarian function at the cellular and molecular levels. Reprod Biol Endocrinol 2018; 16:71. [PMID: 30055625 PMCID: PMC6064614 DOI: 10.1186/s12958-018-0380-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/26/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND In vivo studies involving molecular markers of the follicle wall associated with follicular fluid (FF) milieu are crucial for a better understanding of follicle dynamics. The inability to obtain in vivo samples of antral follicle wall (granulosa and theca cells) without jeopardizing ovarian function has restricted advancement in knowledge of folliculogenesis in several species. The purpose of this study in mares was to develop and validate a novel, minimally invasive in vivo technique for simultaneous collection of follicle wall biopsy (FWB) and FF samples, and repeated collection from the same individual, during different stages of antral follicle development. We hypothesized that the in vivo FWB technique provides samples that maintain the normal histological tissue structure of the follicle wall layers, offers sufficient material for various cellular and molecular techniques, and allows simultaneous retrieval of FF. METHODS In Experiment 1 (ex vivo), each follicle was sampled using two techniques: biopsy forceps and scalpel blade (control). In Experiment 2 (in vivo), FWB and FF samples from 10-, 20-, and 30-mm follicles were repeatedly and simultaneously obtained through transvaginal ultrasound-guided technique. RESULTS In Experiment 1, the thickness of granulosa, theca interna, and theca externa layers was not influenced (P > 0.05) by the harvesting techniques. In Experiment 2, the overall recovery rates of FWB and FF samples were 97 and 100%, respectively. However, the success rate of obtaining samples with all layers of the follicle wall and clear FF varied according to follicle size. The expression of luteinizing hormone receptor (LHR) was mostly confined in the theca interna layer, with the estradiol-related receptor alpha (ERRα) in the granulosa and theca interna layers. The 30-mm follicle group had greater (P < 0.05) LHR expression in the theca interna and ERRα in the granulosa layer compared to the other groups. The overall expression of LHR and ERRα, and the intrafollicular estradiol were higher (P < 0.05 - P < 0.0001) in the 30-mm follicle group. CONCLUSION The in vivo technique developed in this study can be repeatedly and simultaneously used to provide sufficient FWB and FF samples for various cellular and molecular studies without jeopardizing the ovarian function, and has the potential to be translated to other species, including humans.
Collapse
Affiliation(s)
- G M Ishak
- Department of Animal Science, Food and Nutrition, Southern Illinois University, 1205 Lincoln Drive, MC 4417, Carbondale, IL, 62901, USA
- Department of Surgery and Obstetrics, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - S T Bashir
- Department of Animal Science, Food and Nutrition, Southern Illinois University, 1205 Lincoln Drive, MC 4417, Carbondale, IL, 62901, USA
| | - G A Dutra
- Department of Animal Science, Food and Nutrition, Southern Illinois University, 1205 Lincoln Drive, MC 4417, Carbondale, IL, 62901, USA
| | - G D A Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, 1205 Lincoln Drive, MC 4417, Carbondale, IL, 62901, USA
| | - M O Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, 1205 Lincoln Drive, MC 4417, Carbondale, IL, 62901, USA
| | - C A Cavinder
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
| | - J M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
| | - E L Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, 1205 Lincoln Drive, MC 4417, Carbondale, IL, 62901, USA.
| |
Collapse
|
13
|
Zhao F, Wang N, Yi Y, Lin P, Tang K, Wang A, Jin Y. Knockdown of CREB3/Luman by shRNA in Mouse Granulosa Cells Results in Decreased Estradiol and Progesterone Synthesis and Promotes Cell Proliferation. PLoS One 2016; 11:e0168246. [PMID: 27973579 PMCID: PMC5156397 DOI: 10.1371/journal.pone.0168246] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/28/2016] [Indexed: 11/30/2022] Open
Abstract
Luman (also known as LZIP or CREB3) is a transcription factor and a member of the cAMP responsive element-binding (CREB) family proteins. Although Luman has been detected in apoptotic granulosa cells and disorganized atretic bodies, the physiological function of Luman in follicular development has not been reported. Our objective is to determine the role of Luman in folliculogenesis by knocking down Luman expression in mouse GCs (granulosa cells) using shRNA. Luman expression was successfully knocked down in mouse GCs at the mRNA and protein level, as confirmed by real-time quantitative PCR, western blot and immunofluorescence staining, respectively. Knockdown of Luman significantly decreased the concentrations of estradiol (E2) and progesterone (P4) in cell culture medium. Furthermore, Luman knockdown promoted cell proliferation but had no effect on cell apoptosis. To elucidate the regulatory mechanism underlying the effects of Luman knockdown on steroid synthesis and cell cycle, we measured the mRNA and protein expression levels of several related genes. The expression of Star, Cyp19a1, and Cyp1b1, which encode steroidogenic enzymes, was down-regulated, while that of Cyp11a1 and Runx2, which also encode steroidogenic enzymes, was up-regulated. The expression of the cell cycle factors Cyclin A1, Cyclin B1, Cyclin D2, and Cyclin E was significantly up-regulated. Among apoptosis-related genes, only Bcl-2 was down-regulated, while Caspase 3, Bax and p53 were not significantly affected, suggesting that Luman knockdown may regulate cell cycle activity and hormone secretion at the transcriptional and translational level in mouse GCs. The expression of two important genes associated with folliculogenesis in mouse GCs, Has2 and Ptgs2, were also significantly altered by Luman knockdown. In conclusion, the findings of this study indicate that Luman regulates mouse GCs modulation of steroid synthesis, cell cycle activity and other regulators of folliculogenesis.
Collapse
Affiliation(s)
- Fan Zhao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Nan Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanglei Yi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfei Lin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Keqiong Tang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaping Jin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|
14
|
Fierro S, Viñoles C, Olivera-Muzante J. Concentrations of steroid hormones, estrous, ovarian and reproductive responses in sheep estrous synchronized with different prostaglandin-based protocols. Anim Reprod Sci 2016; 167:74-82. [DOI: 10.1016/j.anireprosci.2016.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 02/07/2016] [Accepted: 02/08/2016] [Indexed: 01/27/2023]
|
15
|
Fang L, Chang HM, Cheng JC, Yu Y, Leung PCK, Sun YP. Growth Differentiation Factor-8 Decreases StAR Expression Through ALK5-Mediated Smad3 and ERK1/2 Signaling Pathways in Luteinized Human Granulosa Cells. Endocrinology 2015; 156:4684-94. [PMID: 26393302 DOI: 10.1210/en.2015-1461] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Growth differentiation factor-8 (GDF-8) has been recently shown to be expressed in human granulosa cells, and the mature form of GDF-8 protein can be detected in the follicular fluid. However, the biological function and significance of this growth factor in the human ovary remains to be determined. Here, we investigated the effects of GDF-8 on steroidogenic enzyme expression and the potential mechanisms of action in luteinized human granulosa cells. We demonstrated that treatment with GDF-8 did not affect the mRNA levels of P450 side-chain cleavage enzyme and 3β-hydroxysteroid dehydrogenase, whereas it significantly down-regulated steroidogenic acute regulatory protein (StAR) expression and decreased progesterone production. The suppressive effect of GDF-8 on StAR expression was abolished by the inhibition of the TGF-β type I receptor. In addition, treatment with GDF-8 activated both Smad2/3 and ERK1/2 signaling pathways. Furthermore, knockdown of activin receptor-like kinase 5 reversed the effects of GDF-8 on Smad2/3 phosphorylation and StAR expression. The inhibition of Smad3 or ERK1/2 signaling pathways attenuated the GDF-8-induced down-regulation of StAR and production of progesterone. Interestingly, the concentrations of GDF-8 were negatively correlated with those of progesterone in human follicular fluid. These results indicate a novel autocrine function of GDF-8 to down-regulate StAR expression and decrease progesterone production in luteinized human granulosa cells, most likely through activin receptor-like kinase 5-mediated Smad3 and ERK1/2 signaling pathways. Our findings suggest that granulosa cells might play a critical role in the regulation of progesterone production to prevent premature luteinization during the final stage of folliculogenesis.
Collapse
Affiliation(s)
- Lanlan Fang
- Reproductive Medical Center (L.F., Y.Y., Y.-P.S.), The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China 450052; and Department of Obstetrics and Gynaecology (H.-M.C., J.-C.C., P.C.K.L.), Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Hsun-Ming Chang
- Reproductive Medical Center (L.F., Y.Y., Y.-P.S.), The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China 450052; and Department of Obstetrics and Gynaecology (H.-M.C., J.-C.C., P.C.K.L.), Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Jung-Chien Cheng
- Reproductive Medical Center (L.F., Y.Y., Y.-P.S.), The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China 450052; and Department of Obstetrics and Gynaecology (H.-M.C., J.-C.C., P.C.K.L.), Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Yiping Yu
- Reproductive Medical Center (L.F., Y.Y., Y.-P.S.), The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China 450052; and Department of Obstetrics and Gynaecology (H.-M.C., J.-C.C., P.C.K.L.), Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Peter C K Leung
- Reproductive Medical Center (L.F., Y.Y., Y.-P.S.), The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China 450052; and Department of Obstetrics and Gynaecology (H.-M.C., J.-C.C., P.C.K.L.), Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Ying-Pu Sun
- Reproductive Medical Center (L.F., Y.Y., Y.-P.S.), The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China 450052; and Department of Obstetrics and Gynaecology (H.-M.C., J.-C.C., P.C.K.L.), Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| |
Collapse
|
16
|
Marsters P, Kendall NR, Campbell BK. Pre-translational regulation of luteinizing hormone receptor in follicular somatic cells of cattle. Anim Reprod Sci 2015; 163:63-74. [PMID: 26507944 PMCID: PMC4679792 DOI: 10.1016/j.anireprosci.2015.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 09/28/2015] [Accepted: 09/30/2015] [Indexed: 11/29/2022]
Abstract
Differential regulation of LHR in theca cells (TC) and granulosa cells (GC) is important for normal follicular development. Unlike TC, GC only acquire LH-responsiveness during the later stages of antral follicle development. This study tested the hypothesis that differential LH-responsiveness in these two cell types may be due, in part, to shifts in cellular patterns of alternatively spliced LHR mRNA transcripts which may not be obvious from analysis of total LHR gene expression. It also further explored the role of translation inhibition by an LHR binding protein (LHBP), normally associated with the production of endogenous cholesterol. LHR mRNA variation arises as a result of the alternative splicing of two variable deletion sites (VDS) designated 5′ VDS and 3′ VDS, and it was proposed that differences in cell sensitivity to LH may be due in part to variations in the pattern of the mRNA expression of the receptor variants. The outcomes of the present study support a dynamic multi-facetted regulation of LHR during pre-translation. Not only did the ratio between variants change during antral follicle growth and in vitro cell differentiation but also between TC and GC. Regulation could also be linked to LH concentration feedback mechanisms as the absence of LH caused cultured TC to markedly up-regulate amounts of LHR mRNA. In both TC and GC, LHR mRNA was greatly reduced after treatment to block mevalonate production in the de novo cholesterol pathway, adding further support for a regulatory mechanism linked to enriched cellular amounts of mevalonate kinase.
Collapse
Affiliation(s)
- P Marsters
- University of Nottingham, Division of Child Health, Obstetrics and Gynaecology, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom.
| | - N R Kendall
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom
| | - B K Campbell
- University of Nottingham, Division of Child Health, Obstetrics and Gynaecology, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| |
Collapse
|
17
|
El-Bahr SM, Ghoneim IM, Waheed MM. Biochemical and hormonal analysis of follicular fluid and serum of female dromedary camels (Camelus dromedarius) with different sized ovarian follicles. Anim Reprod Sci 2015; 159:98-103. [PMID: 26077770 DOI: 10.1016/j.anireprosci.2015.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/21/2015] [Accepted: 06/03/2015] [Indexed: 11/28/2022]
Abstract
The current study aimed to compare some biochemical and hormonal constituents in follicular fluids and serum of female dromedary camels with different sized ovarian follicles. Therefore, follicular fluids from follicles sized 1.1-1.5cm (n=10), 1.6-2.1cm (n=10) and 2.2-2.5cm (n=10) and sera were harvested from 20 female camels. The concentrations of ascorbic acid, glucose, cholesterol and activities of acid phosphatase (ACP) and alkaline phosphatase (ALP) were not changed significantly neither in follicular fluids of all follicle sizes nor in sera of female camels with different sized follicles. The concentrations of estradiol-17β (E2) in the follicular fluid of follicles sized 2.2-2.5cm were significantly lower (P<0.01) than its corresponding value in follicular fluid of other follicle sizes. The concentrations of progesterone (P4), tri-iodothyronine (T3), thyroxin (T4), cortisol and insulin-like growth factor-1 (IGF-1) remained comparable in follicular fluids of all examined different sized follicles. The concentrations of E2, P4, T3, T4, cortisol and IGF-1 were similar in the serum of camels with different sized follicles. Interestingly, mean concentrations of P4 and IGF-1 in follicular fluids were higher than their corresponding values in sera of camels with different sized follicles and the mean concentrations of glucose, cholesterol, ALP and cortisol in sera were higher than their corresponding values in follicular fluids of the examined camels. With the exception of E2, there were no significant differences in biochemical and hormonal constituents between follicular fluids from different sized follicles.
Collapse
Affiliation(s)
- S M El-Bahr
- Department of Physiology, Biochemistry and Pharmacology (Biochemistry), College of Veterinary Medicine and Animal Resources, King Faisal University, Saudi Arabia; Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Egypt.
| | - I M Ghoneim
- Department of Clinical Studies, College of Veterinary Medicine and Animal Resources, King Faisal University, Saudi Arabia
| | - M M Waheed
- Department of Clinical Studies, College of Veterinary Medicine and Animal Resources, King Faisal University, Saudi Arabia
| |
Collapse
|
18
|
Guerrero-Netro HM, Chorfi Y, Price CA. Effects of the mycotoxin deoxynivalenol on steroidogenesis and apoptosis in granulosa cells. Reproduction 2015; 149:555-61. [DOI: 10.1530/rep-15-0018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/02/2015] [Indexed: 01/26/2023]
Abstract
Mycotoxins can reduce fertility and development in livestock, notably in pigs and poultry, although the effect of most mycotoxins on reproductive function in cattle has not been established. One major mycotoxin, deoxynivalenol (DON), not only targets immune cells and activates the ribotoxic stress response (RSR) involving MAPK activation, but also inhibits oocyte maturation in pigs. In this study, we determined the effect of DON on bovine granulosa cell function using a serum-free culture system. Addition of DON inhibited estradiol and progesterone secretion, and reduced levels of mRNA encoding estrogenic (CYP19A1) but not progestogenic (CYP11A1 and STAR) proteins. Cell apoptosis was increased by DON, which also increased FASLG mRNA levels. The mechanism of action of DON was assessed by western blotting and PCR experiments. Addition of DON rapidly and transiently increased phosphorylation of MAPK3/1, and resulted in a more prolonged phosphorylation of MAPK14 (p38) and MAPK8 (JNK). Activation of these pathways by DON resulted in time- and dose-dependent increases in abundance of mRNA encoding the transcription factors FOS, FOSL1, EGR1, and EGR3. We conclude that DON is deleterious to granulosa cell function and acts through a RSR pathway.
Collapse
|
19
|
Urrego R, Herrera-Puerta E, Chavarria NA, Camargo O, Wrenzycki C, Rodriguez-Osorio N. Follicular progesterone concentrations and messenger RNA expression of MATER and OCT-4 in immature bovine oocytes as predictors of developmental competence. Theriogenology 2014; 83:1179-87. [PMID: 25662108 DOI: 10.1016/j.theriogenology.2014.12.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/11/2014] [Accepted: 12/18/2014] [Indexed: 12/31/2022]
Abstract
The ability of bovine embryos to develop to the blastocyst stage and to implant and generate healthy offspring depends greatly on the competence of the oocyte. Oocyte competence is attributed to its close communication with the follicular environment and to its capacity to synthesize and store substantial amounts of messenger RNA. Higher developmental competence of bovine oocytes has been associated with both the expression of a cohort of developmental genes and the concentration of sex steroids in the follicular fluid. The aim of this study was to identify differences in the expression of FST in cumulus cells and OCT-4 and MATER in oocytes and the influence of the follicular progesterone and follicular estrogen concentration on the competence of bovine oocytes retrieved 30 minutes or 4 hours after slaughter. Cumulus-oocyte complexes (COCs) were left in postmortem ovaries for 30 minutes (group I) or 4 hours (group II) at 30 °C. Aspirated oocytes were then subjected to IVM, IVF, and IVC or were evaluated for MATER and OCT-4 messenger RNA abundance by quantitative real-time polymerase chain reaction. Total RNA was isolated from pools of 100 oocytes for each experimental replicate. Progesterone and estradiol concentration in follicular fluid was evaluated by immunoassay using an IMMULITE 2000 analyzer. Three repeats of in vitro embryo production were performed with a total of 455 (group I) and 470 (group II) COCs. There were no significant differences between the cleavage rates (72 hours postinsemination [hpi]) between both groups (63.5% vs. 69.1%). However, blastocyst (168 hpi) and hatching (216 hpi) rates were higher (P < 0.05) in group II compared with those of group I (21.3% vs. 30.7% and 27.6% vs. 51.5%, respectively). Group II oocytes exhibited the highest MATER and OCT-4 abundance (P < 0.05). Follicular estradiol concentration was not different between both the groups, whereas the progesterone concentration was lower (P ≤ 0.05) in group II follicles. These results indicate that retrieving COCs 4 hours after slaughter could increase bovine in vitro developmental competence, which is linked to higher levels of oocyte MATER and OCT-4 transcripts and lower follicular progesterone concentration. Moreover, the results of the present study contribute to the identification of factors involved in the developmental competence of immature oocytes.
Collapse
Affiliation(s)
- R Urrego
- Grupo CENTAURO, Universidad de Antioquia, Medellín, Colombia; Grupo INCA-CES, Facultad de Medicina Veterinaria y Zootecnia, Universidad CES, Medellín, Colombia.
| | - E Herrera-Puerta
- Grupo INCA-CES, Facultad de Medicina Veterinaria y Zootecnia, Universidad CES, Medellín, Colombia; Grupo Biología CES-EIA, Universidad CES, Medellín, Colombia
| | - N A Chavarria
- Grupo INCA-CES, Facultad de Medicina Veterinaria y Zootecnia, Universidad CES, Medellín, Colombia
| | - O Camargo
- Grupo Genes, Gametos y Embriones, Universidad Nacional de Colombia, Medellín, Colombia
| | - C Wrenzycki
- Clinic for Obstetrics, Gynecology and Andrology of Large and Small Animals, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | | |
Collapse
|
20
|
Kor NM. The effect of corpus luteum on hormonal composition of follicular fluid from different sized follicles and their relationship to serum concentrations in dairy cows. ASIAN PAC J TROP MED 2014; 7S1:S282-8. [DOI: 10.1016/s1995-7645(14)60247-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/02/2014] [Accepted: 06/12/2014] [Indexed: 11/26/2022] Open
|
21
|
Rutigliano HM, Adams BM, Jablonka-Shariff A, Boime I, Adams TE. Effect of single-chain ovine gonadotropins with dual activity on ovarian function in sheep. Reproduction 2014; 148:129-36. [PMID: 24811780 DOI: 10.1530/rep-14-0063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We examined the half-life and biological activity of two single-chain proteins that combined portions of ovine FSH and LH. We proposed the hypothesis that these chimeric proteins would display LH and FSH activities and would promote follicle maturation in ewes. Estrus activity was synchronized using progestogen-impregnated vaginal pessaries. To negate the impact of endogenous LH and FSH, animals received serum-containing antibodies against GNRH 1 day before pessary removal (PR). At PR sheep (five animals per group) received a single injection (10 IU/kg, i.v.) of either the ovine-based (oFcLcα) gonadotropin analog, an ovine-based analog containing oLHβ truncated at the carboxyl terminus (oFcL(ΔT)cα), or a human-based gonadotropin analog (hFcLcα). Control animals received a comparable amount of gonadotropin-free protein. Ovulation was induced 3 days after PR using human chorionic gonadotropin (1000 IU, i.v.). Ovaries were collected 11 days after PR. Neither estradiol (E2) or progesterone (P4) production, development of preovulatory follicles or corpora lutea (CL) were noted in control animals receiving gonadotropin-free protein. Significant increase in the synthesis of E2 and P4 was noted in sheep receiving the dually active gonadotropin analogs. The number of CLs present 11 days after PR was significantly increased in sheep receiving the chimeric glycoproteins compared with control animals. The magnitude of the secretory and ovarian responses did not differ between hFcLcα and oFcLcα or between oFcLcα and oFcL(ΔT)cα. Immunoactivity of LH and FSH was low in control animals, but was significantly elevated in sheep receiving the gonadotropin analogs. In conclusion, ovine-based gonadotropin analogs are functionally active in sheep and a single injection is adequate to induce the development of multiple ovulatory follicles.
Collapse
Affiliation(s)
- Heloisa M Rutigliano
- Department of Animal ScienceUniversity of California, Davis, One Shields Avenue, Davis, California 95616, USADepartments of Developmental Biology and Obstetrics and GynecologyWashington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, Saint Louis, Missouri 63110, USADepartment of AnimalDairy and Veterinary Sciences, School of Veterinary Medicine, Utah State University, 4815 Old Main Hill, Logan, Utah 84322, USADepartment of Animal ScienceUniversity of California, Davis, One Shields Avenue, Davis, California 95616, USADepartments of Developmental Biology and Obstetrics and GynecologyWashington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, Saint Louis, Missouri 63110, USADepartment of AnimalDairy and Veterinary Sciences, School of Veterinary Medicine, Utah State University, 4815 Old Main Hill, Logan, Utah 84322, USA
| | - Betty M Adams
- Department of Animal ScienceUniversity of California, Davis, One Shields Avenue, Davis, California 95616, USADepartments of Developmental Biology and Obstetrics and GynecologyWashington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, Saint Louis, Missouri 63110, USADepartment of AnimalDairy and Veterinary Sciences, School of Veterinary Medicine, Utah State University, 4815 Old Main Hill, Logan, Utah 84322, USA
| | - Albina Jablonka-Shariff
- Department of Animal ScienceUniversity of California, Davis, One Shields Avenue, Davis, California 95616, USADepartments of Developmental Biology and Obstetrics and GynecologyWashington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, Saint Louis, Missouri 63110, USADepartment of AnimalDairy and Veterinary Sciences, School of Veterinary Medicine, Utah State University, 4815 Old Main Hill, Logan, Utah 84322, USA
| | - Irving Boime
- Department of Animal ScienceUniversity of California, Davis, One Shields Avenue, Davis, California 95616, USADepartments of Developmental Biology and Obstetrics and GynecologyWashington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, Saint Louis, Missouri 63110, USADepartment of AnimalDairy and Veterinary Sciences, School of Veterinary Medicine, Utah State University, 4815 Old Main Hill, Logan, Utah 84322, USA
| | - Thomas E Adams
- Department of Animal ScienceUniversity of California, Davis, One Shields Avenue, Davis, California 95616, USADepartments of Developmental Biology and Obstetrics and GynecologyWashington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, Saint Louis, Missouri 63110, USADepartment of AnimalDairy and Veterinary Sciences, School of Veterinary Medicine, Utah State University, 4815 Old Main Hill, Logan, Utah 84322, USA
| |
Collapse
|
22
|
Knauf Y, Bostedt H, Failing K, Knauf S, Wehrend A. Gross pathology and endocrinology of ovarian cysts in bitches. Reprod Domest Anim 2014; 49:463-8. [PMID: 24698026 PMCID: PMC4235420 DOI: 10.1111/rda.12311] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 03/04/2014] [Indexed: 11/27/2022]
Abstract
A total of 73 bitches with ovarian cysts were ovariohysterectomized. Cysts were characterized by gross pathology and endocrine parameters. Therefore, oestradiol-17ß and progesterone concentrations were assessed in cyst-fluid and corresponding blood plasma in each bitch. Our data demonstrated that multiple cysts were often present in a single individual (82%) and that cysts were commonly found on both ovaries (77%). The number of cysts per individual varied from 1 to 35. Most cysts were small in size (range 0.2–4.0 cm in diameter). No cyst was found to produce solely oestradiol-17ß or progesterone. Plasma levels of oestradiol-17ß and progesterone for a given individual were positively correlated with levels of these same hormones in their cyst-fluid (r = 0.334 and p = 0.001 for oestradiol-17ß; r = 0.419 and p < 0.001 for progesterone). Our study is the first to provide a comprehensive evaluation of the gross pathology and endocrinology of ovarian cysts in a larger number of bitches.
Collapse
Affiliation(s)
- Y Knauf
- Clinic for Obstetrics, Gynaecology and Andrology of Large and Small Animals with Veterinary Ambulance, Justus-Liebig-University, Giessen, Germany; Pathology Unit, German Primate Center, Leibniz-Institute for Primate Research, Goettingen, Germany
| | | | | | | | | |
Collapse
|
23
|
De Rensis F, López-Gatius F. Use of equine chorionic gonadotropin to control reproduction of the dairy cow: a review. Reprod Domest Anim 2014; 49:177-82. [PMID: 24456154 DOI: 10.1111/rda.12268] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/23/2013] [Indexed: 11/29/2022]
Abstract
Equine chorionic gonadotropin (eCG) is a member of the glycoprotein family of hormones along with LH, FSH and thyroid-stimulating hormone. In non-equid species, eCG shows high LH- and FSH-like activities and has a high affinity for both FSH and LH receptors in the ovaries. On the granulosa and thecal cells of the follicle, eCG has long-lasting LH- and FSH-like effects that stimulate oestradiol and progesterone secretion. Thus, eCG administration in dairy cattle results in fewer atretic follicles, the recruitment of more small follicles showing an elevated growth rate, the sustained growth of medium and large follicles and improved development of the dominant and pre-ovulatory follicle. In consequence, the quality of the ensuing CL is improved, and thereby progesterone secretion increased. Based on these characteristics, eCG treatment is utilized in veterinary medicine to control the reproductive activity of the cow by i) improving reproductive performance during early post-partum stages; ii) increasing ovulation and pregnancy rates in non-cyclic cows; iii) improving the conception rate in cows showing delayed ovulation; and finally, iv) eCG is currently included in protocols for fixed-time artificial insemination since after inducing the synchrony of ovulation using a progesterone-releasing device, eCG has beneficial effects on embryo development and survival. The above effects are not always observed in cyclic animals, but they are evident in animals in which LH secretion and ovarian activity are reduced or compromised, for instance, during the early post-partum period, under seasonal heat stress, in anoestrus animals or in animals with a low body condition score.
Collapse
Affiliation(s)
- F De Rensis
- Department Food Science, University of Parma, Parma, Italy
| | | |
Collapse
|
24
|
|
25
|
Varughese EE, Brar PS, Honparkhe M, Ghuman SPS. Correlation of Blood Flow of the Preovulatory Follicle to its Diameter and Endocrine Profile in Dairy Buffalo. Reprod Domest Anim 2013; 49:140-4. [DOI: 10.1111/rda.12242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 08/22/2013] [Indexed: 11/29/2022]
Affiliation(s)
- EE Varughese
- Department of Veterinary Gynaecology and Obstetrics Guru Angad Dev Veterinary and Animal Sciences University (GADVASU) Ludhiana Punjab India
| | - PS Brar
- Department of Veterinary Gynaecology and Obstetrics Guru Angad Dev Veterinary and Animal Sciences University (GADVASU) Ludhiana Punjab India
| | - M Honparkhe
- Department of Veterinary Gynaecology and Obstetrics Guru Angad Dev Veterinary and Animal Sciences University (GADVASU) Ludhiana Punjab India
| | - SPS Ghuman
- Department of Veterinary Gynaecology and Obstetrics Guru Angad Dev Veterinary and Animal Sciences University (GADVASU) Ludhiana Punjab India
| |
Collapse
|
26
|
Vasconcelos R, Salles L, Silva IOE, Gulart L, Souza D, Torres F, Bocca A, Silva ARE. Culture of bovine ovarian follicle wall sections maintained the highly estrogenic profile under basal and chemically defined conditions. Braz J Med Biol Res 2013; 46:700-7. [PMID: 23969977 PMCID: PMC3854421 DOI: 10.1590/1414-431x20133024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 06/10/2013] [Indexed: 01/22/2023] Open
Abstract
Follicle cultures reproduce in vitro the functional features observed in vivo. In a search for an ideal model, we cultured bovine antral follicle wall sections (FWS) in a serum-free defined medium (DM) known to induce 17β-estradiol (E2) production, and in a nondefined medium (NDM) containing serum. Follicles were sectioned and cultured in NDM or DM for 24 or 48 h. Morphological features were determined by light microscopy. Gene expression of steroidogenic enzymes and follicle-stimulating hormone (FSH) receptor were determined by RT-PCR; progesterone (P4) and E2 concentrations in the media were measured by radioimmunoassay. DM, but not NDM, maintained an FWS morphology in vitro that was similar to fresh tissue. DM also induced an increase in the expression of all steroidogenic enzymes, except FSH receptor, but NDM did not. In both DM and NDM, there was a gradual increase in P4 throughout the culture period; however, P4 concentration was significantly higher in NDM. In both media, E2 concentration was increased at 24 h, followed by a decrease at 48 h. The E2:P4 ratio was higher in DM than in NDM. These results suggest that DM maintains morphological structure, upregulates the expression of steroidogenic enzyme genes, and maintains steroid production with a high E2:P4 ratio in FWS cultures.
Collapse
Affiliation(s)
- R.B. Vasconcelos
- Laboratório de Biotecnologia da Reprodução, Departamento de Ciências
Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília,
DF, Brasil
| | - L.P. Salles
- Laboratório de Biologia Molecular, Departamento de Biologia Celular,
Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brasil
| | - I. Oliveira e Silva
- Laboratório de Biotecnologia da Reprodução, Departamento de Ciências
Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília,
DF, Brasil
| | - L.V.M. Gulart
- Laboratório de Biotecnologia da Reprodução, Departamento de Ciências
Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília,
DF, Brasil
| | - D.K. Souza
- Laboratório de Biotecnologia da Reprodução, Departamento de Ciências
Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília,
DF, Brasil
- Faculdade de Ceilândia, Universidade de Brasília, Ceilândia, DF,
Brasil
| | - F.A.G. Torres
- Laboratório de Biologia Molecular, Departamento de Biologia Celular,
Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brasil
| | - A.L. Bocca
- Departamento de Biologia Celular, Instituto de Ciências Biológicas,
Universidade de Brasília, Brasília, DF, Brasil
| | - A.A.M. Rosa e Silva
- Laboratório de Biotecnologia da Reprodução, Departamento de Ciências
Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília,
DF, Brasil
| |
Collapse
|
27
|
Hussein HA, Boryczko Z, Bostedt H. Acid-Base Parameters and Steroid Concentrations in Pre-Ovulatory Follicles and Plasma of Lactating Dairy Cows with Spontaneous and Synchronized Oestrus or Follicular Cyst. Reprod Domest Anim 2013; 48:833-9. [DOI: 10.1111/rda.12171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 03/10/2013] [Indexed: 12/01/2022]
Affiliation(s)
- HA Hussein
- Theriogenology Department; Faculty of Veterinary Medicine; Assiut University; Assiut; Egypt
| | - Z Boryczko
- Department of Animal Reproduction; Faculty of Veterinary Medicine; Agricultural University; Warsaw; Poland
| | - H Bostedt
- Institute of Obstetrics, Gynecology and Andrology; Faculty of Veterinary Medicine; Justus-Liebig-university; Giessen; Germany
| |
Collapse
|
28
|
Ghoneim I, Waheed M, El-Bahr S, Alhaider A, Al-Eknah M. Comparison of some biochemical and hormonal constituents of oversized follicles and preovulatory follicles in camels (Camelus dromedarius). Theriogenology 2013; 79:647-52. [DOI: 10.1016/j.theriogenology.2012.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 11/15/2012] [Accepted: 11/17/2012] [Indexed: 11/28/2022]
|
29
|
Bukovsky A, Caudle MR. Immunoregulation of follicular renewal, selection, POF, and menopause in vivo, vs. neo-oogenesis in vitro, POF and ovarian infertility treatment, and a clinical trial. Reprod Biol Endocrinol 2012; 10:97. [PMID: 23176151 PMCID: PMC3551781 DOI: 10.1186/1477-7827-10-97] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 11/11/2012] [Indexed: 12/13/2022] Open
Abstract
The immune system plays an important role in the regulation of tissue homeostasis ("tissue immune physiology"). Function of distinct tissues during adulthood, including the ovary, requires (1) Renewal from stem cells, (2) Preservation of tissue-specific cells in a proper differentiated state, which differs among distinct tissues, and (3) Regulation of tissue quantity. Such morphostasis can be executed by the tissue control system, consisting of immune system-related components, vascular pericytes, and autonomic innervation. Morphostasis is established epigenetically, during morphogenetic (developmental) immune adaptation, i.e., during the critical developmental period. Subsequently, the tissues are maintained in a state of differentiation reached during the adaptation by a "stop effect" of resident and self renewing monocyte-derived cells. The later normal tissue is programmed to emerge (e.g., late emergence of ovarian granulosa cells), the earlier its function ceases. Alteration of certain tissue differentiation during the critical developmental period causes persistent alteration of that tissue function, including premature ovarian failure (POF) and primary amenorrhea. In fetal and adult human ovaries the ovarian surface epithelium cells called ovarian stem cells (OSC) are bipotent stem cells for the formation of ovarian germ and granulosa cells. Recently termed oogonial stem cells are, in reality, not stem but already germ cells which have the ability to divide. Immune system-related cells and molecules accompany asymmetric division of OSC resulting in the emergence of secondary germ cells, symmetric division, and migration of secondary germ cells, formation of new granulosa cells and fetal and adult primordial follicles (follicular renewal), and selection and growth of primary/preantral, and dominant follicles. The number of selected follicles during each ovarian cycle is determined by autonomic innervation. Morphostasis is altered with advancing age, due to degenerative changes of the immune system. This causes cessation of oocyte and follicular renewal at 38 +/-2 years of age due to the lack of formation of new granulosa cells. Oocytes in primordial follicles persisting after the end of the prime reproductive period accumulate genetic alterations resulting in an exponentially growing incidence of fetal trisomies and other genetic abnormalities with advanced maternal age. The secondary germ cells also develop in the OSC cultures derived from POF and aging ovaries. In vitro conditions are free of immune mechanisms, which prevent neo-oogenesis in vivo. Such germ cells are capable of differentiating in vitro into functional oocytes. This may provide fresh oocytes and genetically related children to women lacking the ability to produce their own follicular oocytes. Further study of "immune physiology" may help us to better understand ovarian physiology and pathology, including ovarian infertility caused by POF or by a lack of ovarian follicles with functional oocytes in aging ovaries. The observations indicating involvement of immunoregulation in physiological neo-oogenesis and follicular renewal from OSC during the fetal and prime reproductive periods are reviewed as well as immune system and age-independent neo-oogenesis and oocyte maturation in OSC cultures, perimenopausal alteration of homeostasis causing disorders of many tissues, and the first OSC culture clinical trial.
Collapse
Affiliation(s)
- Antonin Bukovsky
- The Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | |
Collapse
|
30
|
Alterations in follicular fluid estradiol, progesterone and insulin concentrations during ovarian acyclicity in water buffalo (Bubalus bubalis). Anim Reprod Sci 2012; 130:27-32. [DOI: 10.1016/j.anireprosci.2011.12.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 12/06/2011] [Accepted: 12/23/2011] [Indexed: 11/19/2022]
|
31
|
Grant VJ, Konečná M, Sonnweber RS, Irwin RJ, Wallner B. Macaque mothers’ preconception testosterone levels relate to dominance and to sex of offspring. Anim Behav 2011. [DOI: 10.1016/j.anbehav.2011.07.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
32
|
Grado-Ahuir JA, Aad PY, Spicer LJ. New insights into the pathogenesis of cystic follicles in cattle: microarray analysis of gene expression in granulosa cells. J Anim Sci 2011; 89:1769-86. [PMID: 21239663 DOI: 10.2527/jas.2010-3463] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Ovarian follicular growth and development are regulated by extraovarian and intraovarian factors, which influence granulosa cell proliferation and differentiation. However, the molecular mechanisms that drive follicular growth are not completely understood. Ovarian follicular cysts are one of the most common causes of reproductive failure in dairy cattle. Nevertheless, the primary cause of cyst formation has not been clearly established. A gene expression comparison may aid in elucidating the causes of ovarian cyst disease. Our objective was to identify differentially expressed genes in ovarian granulosa cells between normal dominant and cystic follicles of cattle. Granulosa cells and follicular fluid were isolated from dominant and cystic follicles collected via either ultrasound-guided aspiration from dairy cows (n = 24) or slaughterhouse ovaries from beef cows (n = 23). Hormonal analysis for progesterone, estradiol, and androstenedione in follicular fluid was performed by RIA. Total RNA was extracted and hybridized to 6 Affymetrix GeneChip Bovine Genome Arrays (Affymetrix, Santa Clara, CA). Abundance of mRNA for differentially expressed selected genes was determined through quantitative real-time reverse-transcription PCR. Follicular cysts showed greater (P < 0.05) progesterone, lesser (P < 0.05) estradiol, and no differences (P > 0.10) in androstenedione concentrations compared with noncystic follicles. A total of 163 gene sequences were differentially expressed (P < 0.01), with 19 upregulated and 144 downregulated. From selected target genes, quantitative real-time reverse-transcription PCR confirmed angiogenin, PGE(2) receptor 4, and G-protein coupled receptor 34 genes as upregulated in cystic follicles, and Indian hedgehog protein precursor and secreted frizzled-related protein 4 genes as downregulated in cystic follicles. Further research is required to elucidate the role of these factors in follicular development and cyst formation.
Collapse
Affiliation(s)
- J A Grado-Ahuir
- Department of Animal Science, Oklahoma State University, Stillwater 74078, USA
| | | | | |
Collapse
|
33
|
Role of increased estradiol on altering the follicle diameters and gonadotropin concentrations that have been reported for double-ovulating heifers. Anim Reprod Sci 2010; 122:335-41. [DOI: 10.1016/j.anireprosci.2010.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 09/28/2010] [Accepted: 10/05/2010] [Indexed: 11/21/2022]
|
34
|
Grant VJ, Chamley LW. Can mammalian mothers influence the sex of their offspring peri-conceptually? Reproduction 2010; 140:425-33. [PMID: 20591970 DOI: 10.1530/rep-10-0137] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although controversial, growing evidence from evolutionary biology suggests that the mammalian mother may have a role in influencing the sex of her offspring. However, there is competing information on the molecular mechanisms by which such influence could be manifested. The new initiatives are based on hypotheses from evolutionary biology: the 'good condition' hypothesis, which suggests that post conception, higher levels of maternal glucose may differentially promote the development of male embryos; and the 'maternal dominance' hypothesis, which proposes that before conception, higher follicular testosterone may influence the development of the ovum so that it emerges already adapted to receive an X- or a Y-chromosome-bearing spermatozoon. Now, it seems these hypothesised mechanisms could be operating in synchrony, each complementing and reinforcing the other. On the other hand, there are continuing problems in identifying a precise sequence of mechanisms as evidenced from research in sperm-sorting. Research on high-fat diets and the sex ratio in polytocous species may indicate important differences in proximate mechanisms for sex allocation between polytocous and monotocous mammals.
Collapse
Affiliation(s)
- Valerie J Grant
- Department of Psychological Medicine Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | | |
Collapse
|
35
|
McNatty KP, Heath DA, Hudson NL, Reader KL, Quirke L, Lun S, Juengel JL. The conflict between hierarchical ovarian follicular development and superovulation treatment. Reproduction 2010; 140:287-94. [PMID: 20501789 DOI: 10.1530/rep-10-0165] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In mammals with a low ovulation rate phenotype, ovarian follicular development is thought to be hierarchical with few, if any, antral follicles at similar stages of development. The hypothesis being tested herein was that if most follicles are in a functionally different state, then the application of exogenous hormones to increase ovulation rate will not overcome the hierarchical nature of follicular development. Using sheep as the experimental model, the functional states of all non-atretic antral follicles > or =2 mm diameter were assessed in individual ewes (N=10/group) during anoestrus with or without pregnant mare's serum gonadotrophin (PMSG) treatment, or after a standard superovulation regimen, or during the follicular phase of the oestrous cycle. The functional states of these follicles were assessed by measuring the FSH- or human chorionic gonadotrophin (hCG)-induced cAMP responses of granulosa cells in vitro. There were significant overall effects across the treatment groups on the responses of granulosa cells to either FSH or LH (both P<0.001). It was concluded that for anoestrous ewes with or without PMSG treatment, and ewes during the follicular phase, granulosa cell populations of many follicles (> or =2 mm diameter) did not share a similar cAMP response to FSH ( approximately 50% of follicles) or hCG (>90% of follicles) either on a per cell or total cell basis. After superovulation, < or =30 and 10% respectively of the granulosa cell populations shared similar responses to FSH and LH with regard to follicular diameter and cAMP output. Thus, exogenous hormone treatments used routinely for increasing oocyte yield do not effectively override the hierarchical pattern of ovarian follicular development during the follicular phase.
Collapse
Affiliation(s)
- Kenneth P McNatty
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
36
|
Perturbation of the developmental potential of preimplantation mouse embryos by hydroxyurea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:2033-44. [PMID: 20623009 PMCID: PMC2898034 DOI: 10.3390/ijerph7052033] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 01/15/2010] [Accepted: 04/03/2010] [Indexed: 11/17/2022]
Abstract
Women are advised not to attempt pregnancy while on hydroxyurea (HU) due to the teratogenic effects of this agent, based on results obtained from animal studies. Several case reports suggest that HU may have minimal or no teratogenic effects on the developing human fetus. Fourteen cases of HU therapy in pregnant patients diagnosed with acute or chronic myelogenous leukemia, primary thrombocythemia, or sickle cell disease (SCD) have been reported. Three pregnancies were terminated by elective abortion; 1 woman developed eclampsia and delivered a phenotypically normal stillborn infant. All other patients delivered live, healthy infants without congenital anomalies. We contend that case studies such as these have too few patients and cannot effectively address the adverse effect of HU on preimplantation embryo or fetuses. The objective of this study was to assess the risks associated with a clinically relevant dose of HU used for the treatment of SCD, on ovulation rate and embryo development, using adult C57BL/6J female mice as a model. In Experiment 1, adult female mice were randomly assigned to a treatment or a control group (N = 20/group). Treatment consisted of oral HU (30 mg/kg) for 28 days; while control mice received saline (HU vehicle). Five days to the cessation of HU dosing, all mice were subjected to folliculogenesis induction with pregnant mare serum gonadotropin (PMSG). Five mice/group were anesthetized at 48 hours post PMSG to facilitate blood collection via cardiac puncture for estradiol-17beta (E(2)) measurement by RIA. Ovulation was induced in the remaining mice at 48 hours post PMSG with human chorionic gonadotropin (hCG) and immediately caged with adult males for mating. Five plugged female mice/group were sacrificed for the determination of ovulation rate. The remaining mated mice were sacrificed about 26 hours post hCG, ovaries excised and weighed and embryos harvested and cultured in Whitten's medium (WM) supplemented with CZBt. In Experiments 2 and 3, (N = 10/Experiment) folliculogenesis and ovulation were induced in untreated mice followed by mating. Recovered embryos were either exposed continuously (Experiment 2) or intermittently (Experiment 3) to bioavailable HU (18 microg HU/mL of WM + CZBt) or WM + CZBt only (control). Treated mice sustained decreased ovarian wt, ovulation rate and circulating E(2) compared with controls (P < 0.05). Fewer embryos retrieved from HU-treated mice developed to blastocyst stage (32%) compared with those from controls (60%; P < 0.05). Furthermore, continuous or intermittent in vitro exposures of embryos to HU also resulted in reduced development to blastocyst stage (continuous HU, 9 vs. control, 63%; P < 0.05; intermittent HU, 20 vs. control, 62%; P < 0.05) with embryos exposed continuously to HU in vitro fairing worse. Even though HU is well tolerated, our data suggest that it compromises folliculogenesis and the ability of generated embryos to develop. Therefore, designed studies with larger numbers of patients receiving HU during pregnancy, with longer follow-up of exposed children and more careful assessment of embryo/fetotoxic effects, are required before this agent can be promoted as safe in pregnancy.
Collapse
|
37
|
Rodgers RJ, Irving-Rodgers HF. Morphological classification of bovine ovarian follicles. Reproduction 2009; 139:309-18. [PMID: 19786400 DOI: 10.1530/rep-09-0177] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Follicle classification is an important aid to the understanding of follicular development and atresia. Some bovine primordial follicles have the classical primordial shape, but ellipsoidal shaped follicles with some cuboidal granulosa cells at the poles are far more common. Preantral follicles have one of two basal lamina phenotypes, either a single aligned layer or one with additional layers. In antral follicles <5 mm diameter, half of the healthy follicles have columnar shaped basal granulosa cells and additional layers of basal lamina, which appear as loops in cross section ('loopy'). The remainder have aligned single-layered follicular basal laminas with rounded basal cells, and contain better quality oocytes than the loopy/columnar follicles. In sizes >5 mm, only aligned/rounded phenotypes are present. Dominant and subordinate follicles can be identified by ultrasound and/or histological examination of pairs of ovaries. Atretic follicles <5 mm are either basal atretic or antral atretic, named on the basis of the location in the membrana granulosa where cells die first. Basal atretic follicles have considerable biological differences to antral atretic follicles. In follicles >5 mm, only antral atresia is observed. The concentrations of follicular fluid steroid hormones can be used to classify atresia and distinguish some of the different types of atresia; however, this method is unlikely to identify follicles early in atresia, and hence misclassify them as healthy. Other biochemical and histological methods can be used, but since cell death is a part of normal homoeostatis, deciding when a follicle has entered atresia remains somewhat subjective.
Collapse
Affiliation(s)
- R J Rodgers
- The Robinson Institute, Research Centre for Reproductive Health, Discipline of Obstetrics and Gynaecology, University of Adelaide, Adelaide, South Australia 5005, Australia.
| | | |
Collapse
|
38
|
Palhao MP, Beg MA, Rodrigues MT, Ginther OJ. Follicle and hormone dynamics in single versus double ovulating heifers. Reproduction 2009; 138:561-70. [DOI: 10.1530/rep-09-0091] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Follicles ≥5 mm were ablated at 4 day post-ovulation in heifers to induce a follicular wave, and prostaglandin F2α was given at day 6 to increase the incidence of double ovulations. Follicle diameters and plasma hormone concentrations were compared between single ovulators (n=12) and double ovulators (n=8). In double ovulators, the interval from follicle deviation to the peak of the pre-ovulatory LH surge was shorter (1.9±0.2 vs 2.5±0.2 days; P<0.02) and diameter of the largest pre-ovulatory follicle was smaller (12.2±0.5 vs 13.3±0.3 mm; P<0.02). The LH concentrations of the pre-ovulatory surge did not differ between single and double ovulators for 24 h on each side of the peak. When data were normalised to LH peak, the peak of the pre-ovulatory FSH and oestradiol (E2) surges occurred in synchrony with the peak of LH surge for both groups. Concentration of FSH for 24 h on each side of the peak showed a group effect (P<0.0001) from lower concentration in the double ovulators. A group-by-hour interaction (P<0.008) for E2 reflected greater concentration in the double ovulators before and at the peak. Results indicated that two pre-ovulatory follicles resulted in an earlier and greater E2 increase, leading to lower FSH concentration, an earlier LH surge, and ovulation at a smaller diameter. In conclusion, the difference in hormone concentrations during the pre-ovulatory period was an effect rather than a cause of double ovulations.
Collapse
|
39
|
Díez C, Bermejo-Alvarez P, Trigal B, Caamaño JN, Muñoz M, Molina I, Gutiérrez-Adán A, Carrocera S, Martín D, Gómez E. Changes in testosterone or temperature during the in vitro oocyte culture do not alter the sex ratio of bovine embryos. ACTA ACUST UNITED AC 2009; 311:448-52. [PMID: 19384917 DOI: 10.1002/jez.540] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
High follicular testosterone levels have been associated with a skew in the sex ratio in favor of males following in vitro fertilization, whereas egg incubation temperature has been found to influence sex ratio in some reptiles. The incubation temperature interferes with the aromatase activity, resulting in a sex determination mechanism thought to be lost in mammals. In this work we aimed to test the effects of testosterone on sex ratio of bovine embryos produced in vitro and to determine whether effects of sex and temperature are effectively decoupled in mammals. Bovine oocytes were in vitro matured for 22 hr in TCM199, PVA, FSH and LH after a 22 hr meiotic arrest in TCM199, PVA and roscovitine 25 microM. Matured oocytes were in vitro fertilized and cultured up to Day 3, and embryos having three or more cells were sexed. In the first experiment, testosterone (0, 30, 300 and 1,500 nM), present both during meiotic inhibition and subsequent in vitro maturation (IVM), did not affect development rates or embryonic sex ratio. In the second experiment, increasing incubation temperatures (38, 39 or 40 degrees C) during meiotic inhibition and subsequent IVM, reduced embryo development, but did not change the sex ratio. Under our experimental conditions, testosterone does not promote a preferential selection of Y-chromosome bearing spermatozoa by the oocyte, and temperature and sex ratio seems to be decoupled in mammals.
Collapse
Affiliation(s)
- Carmen Díez
- SERIDA, Area de Genética y Reproducción Animal, Gijón, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Nimz M, Spitschak M, Schneider F, Fürbass R, Vanselow J. Down-regulation of genes encoding steroidogenic enzymes and hormone receptors in late preovulatory follicles of the cow coincides with an accumulation of intrafollicular steroids. Domest Anim Endocrinol 2009; 37:45-54. [PMID: 19339131 DOI: 10.1016/j.domaniend.2009.02.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 02/05/2009] [Accepted: 02/05/2009] [Indexed: 11/21/2022]
Abstract
The transformation of the dominant follicle into a functional corpus luteum is accompanied by a profound molecular and morphological reorganization of somatic cell layers. Several studies have focused on gene expression during early processes of follicular differentiation as it relates to recruitment and selection of dominant follicles. However, little information exists on changes of gene expression profiles in late preovulatory follicles. This lack of information is addressed here to elucidate molecular mechanisms behind the LH-induced transition from the large dominant estrogen-active to the preovulatory follicle, an intermediate stage toward full luteinization. Transcripts encoding key molecules for the biosynthesis of steroid hormones and prostaglandins, as well as receptors for gonadotropic and growth hormones (Star, Cyp11a1, Hsd3b, Cyp17, Cyp19, Ptgs2, Fshr, Lhr, and Ghr), were quantified by real-time polymerase chain reaction (PCR) in the granulosa and theca of large dominant and late preovulatory follicles. The steroid hormones progesterone (P4) and estradiol-17beta (E2) were monitored to distinguish estrogen-active and estrogen-inactive follicles. We found that (1) independent of the follicular stage, the gene expression profile was very different in granulosa and theca; (2) the abundance of several key transcripts was lower in estrogen-inactive, compared with estrogen-active, dominant follicles; (3) in the granulosa of late preovulatory follicles, transcripts encoding steroidogenic enzymes and hormone receptors were largely down-regulated, whereas (4) progesterone and E2 were found at high concentrations in the follicular fluid. Collectively, our data show that late preovulatory follicles have a transient and unique gene expression profile and are clearly different from both the preceding and subsequent (follicular and luteal, respectively) stages.
Collapse
Affiliation(s)
- Marika Nimz
- Forschungsbereich Molekularbiologie, Forschungsinstitut für die Biologie landwirtschaftlicher Nutztiere, Wilhelm-Stahl-Allee 2, Dummerstorf, Germany
| | | | | | | | | |
Collapse
|
41
|
Bukovsky A, Caudle MR, Carson RJ, Gaytán F, Huleihel M, Kruse A, Schatten H, Telleria CM. Immune physiology in tissue regeneration and aging, tumor growth, and regenerative medicine. Aging (Albany NY) 2009; 1:157-81. [PMID: 20195382 PMCID: PMC2830052 DOI: 10.18632/aging.100024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 02/10/2009] [Indexed: 12/13/2022]
Abstract
The immune system plays an important role in immunity (immune surveillance), but also in the regulation of tissue homeostasis (immune physiology). Lessons from the female reproductive tract indicate that immune system related cells, such as intraepithelial T cells and monocyte-derived cells (MDC) in stratified epithelium, interact amongst themselves and degenerate whereas epithelial cells proliferate and differentiate. In adult ovaries, MDC and T cells are present during oocyte renewal from ovarian stem cells. Activated MDC are also associated with follicular development and atresia, and corpus luteum differentiation. Corpus luteum demise resembles rejection of a graft since it is attended by a massive influx of MDC and T cells resulting in parenchymal and vascular regression. Vascular pericytes play important roles in immune physiology, and their activities (including secretion of the Thy-1 differentiation protein) can be regulated by vascular autonomic innervation. In tumors, MDC regulate proliferation of neoplastic cells and angiogenesis. Tumor infiltrating T cells die among malignant cells. Alterations of immune physiology can result in pathology, such as autoimmune, metabolic, and degenerative diseases, but also in infertility and intrauterine growth retardation, fetal morbidity and mortality. Animal experiments indicate that modification of tissue differentiation (retardation or acceleration) during immune adaptation can cause malfunction (persistent immaturity or premature aging) of such tissue during adulthood. Thus successful stem cell therapy will depend on immune physiology in targeted tissues. From this point of view, regenerative medicine is more likely to be successful in acute rather than chronic tissue disorders.
Collapse
Affiliation(s)
- Antonin Bukovsky
- Laboratory of Development, Differentiation and Cancer, Department of Obstetrics and Gynecology, The University of Tennessee College of Medicine and Graduate School of Medicine, Knoxville, TN 37920, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Cumulus cell features and nuclear chromatin configuration of in vitro matured canine COCs and the influence of in vivo serum progesterone concentrations of ovary donors. ZYGOTE 2009; 17:79-91. [PMID: 19126265 DOI: 10.1017/s096719940800508x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Phenotype integrity is viewed as an indicator of cumulus-oocyte complex (COC) viability. The objectives of this study were: (a) to observe the influence of cumulus investment expansion on the nuclear chromatin configuration of canine oocytes matured in vitro; (b) to examine the relationship between cumulus cell (CC) expansion and its morphology after in vitro maturation (IVM); (c) to ascertain the influence of in vivo serum progesterone (SP) concentrations of ovary donors on oocyte nuclear maturation, CC phenotypes and degrees of CC expansion of in vitro matured COCs. After 48 h of IVM in modified TCM 199, CCs from grade 1 and 2 COCs were stained with propidium iodide. Oocyte chromatin configuration was visualized by Hoechst 33342 stain. Results showed that oocyte IVM was not influenced by degree of CC expansion (D1, D2 and D3) in COCs. From the CC types (C1, C2 and C3), number of C1 types was higher at D1 expansion and differed from those observed at D2 and D3 expansions. Additionally, rates of apoptosis in D1 CCs were lower than those observed in D2 CCs (p < 0.05). Oocyte nuclear maturation was not influenced by in vivo SP concentrations of ovary donors. On the other hand, D3 expansion prevailed in COCs from bitches at SP > 2.5 ng/ml (p < 0.001). Moreover, in vitro CC apoptosis was associated both with low (0-1 ng/ml) and with high (>5 ng/ml) in vivo SP levels. These findings indicate that morphology of CCs from in vitro matured dog oocytes gives valuable information on viability of COCs and could possibly be used as a parameter in predicting the quality of oocytes destined for in vitro fertilization (IVF) and their outcomes.
Collapse
|
43
|
Yuan JH, Wang JZ, Lan GC, Sui HS, Yu JN, Tan JH. Expression of steroidogenic enzymes and synthesis of steroid hormones during development of ovarian follicles in prepubertal goats. Domest Anim Endocrinol 2008; 34:451-60. [PMID: 18308501 DOI: 10.1016/j.domaniend.2008.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 12/17/2007] [Accepted: 01/07/2008] [Indexed: 11/28/2022]
Abstract
Expression of mRNAs encoding cytochrome P450 side-chain cleavage (P450scc), cytochrome P450 17 alpha-hydroxylase (P450c17), and cytochrome P450 aromatase (P450arom) were characterized by the RT-PCR technique and concentrations of progesterone (P4), testosterone (T0) and estradiol (E2) were measured by radioimmunoassay during follicular development of prepubertal goats. Synthesis of mRNAs encoding P450scc and P450c17 began in preantral follicles, but mRNA encoding P450arom was not detectable until early antral formation. While mRNA for P450scc was expressed in both theca and granulosa cells, mRNA for P450c17 was expressed only in theca cells while P450arom mRNA only in granulosa cells. In nonatretic follicles from prepubertal ovaries, the relative quantity of mRNA expression of all the three enzymes increased with follicle size; however, while the concentration of P4 and E2 increased, that of T0 decreased with follicle size. While expression of mRNA encoding P450scc was unaffected, that of P450c17 mRNA decreased to the lowest level and mRNA for P450arom became undetectable following atresia; accordingly, while the concentration of P4 increased in the atretic medium follicles, that of T0 and E2 decreased to the lowest level after atresia. While the adult follicular stage follicles showed a similar cytochrome expression as the nonatretic follicles of prepubertal goats, the former contained higher levels of E2 and P4 than the latter. The presence of corpus luteum in an ovary decreased expression of P450scc, significantly in large follicles while it increased concentration of P4. These findings indicated that (1) similar to other species, changes in follicular steroid production in goats were explained in large measure by changes in steroidogenic enzyme expression; (2) while mRNA expression was similar, activities of some of the steroidogenic enzymes may differ between sexually mature and immature goats.
Collapse
Affiliation(s)
- Ji-Hong Yuan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City 271018, PR China
| | | | | | | | | | | |
Collapse
|
44
|
Grant V, Irwin R, Standley N, Shelling A, Chamley L. Sex of Bovine Embryos May Be Related to Mothers' Preovulatory Follicular Testosterone1. Biol Reprod 2008; 78:812-5. [DOI: 10.1095/biolreprod.107.066050] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
45
|
Abstract
Although androgens and the androgen receptor (AR) have defining roles in male reproductive development and function, previously no role in female reproductive physiology beyond testosterone (T) as the precursor in estradiol (E(2)) biosynthesis was firmly established. Understanding the role and specific mechanisms of androgen action via the AR in the ovary has been limited by confusion on how to interpret results from pharmacological studies, because many androgens can be metabolized in vivo and in vitro to steroids that can also exert actions via the estrogen receptor (ESR). Recent genetic studies using mouse models with specific disruption of the Ar gene have highlighted the role that AR-mediated actions play in maintaining female fertility through key roles in the regulation of follicle health, development, and ovulation. Furthermore, these genetic studies have revealed that AR-mediated effects influence age-related female fertility, possibly via mechanisms acting predominantly at the hypothalamic-pituitary axis in a dose-dependent manner. This review focuses on combining the findings from pharmacological studies and novel genetic mouse models to unravel the roles of ovarian androgen actions in relation to female fertility and ovarian aging, as well as creating new insights into the role of androgens in androgen-associated reproductive disorders such as polycystic ovarian syndrome.
Collapse
Affiliation(s)
- K A Walters
- Andrology Laboratory, ANZAC Research Institute, Concord Hospital, University of Sydney, New South Wales 2139, Australia
| | | | | |
Collapse
|
46
|
Arlotto T, Schwartz JL, First NL, Leibfried-Rutledge ML. Aspects of follicle and oocyte stage that affect in vitro maturation and development of bovine oocytes. Theriogenology 2007; 45:943-56. [PMID: 16727855 DOI: 10.1016/0093-691x(96)00024-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/1995] [Accepted: 08/31/1995] [Indexed: 10/18/2022]
Abstract
Success of in vitro maturation (IVM) and production of bovine embryos as related to aspects of follicle source and oocyte size were evaluated. First, it was determined that bovine oocytes continue growing in all follicular sizes studied, including >1- to 15-mm follicles. Populations of oocytes were collected from surface visible (peripheral) and cortical follicles from the same ovaries. When the number of oocytes from both peripheral and cortical follicles was combined, the yield of oocytes was approximately double that collected from 1 ovarian site alone. Oocytes from cortical follicles were smaller than those from the surface population, and the smaller cortical oocytes had a lower potential for both meiotic maturation and embryo development Only cortical oocytes with the largest diameters underwent IVM and subsequently developed to blastocysts at rates comparable to oocytes from peripheral follicles. As the diameter of the oocytes recovered from peripheral follicles increased, so did their developmental potential. When the stage of the estrous cycle was observed, it was found to have no effect on developmental potential. Finally, oocytes which extruded polar bodies at an earlier time during maturation were, on average, larger than those which extruded polar bodies later. The results serve a practical purpose in assisting selection of oocytes capable of developing into blastocysts and they give useful correlates of oocyte competencies based on knowledge of follicle source and oocyte stage.
Collapse
Affiliation(s)
- T Arlotto
- Department of Meat and Animal Science, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
47
|
Burke CR, Cárdenas H, Mussard ML, Gasser CL, Day ML. Steroidogenic changes and steady state amount of messenger RNA encoding steroidogenic enzymes, gonadotropin receptors and cell-death signalling in the dominant ovarian follicle during estradiol-induced atresia in cattle. Anim Reprod Sci 2007; 99:244-57. [PMID: 16842941 DOI: 10.1016/j.anireprosci.2006.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Accepted: 05/23/2006] [Indexed: 11/27/2022]
Abstract
Changes in steroidogenic function and associated gene expression were characterized in dominant ovarian follicles (DF) of cattle where follicles were induced to become atretic by systemic administration of estradiol benzoate (EB). In experiment 1, follicular fluid (FF) steroid concentrations in the DF were measured at 12-hourly time points for 48 h in heifers treated with 1 mg EB i.m./500 kg body weight (EB; n=20) as compared with untreated controls (C; n=19). Treatment with EB promoted a transient reduction in circulating FSH, a rapid (12 h) and sustained reduction in FF estradiol, a rapid (12 h) but transient reduction in FF progesterone and a delayed (36 h) increase in FF testosterone concentrations. In experiment 2, whole follicular wall tissue was collected from DF of mature non-lactating cows allocated to a 0 h control group (0 HC: n=7), a 24h control group (24 HC; n=7) or an EB-treated group where tissue was collected 24 h after administration of 1 mg EB i.m./500 kg body weight (EB; n=8). As for experiment 1, EB promoted a transient reduction in circulating FSH, a pronounced reduction in FF estradiol and a smaller but significant reduction in FF progesterone concentrations. Semi-quantitative RT-PCR on follicular wall tissue revealed that the loss in estrogen activity at 24 h after EB was associated with two-fold reduction in aromatase mRNA, with an apparent acceleration in loss of 17alpha-hydroxylase mRNA. Expression of genes for gonadotropin receptors (LHR and FSHR) and a cell-death signalling pathway (Fas antigen and Fas ligand) were unchanged during the initial 24h of EB-induced atresia. These results suggest that EB initiates atresia in dominant ovarian follicles through a rapid suppression of follicular estradiol synthesis, an effect associated with down-regulation of the aromatase gene. A transient suppression in circulating FSH following administration of EB appears to have initiated these events, and it is suggested that subsequent processes involved in atresia follow this loss in estrogenic function.
Collapse
Affiliation(s)
- C R Burke
- The Ohio State University, Department of Animal Sciences, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
48
|
Lew B, Meidan R, Wolfenson D. Concentrações hormonais e desenvolvimento folicular de vacas leiteiras em hipertermia sazonal e aguda. ARQ BRAS MED VET ZOO 2006. [DOI: 10.1590/s0102-09352006000500017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Avaliaram-se as concentrações hormonais e os parâmetros de desenvolvimento folicular de vacas leiteiras expostas ao calor sazonal e agudo. Dividiram-se os animais em quatro grupos: verão (n=5), outono (n=5), inverno com hipertermia aguda (grupo câmara climática, (CC), n=5) e inverno (n=9). Os animais foram abatidos no sétimo dia após a ovulação, e os parâmetros de desenvolvimento folicular avaliados. O líquido folicular do maior folículo foi aspirado e armazenado para posterior análise de hormônios esteróides e inibina. O número de células da granulosa vivas no verão e no outono foi 40 e 45% respectivamente, menor que no inverno (P<0,05). A concentração de estradiol (E2) no inverno foi 62% maior que no outono (P<0,05) e 34% superior ao grupo verão (P<0,06). Houve um aumento na quantidade de androstenediona no verão em relação aos grupos inverno (P<0,08) e outono (P<0,05). A concentração de inibina foi maior no inverno do que no verão e CC (P<0,05). A exposição ao calor sazonal e agudo modificou os parâmetros de desenvolvimento do folículo e as concentrações hormonais no líquido folicular, podendo explicar em parte a queda nas taxas de concepção no verão.
Collapse
Affiliation(s)
- B.J. Lew
- UNESP; The Hebrew University of Jerusalem
| | | | | |
Collapse
|
49
|
Rodrigues BA, Rodrigues JL. Responses of canine oocytes to in vitro maturation and in vitro fertilization outcome. Theriogenology 2006; 66:1667-72. [PMID: 16580716 DOI: 10.1016/j.theriogenology.2006.02.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The potential benefits of assisted reproduction techniques, such as in vitro maturation (IVM) and in vitro fertilization (IVF) in canids, are linked to the protection and saving of species threatened by extinction due to worldwide habitat destruction and pollution. In both domestic and wild species, these technologies will form the basis for the next leap in reproductive performance by improving fertility rates in valuable middle-aged females, by improving pregnancy rate in infertile or sub-fertile populations and by rescuing biological material to replenish populations of endangered species. In vitro techniques are supposed to answer the reproductive questions of canids, to introduce new methods for contraception and to compete with artificial insemination (AI) as the major or predominant method of embryo production, oocyte- and embryo cryopreservation and cloning. The causes affecting in vitro meiosis of dog oocytes are likely to be diverse. Incomplete understanding of the events associated with oocyte developmental competence are imputed to species reproductive physiology, medium composition and source of ovarian oocyte population used for in vitro maturation. This review addresses some issues on the current state of in vitro maturation and in vitro fertilization of canine oocytes.
Collapse
Affiliation(s)
- B A Rodrigues
- Laboratory of Embryology and Biotechniques of Reproduction, Faculty of Veterinary Medicine, UFRGS, Cx Postal 15004, 91501-970 Porto Alegre, RS, Brazil.
| | | |
Collapse
|
50
|
Bukovsky A. Immune system involvement in the regulation of ovarian function and augmentation of cancer. Microsc Res Tech 2006; 69:482-500. [PMID: 16703613 DOI: 10.1002/jemt.20307] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Increasing evidence indicates a role for the immune system and mesenchymal-epithelial interactions in the regulation of ovarian function. Cytokines produced by mesenchymal cells can stimulate development and regression of ovarian structures. We report here that mesenchymal cells releasing surface molecules among epithelial cells--namely vascular pericytes and monocyte-derived cells (MDC)--and intraepithelial T lymphocytes are associated with oogenesis and formation of new primary follicles in both fetal and adult human ovaries. These activated mesenchymal cells interact with the ovarian surface epithelium, which appears to be a source of secondary germ cells and granulosa cells. Activated pericytes and MDC are also associated with stimulation of thecal development during selection of growing secondary follicles from the cohort of primary follicles. However, survival of the dominant follicle during mid-follicular phase selection is associated with a lack of activity of mesenchymal cells and retardation of thecal development, since immature granulosa cells lacking aromatase are unable to resist high levels of thecal androgens. Once the selected follicle matures (late follicular phase), it shows enhanced activity of thecal mesenchymal cells and advanced thecal development. Corpus luteum (CL) development is accompanied by a high activity of vascular pericytes and MDC. In mature CL and CL of pregnancy, luteal MDC and pericytes show a stable (inactive) state. Regression of the CL is associated with regression of pericytes, transformation of MDC into dendritic cells, infiltration by T lymphocytes, and binding of immunoglobulin G to the luteal cells. The immunoglobulin M (IgM) binds to young but not mature luteal cells. In the CL of pregnancy, IgM binds to luteal vessels, but not to luteal cells. Regressing CL shows IgM binding to both luteal cells and vessels. In ovarian cancers, highly activated MDC and sometimes activated pericytes (poorly differentiated carcinomas) are present. IgM binding is similar to that seen in the CL of pregnancy. These data indicate that vascular pericytes, MDC, T cells, and immunoglobulins may play an important role in the regulation of ovarian physiology and contribute to the augmentation of ovarian cancer growth.
Collapse
Affiliation(s)
- Antonin Bukovsky
- Laboratory of Development, Differentiation and Cancer, Department of Obstetrics and Gynecology, The University of Tennessee Graduate School of Medicine, Knoxville, Tennessee 37920, USA.
| |
Collapse
|