1
|
Lee S, Cha D, Jin JX, Kim GA, Lee BC. Paradoxical effects of inhibition of Δ14-reductase and Δ7-reductase on porcine oocyte maturation and subsequent embryo development after parthenogenetic activation. Theriogenology 2025; 235:245-253. [PMID: 39879673 DOI: 10.1016/j.theriogenology.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025]
Abstract
Follicular fluid-derived meiosis-activating sterol (FF-MAS), an intermediate in the cholesterol biosynthesis pathway, plays a crucial role in the meiotic resumption of mammalian oocytes. Maintaining a high concentration of FF-MAS in vitro is challenging; therefore, AY9944 A-7, an inhibitor of Δ14-reductase [which converts FF-MAS to testis meiosis-activating sterol (T-MAS)] and Δ7-reductase (which converts T-MAS to cholesterol), has been used to enhance oocyte maturation. This study examined the effects of various concentrations (0, 10, 20, and 40 μM) of AY9944 A-7 on porcine oocyte maturation and subsequent embryo development. Results indicate that treatment with 10 and 20 μM AY9944 A-7 during in vitro maturation (IVM) enhanced oocyte nuclear maturation, with 10 μM significantly increasing the transcript expression of oocyte maturation-related genes. However, blastocyst formation rates significantly decreased in oocytes treated with AY9944 A-7 concentrations above 10 μM. To explore these unexpected findings, the study evaluated the effects of AY9944 A-7 on lipid content in oocytes and the sonic hedgehog (SHH) signaling pathway in subsequent parthenogenetic embryos. A concentration-dependent decrease in oocyte lipid content was observed following AY9944 A-7 treatment. Additionally, transcripts of SHH signaling pathway genes were detected in preimplantation-stage parthenogenetic embryos, with reduced expression in the 10 μM AY9944 A-7-treated group. Taken together, AY9944 A-7 supplementation during porcine IVM enhanced oocyte maturation by accumulating FF-MAS, but subsequent embryo development was impaired due to cholesterol deficiency, potentially mediated by SHH signaling downregulation.
Collapse
Affiliation(s)
- Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 34134, Daejeon, Republic of Korea; Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 08826, Seoul, Republic of Korea
| | - Dabin Cha
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 34134, Daejeon, Republic of Korea
| | - Jun-Xue Jin
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 08826, Seoul, Republic of Korea; Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, 150030, Harbin, China
| | - Geon A Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 08826, Seoul, Republic of Korea; Department of Biomedical Laboratory Science, School of Health Science, Eulji University, 34824, Uijeongbu, Republic of Korea
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 08826, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Meinecke B, Meinecke-Tillmann S. Lab partners: oocytes, embryos and company. A personal view on aspects of oocyte maturation and the development of monozygotic twins. Anim Reprod 2023; 20:e20230049. [PMID: 37547564 PMCID: PMC10399133 DOI: 10.1590/1984-3143-ar2023-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/12/2023] [Indexed: 08/08/2023] Open
Abstract
The present review addresses the oocyte and the preimplantation embryo, and is intended to highlight the underlying principle of the "nature versus/and nurture" question. Given the diversity in mammalian oocyte maturation, this review will not be comprehensive but instead will focus on the porcine oocyte. Historically, oogenesis was seen as the development of a passive cell nursed and determined by its somatic compartment. Currently, the advanced analysis of the cross-talk between the maternal environment and the oocyte shows a more balanced relationship: Granulosa cells nurse the oocyte, whereas the latter secretes diffusible factors that regulate proliferation and differentiation of the granulosa cells. Signal molecules of the granulosa cells either prevent the precocious initiation of meiotic maturation or enable oocyte maturation following hormonal stimulation. A similar question emerges in research on monozygotic twins or multiples: In Greek and medieval times, twins were not seen as the result of the common course of nature but were classified as faults. This seems still valid today for the rare and until now mainly unknown genesis of facultative monozygotic twins in mammals. Monozygotic twins are unique subjects for studies of the conceptus-maternal dialogue, the intra-pair similarity and dissimilarity, and the elucidation of the interplay between nature and nurture. In the course of in vivo collections of preimplantation sheep embryos and experiments on embryo splitting and other microsurgical interventions we recorded observations on double blastocysts within a single zona pellucida, double inner cell masses in zona-enclosed blastocysts and double germinal discs in elongating embryos. On the basis of these observations we add some pieces to the puzzle of the post-zygotic genesis of monozygotic twins and on maternal influences on the developing conceptus.
Collapse
Affiliation(s)
- Burkhard Meinecke
- Institut für Reproduktionsbiologie, Tierärztliche Hochschule Hannover, Hanover, Germany
- Ambulatorische und Geburtshilfliche Veterinärklinik, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Sabine Meinecke-Tillmann
- Institut für Reproduktionsbiologie, Tierärztliche Hochschule Hannover, Hanover, Germany
- Institut für Tierzucht und Haustiergenetik, Justus-Liebig-Universität Giessen, Giessen, Germany
| |
Collapse
|
3
|
Kim S, Oh D, Choi H, Kim M, Cai L, Jawad A, Haomiao Z, Lee J, Kim E, Hyun SH. The effect of C–C motif chemokine ligand 2 supplementation on in vitro maturation of porcine cumulus-oocyte complexes and subsequent developmental competence after parthenogenetic activation. Front Vet Sci 2023; 10:1136705. [PMID: 36992978 PMCID: PMC10040565 DOI: 10.3389/fvets.2023.1136705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
Porcine embryos are used for a variety of applications. However, the maturation rate in vitro remains low, and novel in vitro maturation (IVM) techniques that facilitate the collection of mature oocytes are necessary. C-C motif chemokine ligand 2 (CCL2) is a key periovulatory chemokine present in cumulus-oocyte complexes (COCs). We aimed to examine the effects of CCL2 supplementation during IVM on oocyte maturation and embryonic development. The CCL2 concentration was significantly higher in porcine follicular fluid (pFF) derived from follicles >8 mm in size than in pFF derived from smaller follicles. There was a significant increase in CCL2 mRNA levels in all follicular cells after IVM compared with that before IVM. We analyzed the localization of CCL2 and its receptor, the CCL2 receptor, in follicular cells. During IVM, different concentrations of CCL2 were added to COCs cultured in a maturation medium. After IVM, the group treated with 100 ng/mL CCL2 showed significantly higher metaphase II rates than the control group. All CCL2-treatment groups showed a significant increase in intracellular glutathione levels and a significant decrease in reactive oxygen species levels, compared to the control. In CCs treated with 100 ng/mL CCL2, the mRNA levels of BAX, CASP3, and NPR2 were significantly decreased. Furthermore, the mRNA levels of SOD1, SOD2, and CD44 were significantly increased. In oocytes treated with 10 ng/mL CCL2, mRNA levels of BAX and CASP3 were significantly decreased, whereas, NRF2 and NPM2 were significantly increased. ERK1 exhibited significantly increased mRNA expression in both CCs and oocytes treated with 10 ng/mL CCL2. The protein expression ratio of phosphorylated ERK1/2 to total ERK1/2 was significantly increased in CCs treated with 10 ng/mL CCL2. After parthenogenetic activation, cleavage rates were significantly improved in the 100 ng/mL CCL2 treatment group, and blastocyst formation rates were significantly enhanced in the 10 ng/mL CCL2 treatment group. Overall, our results suggest that IVM medium along with CCL2 improves porcine oocyte maturation and the development of parthenogenetically-activated embryos.
Collapse
Affiliation(s)
- Sohee Kim
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Dongjin Oh
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyerin Choi
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Mirae Kim
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Lian Cai
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Republic of Korea
| | - Ali Jawad
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Zheng Haomiao
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Joohyeong Lee
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Eunhye Kim
- Laboratory of Molecular Diagnostics and Cell Biology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
- *Correspondence: Eunhye Kim
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Republic of Korea
- Sang-Hwan Hyun
| |
Collapse
|
4
|
Effect of Interleukin-7 on In Vitro Maturation of Porcine Cumulus-Oocyte Complexes and Subsequent Developmental Potential after Parthenogenetic Activation. Animals (Basel) 2021; 11:ani11030741. [PMID: 33800509 PMCID: PMC8001781 DOI: 10.3390/ani11030741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Oocyte-secreted factors play an essential role in oogenesis and fertility through bidirectional crosstalk between oocytes and somatic cells. Interleukin-7, known as an oocyte-secreted factor, has recently been shown to improve oocyte developmental competence through interaction with cumulus cells around the oocytes. This study aimed to investigate the effects of interleukin-7 on porcine cumulus-oocyte complexes during in vitro maturation. Our results showed that supplementation with interleukin-7 during in vitro maturation exerted beneficial effects on porcine oocyte meiotic maturation by upregulating antioxidant-related genes and enhanced the subsequent developmental potential of porcine embryos after parthenogenetic activation. Abstract Interleukin-7 (IL-7) is a cytokine essential for cell development, proliferation and survival. However, its role in oocyte maturation is largely unknown. To investigate the effects of IL-7 on the in vitro maturation (IVM) of porcine oocytes, we analyzed nuclear maturation, intracellular glutathione (GSH) and reactive oxygen species (ROS) levels, and subsequent embryonic developmental competence after parthenogenetic activation (PA) under several concentrations of IL-7. After IVM, IL-7 treated groups showed significantly higher nuclear maturation and significantly decreased intracellular ROS levels compared with the control group. All IL-7 treatment groups exhibited significantly increased intracellular GSH levels compared with the control group. All oocytes matured with IL-7 treatment during IVM exhibited significantly higher cleavage and blastocyst formation rates after PA than the non-treatment group. Furthermore, significantly higher mRNA expression levels of developmental-related genes (PCNA, Filia, and NPM2) and antioxidant-related genes (GSR and PRDX1) were observed in the IL-7-supplemented oocytes than in the control group. IL-7-supplemented cumulus cells showed significantly higher mRNA expression of the anti-apoptotic gene BCL2L1 and mitochondria-related genes (TFAM and NOX4), and lower transcript levels of the apoptosis related-gene, Caspase3, than the control group. Collectively, the present study suggests that IL-7 supplementation during porcine IVM improves oocyte maturation and the developmental potential of porcine embryos after PA.
Collapse
|
5
|
Yoon JD, Hwang SU, Kim M, Jeon Y, Hyun SH. Growth differentiation factor 8 regulates SMAD2/3 signaling and improves oocyte quality during porcine oocyte maturation in vitro†. Biol Reprod 2020; 101:63-75. [PMID: 31004472 DOI: 10.1093/biolre/ioz066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/07/2018] [Accepted: 04/17/2019] [Indexed: 11/12/2022] Open
Abstract
Growth differentiation factor 8 (GDF8), also known as myostatin, is a member of the transforming growth factor-β (TGF-β) family and has been identified as a strong physiological regulator of muscle differentiation. Recently, the functional role of GDF8 in reproductive organs has received increased interest following its detection in the human placenta and uterus. To investigate the effects of GDF8 during porcine oocyte in vitro maturation (IVM), we assessed the quality of matured oocytes. Furthermore, we investigated the specific gene transcription and protein activation levels in oocytes and cumulus cells after IVM and subsequent embryonic development after in vitro fertilization and parthenogenetic activation. Prior to these experiments, the concentration of GDF8 in porcine follicular fluid was determined. During the entire IVM period, 1.3 ng/mL GDF8 and its signaling inhibitor SB431542 (SB) at 5 μM were added as control, SB, SB + GDF8, and GDF8 groups, respectively. Our results demonstrate that supplementation with GDF8 during porcine oocyte IVM enhanced both meiotic and cytoplasmic maturation, with altered transcriptional patterns, via activation of Sma- and Mad-related protein 2/3 (SMAD2/3). Using the pharmacological inhibitor SB431542, we demonstrated that inhibition of GDF8-induced Smad2/3 signaling reduces matured oocyte quality. In conclusion, for the first time, we demonstrated paracrine factor GDF8 in porcine follicular fluid in vivo. Furthermore, we showed that GDF8 supplementation improved mature oocyte quality by regulating p38 mitogen-activated protein kinase phosphorylation and intracellular glutathione and reactive oxygen species levels during porcine IVM.
Collapse
Affiliation(s)
- Junchul David Yoon
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea.,Institute of Stem Cell & Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Seon-Ung Hwang
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea.,Institute of Stem Cell & Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Mirae Kim
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea.,Institute of Stem Cell & Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Yubyeol Jeon
- Laboratory of Theriogenology and Reproductive Biotechnologies, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeolabuk-do, Republic of Korea
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea.,Institute of Stem Cell & Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
6
|
Yoon JD, Hwang SU, Kim E, Jin M, Kim S, Hyun SH. GDF8 activates p38 MAPK signaling during porcine oocyte maturation in vitro. Theriogenology 2017; 101:123-134. [PMID: 28708509 DOI: 10.1016/j.theriogenology.2017.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/30/2017] [Accepted: 06/04/2017] [Indexed: 02/07/2023]
Abstract
Growth Differentiation Factor 8 (GDF8) is a member of the transforming growth factor-β (TGF-β) family and has been identified as a strong physiological regulator. This factor is expressed as a paracrine factor in mural granulosa cells. To investigate the effects of GDF8 on the in vitro maturation (IVM) of porcine oocytes, we assessed the quality of matured oocytes as well as the specific gene transcription and protein activation levels in oocytes and cumulus cells (CCs) after IVM and subsequent embryonic development after in vitro fertilization (IVF) and parthenogenetic activation (PA). Supplemental concentrations (0, 1, 10, and 100 ng/ml) of GDF8 were provided in IVM medium. Supplementation with GDF8 during IVM induced transcription of specific TGF-β receptor genes, such as ActRIIb and Alk4/5, and the recognition of the GDF8 by these receptors induced phosphorylation of p38 MAPK. Activated p38 MAPK signaling changed oocyte maturation and cumulus expansion-related gene transcription: Nrf2 and Bcl-2 in oocytes and PCNA, Nrf2, Has2, Ptx3, and TNFAIP6 in CCs. The altered gene expression pattern during IVM resulted in a 10% lower level of intracellular ROS in mature oocytes. The improved cytoplasmic maturation led to an increase in the fertilization efficiency and subsequent embryonic developmental competence. The embryonic development showed increases in the blastocyst formation rate and higher transcription levels of POU5F1 and BCL-2 in the blastocysts. The present study suggests that supplementation of GDF8 during IVM synergistically improved the developmental potential of IVF- and PA-derived porcine embryos by reducing the intracellular ROS level in oocytes by altering the transcription of specific genes and increasing the phosphorylation of p38 MAPK during IVM. In conclusion, for the first time, our results demonstrate that GDF8 can act as a paracrine factor to modulate oocyte maturation by regulating p38 MAPK phosphorylation and intracellular ROS level during porcine IVM.
Collapse
Affiliation(s)
- Junchul David Yoon
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Republic of Korea; Institute of Stem Cell & Regenerative Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Republic of Korea
| | - Seon-Ung Hwang
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Republic of Korea; Institute of Stem Cell & Regenerative Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Republic of Korea
| | - Eunhye Kim
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Republic of Korea; Institute of Stem Cell & Regenerative Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Republic of Korea
| | - Minghui Jin
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Republic of Korea; Institute of Stem Cell & Regenerative Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Republic of Korea
| | - Soochong Kim
- Laboratory of Veterinary Pathology and Platelets Signaling, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Republic of Korea
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Republic of Korea; Institute of Stem Cell & Regenerative Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Republic of Korea.
| |
Collapse
|
7
|
Selection of porcine oocytes in vitro through brilliant cresyl blue staining in distinct incubation media. ZYGOTE 2016; 25:49-55. [PMID: 27955714 DOI: 10.1017/s0967199416000319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Staining with brilliant cresyl blue (BCB) may be used for oocyte selection, but BCB staining itself and the most commonly used selection medium (DMPBS) may compromise the development of porcine oocytes in vitro. This study evaluated DNA fragmentation, nuclear maturation, the area of migration of cortical granules (CG) and embryo development for stained (BCB+) and unstained (BCB-) oocytes incubated in DMPBS and in a modified medium (ReproPel) tested for the first time. Unexposed (UN), BCB+ and BCB- oocytes were incubated composing six groups: DMPBS/UN; DMPBS/BCB+; DMPBS/BCB-; ReproPel/UN; ReproPel/BCB+; and ReproPel/BCB-. There were more BCB+ oocytes in ReproPel than in DMPBS (P < 0.05). The DNA fragmentation was evaluated for oocytes in DMPBS/BCB+, DMPBS/BCB-, ReproPel/BCB+, ReproPel/BCB- and in porcine follicular fluid (control). The frequency of oocytes with no DNA fragmentation was greatest (64.6%) in DMPBS/BCB+ and lowest in ReproPel/BCB+ and ReproPel/BCB- (26.8 and 34.1%, respectively) (P < 0.05). Nuclear maturation rates were greater (P < 0.05) for DMPBS/BCB+ (63.1%), ReproPel/UN (55.1%) and ReproPel/BCB+ (50.2%) than for DMPBS/UN (40.8%) and ReproPel/BCB- (35.5%). The area of CG was greater (P < 0.05) for ReproPel/BCB- (80.7%) and DMPBS/UN (77.6%) than for ReproPel/UN (34.7%). Cleavage rates for DMPBS/BCB+ and ReproPel/BCB+ were greater than for DMPBS/UN (P < 0.05). Blastocyst development rates were greatest (P < 0.05) for ReproPel/UN and ReproPel/BCB+. In both media, BCB staining was apparently unable to select competent oocytes, which likely occurred due to toxicity. Despite the similar nuclear maturation and area of CG compared with DMPBS, oocytes selected in ReproPel presented impaired DNA integrity.
Collapse
|
8
|
Lee S, Jin JX, Khoirinaya C, Kim GA, Lee BC. Lanosterol influences cytoplasmic maturation of pig oocytes in vitro and improves preimplantation development of cloned embryos. Theriogenology 2015; 85:575-84. [PMID: 26494176 DOI: 10.1016/j.theriogenology.2015.09.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/18/2015] [Accepted: 09/18/2015] [Indexed: 12/26/2022]
Abstract
Lanosterol is a precursor of meiosis-activating sterols in the cholesterol biosynthetic pathway and induces a physiological signal that instructs the oocyte to reinitiate meiosis. In this study, we examined the effect of lanosterol on IVM of porcine oocytes, specifically on nuclear maturation, cytoplasmic maturation by investigating intracellular glutathione (GSH) levels and lipid content, embryonic development after parthenogenetic activation and somatic cell nuclear transfer (SCNT), and on gene expression in cumulus cells, oocytes, and SCNT-derived blastocysts. There was no significant difference in nuclear maturation rates between the control and treatment groups (10, 50, and 100 μM of lanosterol added to IVM culture medium). Supplementation with 50-μM lanosterol significantly increased lipid content and GSH levels and decreased reactive oxygen species levels compared with the control. In addition, oocytes treated with 50 μM of lanosterol exhibited significantly increased blastocyst formation rates and total cell numbers after parthenogenetic activation (30.3% and 63.9 vs. 21.6% and 36.5, respectively) and SCNT (18.2% and 53.7 vs. 12.6% and 37.5, respectively), when compared with the control group. Cumulus cells treated with 50 μM of lanosterol showed significantly increased 14α-demethylase, Δ14-reductase, and Δ7-reductase mRNA transcript levels. Significantly increased PPARγ, SREBF1, GPX1, and Bcl-2 and decreased Bax transcript levels were observed in mature oocytes treated with 50 μM of lanosterol compared with the control. SCNT blastocysts derived from 50-μM lanosterol-treated oocytes had significantly higher POU5F1, FGFR2, and Bcl-2 transcript levels than control SCNT-derived blastocysts. In conclusion, supplementation with 50 μM of lanosterol during IVM improves preimplantation development of SCNT embryos by elevating lipid content of oocytes, increasing GSH levels, decreasing reactive oxygen species levels, and regulating genes related to the cholesterol biosynthetic pathway in cumulus cells, to lipid metabolism and apoptosis in oocytes, and their developmental potential and apoptosis in blastocysts.
Collapse
Affiliation(s)
- Sanghoon Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jun-Xue Jin
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Candrani Khoirinaya
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Geon A Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea; Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Kangwon do, Korea.
| |
Collapse
|
9
|
Yoon JD, Jeon Y, Cai L, Hwang SU, Kim E, Lee E, Kim D, Hyun SH. Effects of coculture with cumulus-derived somatic cells on in vitro maturation of porcine oocytes. Theriogenology 2015; 83:294-305. [DOI: 10.1016/j.theriogenology.2014.09.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 09/15/2014] [Accepted: 09/20/2014] [Indexed: 11/24/2022]
|
10
|
SATO E. Intraovarian control of selective follicular growth and induction of oocyte maturation in mammals. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2015; 91:76-91. [PMID: 25765010 PMCID: PMC4410087 DOI: 10.2183/pjab.91.76] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/05/2015] [Indexed: 06/04/2023]
Abstract
In newborn mammals, most of the germ cell population rests in a pool of quiescent small follicles in the ovaries. Regularly throughout adulthood, a small percentage of these oocytes and follicles grows to a certain stage of development and then either degenerates or matures and ovulates. This entire process is under both exogenous and endogenous control. Recent work, including my laboratory's, has clarified that cytokines and glycosaminoglycans are involved as exogenous and endogenous factors in ovarian follicular development, atresia, and maturation in mammals. The present article describes our contribution regarding the cytokines and ovarian glycosaminoglycans that act as intraovarian regulators of follicular development and oogenesis, including oocyte maturation, in mammals.
Collapse
Affiliation(s)
- Eimei SATO
- National Livestock Breeding Center, Incorporated Administrative Agency, Fukushima, Japan
| |
Collapse
|
11
|
Nishimura T, Fujii W, Sugiura K, Naito K. Cytoplasmic Anchoring of cAMP-Dependent Protein Kinase (PKA) by A-Kinase Anchor Proteins (AKAPs) Is Required for Meiotic Arrest of Porcine Full-Grown and Growing Oocytes1. Biol Reprod 2014; 90:58. [DOI: 10.1095/biolreprod.113.114736] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
12
|
Demirtas E, Holzer H, Son WY, Elizur S, Levin D, Chian RC, Tan SL. Willin vitromaturation ever be used in all IVF patients? ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17474108.3.5.627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Wang B, Ma W, Xu X, Wang C, Zhu Y, An N, An L, Wu Z, Tian J. Phosphorylation of histone H3 on Ser10 by auto-phosphorylated PAK1 is not essential for chromatin condensation and meiotic progression in porcine oocytes. J Anim Sci Biotechnol 2013; 4:13. [PMID: 23521812 PMCID: PMC3639857 DOI: 10.1186/2049-1891-4-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/01/2013] [Indexed: 11/10/2022] Open
Abstract
Background The p21-activated kinase 1 (PAK1) is essential for mitosis and plays an important role in the regulation of microtubule assembly during oocyte meiotic maturation in mice; however, little is known about its role in porcine oocytes. Result Total p21-activated kinase 1 (PAK1) and phosphorylated PAK1 at Thr423 (PAK1Thr423) were consistently expressed in porcine oocytes from the germinal vesicle (GV) to the second metaphase (MII) stages, but phosphorylation of histone H3 at Ser10 (H3Ser10) was only expressed after the GV stage. Immunofluorescence analysis revealed that PAK1Thr423 and H3Ser10 colocalized on chromosomes after the GV stage. Blocking of endogenous PAK1Thr423 by injecting a specific antibody decreased the phosphorylation level of H3Ser10; however, it had no impact on chromatin condensation, meiotic progression, cleavage rate of blastomeres or the rate of blastocyst formation. Conclusion Phosphorylation of PAK1Thr423 is a spontaneous activation process and the activated PAK1Thr423 can promote the phosphorylation of H3Ser10; however, this pathway is not required for meiotic maturation of porcine oocytes or early embryonic development.
Collapse
Affiliation(s)
- Bingyuan Wang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction; National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China
| | - Wei Ma
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction; National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China.,Department of Histology and Embryology; School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, P. R. China
| | - Xiaoling Xu
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction; National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China.,Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry Sciences, Beijing, 100097, P. R. China
| | - Chao Wang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction; National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China
| | - Yubo Zhu
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction; National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China
| | - Na An
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction; National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China
| | - Lei An
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction; National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China
| | - Zhonghong Wu
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction; National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China
| | - Jianhui Tian
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction; National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China
| |
Collapse
|
14
|
Nishimura T, Fujii W, Kano K, Sugiura K, Naito K. Analyses of the involvement of PKA regulation mechanism in meiotic incompetence of porcine growing oocytes. Biol Reprod 2012; 87:53. [PMID: 22674394 DOI: 10.1095/biolreprod.112.101279] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mammalian growing oocytes (GOs) lack the ability to resume meiosis, although the molecular mechanism of this limitation is not fully understood. In the present study, we cloned cDNAs of cAMP-dependent protein-kinase (PKA) subunits from porcine oocytes and analyzed the involvement of the PKA regulation mechanism in the meiotic incompetence of GOs at the molecular level. We found a cAMP-independent high PKA activity in GOs throughout the in vitro culture using a porcine PKA assay system we established, and inhibition of the activity by injection of the antisense RNA of the PKA catalytic subunit (PKA-C) induced meiotic resumption in GOs. Then we examined the possibility that the amount of the PKA regulatory subunit (PKA-R), which can bind and inhibit PKA-C, was insufficient to suppress PKA activity in GOs because of the overexpression of two PKA-Rs, PRKAR1A and PRKAR2A. We found that neither of them affected PKA activity and induced meiotic resumption in GO although PRKAR2A could inhibit PKA activity and induce meiosis in cAMP-treated full-grown oocytes (FGOs). Finally, we analyzed the subcellular localization of PKA subunits and found that all the subunits were localized in the cytoplasm during meiotic arrest and that PKA-C and PRKAR2A, but not PRKAR1A, entered into the nucleus just before meiotic resumption in FGOs, whereas all of them remained in the cytoplasm in GOs throughout the culture period. Our findings suggest that the continuous high PKA activity is a primary cause of the meiotic incompetence of porcine GOs and that this PKA activity is not simply caused by an insufficient expression level of PKA-R, but can be attributed to more complex spatial-temporal regulation mechanisms.
Collapse
Affiliation(s)
- Takanori Nishimura
- Laboratory of Applied Genetics, Graduate School of Agriculture and Life Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
15
|
The G protein coupled receptor 3 is involved in cAMP and cGMP signaling and maintenance of meiotic arrest in porcine oocytes. PLoS One 2012; 7:e38807. [PMID: 22685609 PMCID: PMC3369857 DOI: 10.1371/journal.pone.0038807] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 05/14/2012] [Indexed: 11/19/2022] Open
Abstract
The arrest of meiotic prophase in mammalian oocytes within fully grown follicles is dependent on cyclic adenosine monophosphate (cAMP) regulation. A large part of cAMP is produced by the Gs-linked G-protein-coupled receptor (GPR) pathway. In the present study, we examined whether GPR3 is involved in the maintenance of meiotic arrest in porcine oocytes. Expression and distribution of GPR3 were examined by western blot and immunofluorescence microscopy, respectively. The results showed that GPR3 was expressed at various stages during porcine oocyte maturation. At the germinal vesicle (GV) stage, GPR3 displayed a maximal expression level, and its expression remained stable from pro-metaphase I (MI) to metaphase II (MII). Immunofluorescence staining showed that GPR3 was mainly distributed at the nuclear envelope during the GV stage and localized to the plasma membrane at pro-MI, MI and MII stages. RNA interference (RNAi) was used to knock down the GPR3 expression within oocytes. Injection of small interfering double-stranded RNA (siRNA) targeting GPR3 stimulated meiotic resumption of oocytes. On the other hand, overexpression of GPR3 inhibited meiotic maturation of porcine oocytes, which was caused by increase of cGMP and cAMP levels and inhibition of cyclin B accumulation. Furthermore, incubation of porcine oocytes with the GPR3 ligand sphingosylphosphorylcholine (SPC) inhibited oocyte maturation. We propose that GPR3 is required for maintenance of meiotic arrest in porcine oocytes through pathways involved in the regulation of cAMP and cGMP.
Collapse
|
16
|
Porcine nuclei in early growing stage do not possess meiotic competence in matured oocytes. Theriogenology 2012; 78:560-6. [PMID: 22538003 DOI: 10.1016/j.theriogenology.2012.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 02/29/2012] [Accepted: 03/01/2012] [Indexed: 11/24/2022]
Abstract
To determine whether the nuclei of early growing stage porcine oocytes can mature to the MII stage, we examined meiotic competence of nuclei that had been fused with enucleated GV oocytes using the nuclear transfer method. In vitro matured oocytes were enucleated and then fused with early growing oocytes (30-40 μm in diameter) from 5 to 7-wk-old piglets using the hemagglutinating virus of Japan (HVJ). Reconstructed oocytes were cultured for 24 h to the MII stage. Although these oocytes extruded the first polar body, they did not contain normal haploid chromosomes, and the spindles were misaligned or absent at the metaphase II (MII) stage. Furthermore, maturation promoting factor (MPF) activity levels were low in oocytes reconstructed with early growing oocytes at metaphase I (MI) and MII. In contrast, mitogen-activated protein kinase (MAPK) activity was detected between the MI and MII stages, although at slightly lower levels. In conclusion, the nuclei of early growing oocytes did not accomplish normal meiotic division in matured oocytes due to misaligned or absent spindle formation.
Collapse
|
17
|
Kwak SS, Cheong SA, Jeon Y, Lee E, Choi KC, Jeung EB, Hyun SH. The effects of resveratrol on porcine oocyte in vitro maturation and subsequent embryonic development after parthenogenetic activation and in vitro fertilization. Theriogenology 2012; 78:86-101. [PMID: 22445189 DOI: 10.1016/j.theriogenology.2012.01.024] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/03/2012] [Accepted: 01/19/2012] [Indexed: 11/19/2022]
Abstract
We investigated the effects of resveratrol, a phytoalexin with various pharmacologic activities, on in vitro maturation (IVM) of porcine oocytes. We investigated intracellular glutathione (GSH) and reactive oxygen species (ROS) levels, as well as gene expression in mature oocytes, cumulus cells, and in vitro fertilization (IVF)-derived blastocysts, and subsequent embryonic development after parthenogenetic activation (PA) and IVF. After 44 h of IVM, no significant difference was observed in maturation of the 0.1, 0.5, and 2.0 μM resveratrol groups (83.0%, 84.1%, and 88.3%, respectively) compared with the control (84.1%), but the 10.0 μM resveratrol group showed significantly decreased nuclear maturation (75.0%) (P < 0.05). The 0.5- and 2.0-μm groups showed a significant (P < 0.05) increase in intracellular GSH levels compared with the control and 10.0 μM group. Intracellular ROS levels in oocytes matured with 2.0 μM resveratrol decreased significantly (P < 0.05) compared with those in the other groups. Oocytes treated with 2.0 μM resveratrol during IVM had significantly higher blastocyst formation rates and total cell numbers after PA (62.1% and 49.1 vs. 48.8%, and 41.4, respectively) and IVF (20.5% and 54.0 vs. 11.0% and 43.4, respectively) than the control group. Cumulus-oocytes complex treated with 2.0 μM resveratrol showed lower expression of apoptosis-related genes compared with mature oocytes and cumulus cells. Cumulus cells treated with 2.0 μM resveratrol showed higher (P < 0.05) expression of proliferating cell nuclear antigen than the control group. IVF-derived blastocysts derived from 2.0 μM resveratrol-treated oocytes also had less (P < 0.05) Bak expression than control IVF-derived blastocysts. In conclusion, 2.0 μM resveratrol supplementation during IVM improved the developmental potential of PA and IVF porcine embryos by increasing the intracellular GSH level, decreasing ROS level, and regulating gene expression during oocyte maturation.
Collapse
Affiliation(s)
- Seong-Sung Kwak
- Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University, Chungbuk, South Korea
| | | | | | | | | | | | | |
Collapse
|
18
|
Fujii W, Nishimura T, Kano K, Sugiura K, Naito K. CDK7 and CCNH Are Components of CDK-Activating Kinase and Are Required for Meiotic Progression of Pig Oocytes1. Biol Reprod 2011; 85:1124-32. [DOI: 10.1095/biolreprod.111.091801] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
19
|
Jin YX, Cui XS, Yu XF, Han YJ, Kong IK, Kim NH. Alterations of spindle and microfilament assembly in aged cat oocytes. Reprod Domest Anim 2011; 45:865-71. [PMID: 21457360 DOI: 10.1111/j.1439-0531.2009.01400.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To obtain insights into the cytoplasmic maturation status of cat oocytes recovered from cat ovaries following hormone treatment, we first examined microtubule and microfilament assembly in cat oocytes recovered from hormone-treated ovaries at various stages of maturation. Additionally, we determined the alteration of spindle and microfilament assembly, as well as mitogen-activated protein kinase (MAPK) activity, in cat oocytes at 0, 6, 12 and 18 h of further maturation in vitro. We then looked at pronuclear formation and cleavage of these oocytes following parthenogenetic activation. Similar to other species, microtubules are present in germinal vesicle (GV) stage cat oocytes, and following GV breakdown, microtubules encompassed condensed chromatin particles to form the meiotic metaphase spindle. Microfilaments were located in the cortex and around the GV. A microfilament-rich area, in which the chromatin is located, was observed in the oocytes during meiotic maturation. Maturation rates in aged oocytes (cultured for 18 h) were increased when compared with that in relatively fresh oocytes (<12 h culture), and the number of oocytes with abnormal spindle shapes was also increased in aged oocytes. Furthermore, in aged oocytes, the incidence of the metaphase plate observed outside the thick microfilament domain was higher compared with that of young oocytes, and this seemed to result in an increase in the number of oocytes with two pronuclei and one polar body following activation. Western blot analysis revealed a decrease in MAPK activity in aged cat oocytes. Taken collectively, these results suggest that the optimum time for improved cytoplasmic maturation is <12 h in cat oocytes recovered from hormone-treated ovaries.
Collapse
Affiliation(s)
- Y-X Jin
- Department of Animal Sciences, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | | | | | | | | | | |
Collapse
|
20
|
Okadaic acid-sensitive phosphatase is related to MII/G1 transition in mouse oocytes. ZYGOTE 2011; 20:193-8. [PMID: 21306670 DOI: 10.1017/s0967199411000013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
It is reported that okadaic acid (OA)-sensitive phosphatase is related to mitogen-activated protein kinase (MAPK)/p90rsk activation in mammalian oocytes. OA is also involved in the positive feedback loop between M phase-promoting factor (MPF) and cdc25c in Xenopus oocytes during meiotic maturation. However, the effect of phosphatase inhibition by OA on MPF and MAPK activities at the MII/G1 in oocytes remains unknown. The aim of this study is to clarify the relationship between OA-sensitive phosphatase and mitosis MII/G1 transition in mouse oocytes. MII-arrested oocytes were, isolated from mice, inseminated and cultured in TYH medium (control group) or TYH medium supplemented with 2.5 μM of OA (OA group). Histone H1 kinase and myelin basic protein (MBP) kinase activities were measured as indicators of MPF and p42 MAPK activities after insemination. Phosphorylation of cdc25c after insemination was analized in OA and control group by western blotting. Seven hours after insemination a pronucleus (PN) was formed in 84.1% (69/85) of oocytes in the control group. However, no PN was formed in oocytes of the OA group (p < 0.001). Although MPF and MAPK activities in the control group significantly decreased at 3, 4, 5, and 7 h after insemination, these decreases were significantly inhibited by OA addition (p < 0.05). Furthermore, OA addition prevented cdc25c dephosphorylation 7 h after insemination. In conclusion, OA-sensitive phosphatase correlates with inactivation of MPF and MAPK, and with the dephosphorylation of cdc25c at the MII/G1 transition in mouse oocytes.
Collapse
|
21
|
SHIMAOKA T, NISHIMURA T, KANO K, NAITO K. Analyses of the Regulatory Mechanism of Porcine WEE1B: The Phosphorylation Sites of Porcine WEE1B and Mouse WEE1B Are Different. J Reprod Dev 2011; 57:223-8. [DOI: 10.1262/jrd.10-122h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Takuma SHIMAOKA
- Laboratory of Applied Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Takanori NISHIMURA
- Laboratory of Applied Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Kiyoshi KANO
- Laboratory of Applied Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Kunihiko NAITO
- Laboratory of Applied Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|
22
|
Derivation and long-term culture of human parthenogenetic embryonic stem cells using human foreskin feeders. J Assist Reprod Genet 2010; 27:285-91. [PMID: 20393797 DOI: 10.1007/s10815-010-9408-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 03/11/2010] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Feeder cells from animals raise considerable concern for contamination because they are directly in contact with embryonic stem cells. METHODS To address this issue we collected discarded foreskin tissue and prepared a fibroblast cell line. We transferred one parthenogenetic blastocyst on to these feeder cells, and later observed outgrowth. By this approach, we were able to derive a human parthenogenetic embryonic stem cell line successfully. RESULTS The embryonic stem cells had normal morphology, expressed all expected cell surface markers, could differentiate to embryonic bodies upon culture in vitro, and differentiated further to derivatives of all three germ layers. CONCLUSION This study indicates that homologous human fibroblasts can be used as feeder cells to support not only the propagation, but also the derivation of ES cells, and this should facilitate studies of therapeutic cloning for research and clinical applications.
Collapse
|
23
|
ITO J, YOSHIDA T, KASAI Y, WAKAI T, PARYS JB, FISSORE RA, KASHIWAZAKI N. Phosphorylation of inositol 1,4,5-triphosphate receptor 1 duringin vitromaturation of porcine oocytes. Anim Sci J 2010; 81:34-41. [DOI: 10.1111/j.1740-0929.2009.00699.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Suzukamo C, Hoshina M, Moriya H, Hishiyama N, Nakamura S, Kawai F, Sato H, Ariga M, Ito J, Kashiwazaki N. Kinetics of nuclear status and kinase activities during in vitro maturation of canine oocytes. J Reprod Dev 2008; 55:116-20. [PMID: 19106486 DOI: 10.1262/jrd.20106] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In contrast to those of other mammals, canine oocytes are ovulated at the germinal vesicle (GV) stage and then progress to the metaphase II (MII) stage in the oviduct. In other species, oocytes at the MII are widely used for in vitro fertilization or as recipients in somatic cell nuclear transfer. Many researchers have tried to improve the in vitro maturation (IVM) of canine oocytes. However, the proportion of MII oocytes remains low, resulting in poor efficiency of embryogenesis in vitro. This leads us to the possibility that the in vitro cytoplasmic maturation of canine oocytes is insufficient. Furthermore, the optimal culture period for IVM of canine oocytes is controversial, and physiological evaluation is required to improve canine IVM. We show here the time-dependent changes in mitogen-activated protein kinase (MAPK) and p34(cdc2) kinase activities in canine oocytes during IVM, since it is well known that both MAPK and p34(cdc2) kinase are activated following meiotic progression and show high activities in the MII stage in other species. Immediately after collection from ovaries, most oocytes were arrested at the GV stage, which was maintained until 24 h of culture. At 48 h of culture, more than half of the oocytes had progressed beyond the MI stage. A higher proportion of MII oocytes were observed with 72 h of culture compared with other culture periods. MAPK activity was found to increase in a time-dependent manner and reached a plateau at 72 h of culture. The level of p34(cdc2) kinase activity also increased in a time-dependent manner, with its maximal level observed after 72 h of culture. Activity was decreased with 96 h of culture, although there was no significant difference in the proportion of MII oocytes between 72 and 96 h. Our data thus show that the optimal culture period for IVM of canine oocytes is 72 h because both MAPK and p34(cdc2) kinase showed high activities at that time.
Collapse
Affiliation(s)
- Chika Suzukamo
- Laboratory of Animal Reproduction, Graduate School of Veterinary Science, Azabu University, Sagamihara, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yamamuro T, Kano K, Naito K. Functions of FZR1 and CDC20, Activators of the Anaphase-Promoting Complex, During Meiotic Maturation of Swine Oocytes1. Biol Reprod 2008; 79:1202-9. [DOI: 10.1095/biolreprod.108.070326] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
26
|
Wakai T, Sugimura S, Yamanaka KI, Kawahara M, Sasada H, Tanaka H, Ando A, Kobayashi E, Sato E. Production of viable cloned miniature pig embryos using oocytes derived from domestic pig ovaries. CLONING AND STEM CELLS 2008; 10:249-62. [PMID: 18352818 DOI: 10.1089/clo.2007.0045] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
For production of viable somatic cell nuclear transferred (SCNT) miniature pig embryos, in vitro condition for controlling the quality of recipient oocytes derived from domestic pig ovaries should be evaluated. In the present study, to get information on optimal in vitro maturation (IVM) condition of oocytes, we investigated the effect of IVM duration of recipient oocytes on subsequent development of SCNT miniature pig embryos, the maturation-promoting factor (MPF) activity in recipient oocytes before and after SCNT, and the occurrence of premature chromosome condensation (PCC) and spindle morphologies of donor nuclei following SCNT. The optimal window of the IVM period in terms of in vitro developmental ability of SCNT embryos was determined to be 36-40 h after the start of IVM. The use of recipient oocytes matured for 36 and 40 h resulted in a high level of MPF activity before and after SCNT, and increased the occurrence of PCC in transferred nuclei compared to the use of oocytes matured for 44 and 52 h. The proportion of abnormal spindle-like structures increased as the IVM period was prolonged. In addition, SCNT embryos constructed from recipient cytoplasts obtained after 40 h of maturation by using fetal fibroblasts of miniature pigs were transferred to surrogate miniature pigs, and developed to full term. These results suggest that recipient oocytes matured for 36 h and 40 h effectively induce PCC with a normal cytoskeletal structure because of a high level of MPF activity; furthermore, the 40-h IVM period improves in vitro development of SCNT embryos to the blastocyst stage, resulting in the production of viable cloned miniature pigs.
Collapse
Affiliation(s)
- Takuya Wakai
- Laboratory of Animal Reproduction, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Nishimura Y, Endo T, Kano K, Naito K. Porcine Aurora A accelerates Cyclin B and Mos synthesis and promotes meiotic resumption of porcine oocytes. Anim Reprod Sci 2008; 113:114-24. [PMID: 18614302 DOI: 10.1016/j.anireprosci.2008.05.074] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 03/21/2008] [Accepted: 05/26/2008] [Indexed: 11/19/2022]
Abstract
Full-grown oocytes arrested at germinal vesicle stage contain many dormant maternal mRNAs, and Aurora A has been reported to play a key role for the translation of these maternal mRNAs in Xenopus oocytes. Although the presence of Aurora A has been reported in mammals, the functions of Aurora A on the protein synthesis and the meiotic resumption have never been elucidated in mammalian oocytes. In the present study, the effects of porcine Aurora A on meiotic resumption of porcine oocytes were examined. At first, we cloned porcine Aurora A from total RNA of immature porcine oocytes by RT-PCR and obtained full-length cDNA that was 77%, 86% and 54% homologous with mouse, human and Xenopus Aurora A, respectively. The Aurora A mRNA and large amounts of protein were present throughout maturation period in porcine oocytes. The overexpression of porcine Aurora A by the mRNA injection into immature porcine oocytes had no effects on Cyclin B synthesis and meiotic resumption. Therefore we constructed a mutated Aurora A (AA-Aurora A), which was replaced the expecting inhibitory phosphorylation sites, serines 283 and 284, to non-phosphorylatable alanines. The oocytes expressed AA-Aurora A were accelerated their Cyclin B synthesis and Rsk phosphorylation, an indicator of Mos synthesis, then their meiotic resumption was promoted significantly. These results suggest for the first time in mammalian oocytes that mammalian Aurora A stimulates the protein synthesis and promotes the meiotic resumption. In addition, we identified the inhibitory phosphorylation sites of porcine Aurora A, and indicate the presence of phosphorylation-dependent regulation mechanisms in mammalian Aurora A.
Collapse
Affiliation(s)
- Yukio Nishimura
- Department of Animal Resource Sciences, Graduate School of Agricultural Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
28
|
Swain JE, Pool TB. ART failure: oocyte contributions to unsuccessful fertilization. Hum Reprod Update 2008; 14:431-46. [DOI: 10.1093/humupd/dmn025] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
29
|
Endo T, Kano K, Naito K. Nuclear histone deacetylases are not required for global histone deacetylation during meiotic maturation in porcine oocytes. Biol Reprod 2008; 78:1073-80. [PMID: 18305223 DOI: 10.1095/biolreprod.107.067397] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Histone acetylation plays an important role in the regulation of chromatin structure and gene function. In mammalian oocytes, histones H3 and H4 are highly acetylated during the germinal vesicle (GV) stage, and global histone deacetylation takes place via a histone deacetylase (HDAC)-dependent mechanism after GV breakdown (GVBD). The presence of HDACs in the GVs of mammalian oocytes in spite of the high acetylation states of nuclear histones indicates that the HDACs in the nucleus are inactive but become activated after GVBD. However, the fluctuation pattern, the localization of HDAC activity during meiotic maturation and, moreover, the responsibility of nuclear HDACs for global histone deacetylation are still unknown. Here, we demonstrated using porcine oocytes that total HDAC activity was maintained throughout meiotic maturation, and high HDAC activity was observed in both the nucleus and the cytoplasm at the GV stage. The experiments with valproic acid (VPA), a specific class I HDAC inhibitor, revealed that the HDACs in GVs were class I, and those in the cytoplasm were other than class I. Interestingly, VPA had no effect on global histone deacetylation after GVBD, indicating that nuclear HDACs were not required for global histone deacetylation. To confirm this possibility, we removed the nuclei from immature oocytes, injected somatic cell nuclei into the enucleated oocytes, and showed that injected somatic cell nuclei were dramatically deacetylated after nuclear envelope breakdown. These results revealed that nuclear contents, including class I HDACs, are not required for the global histone deacetylation during meiosis, and that cytoplasmic HDACs other than class I are responsible for this process.
Collapse
Affiliation(s)
- Tsutomu Endo
- Laboratory of Applied Genetics, Graduate School of Agriculture and Life Science, University of Tokyo, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
30
|
Anguita B, Paramio MT, Jiménez-Macedo AR, Morató R, Mogas T, Izquierdo D. Total RNA and protein content, Cyclin B1 expression and developmental competence of prepubertal goat oocytes. Anim Reprod Sci 2008; 103:290-303. [PMID: 17250980 DOI: 10.1016/j.anireprosci.2006.12.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 12/12/2006] [Accepted: 12/18/2006] [Indexed: 10/23/2022]
Abstract
The aim of this study was to examine the relationship between the developmental competence of oocytes and their total RNA and protein contents, and the level of Cyclin B1 transcription. Ovaries from prepubertal goats were collected from a slaughterhouse. Oocytes were recovered by slicing and those with two or more layers of cumulus cells and homogenous cytoplasm were matured in vitro (20-25 oocytes per drop) for 27 h. Both before and after IVM, samples of oocytes were denuded and categorised into four group treatments by diameter (<110 microm, 110-125 microm, 125-135 microm; >135 microm), separated into sub-groups of 10 oocytes per treatment-replicate and stored in liquid nitrogen until total RNA content analysis by spectophotometry, total protein content analysis by a colorimetric assay and Cyclin B1 transcription analysis by RT-PCR. For the study of developmental competence, the rest of the matured oocytes were fertilised in vitro in groups of 20-25 for 24 h. Presumptive zygotes were denuded, sorted into the four categories of diameter noted above, and placed into culture drops in groups of 18-25 for in vitro culture. Cleavage rate was evaluated at 48 hpi and embryo development at 8 d post-insemination. There were four replicates of each treatment for each assay or evaluation point of the experiment. There were no significant differences between the size categories of oocytes at collection in total RNA content, total protein content and Cyclin B1 mRNA. There were significant differences (P<0.05) in the expression of Cyclin B1 before IVM with oocytes in the >135 mm diameter category having the highest value for this variant. There were no significant differences in these characteristics between the categories of oocyte diameter after IVM except in respect of total RNA content, which was lower for the largest size of oocytes (>135 microm; mean+/-S.D.=12.3+/-1.84 ng/oocyte) than the other three size groups (19.2+/-1.38-22.1+/-4.44 ng/oocyte; P<0.05). Significant differences (P<0.05) in cleavage rate were observed between the different oocyte size categories (<110 microm, 3.0%; 110-125 microm, 32%; 125-135 microm, 50%; >135 microm, 73%). Only oocytes >125 microm diameter developed to the blastocyst stage (125-135 microm, 7%; >135 microm, 10%). This study showed that the RNA content and the Cyclin B1 RNA expression of prepubertal goat oocytes, and their development to embryos varied between the different size categories of the oocytes.
Collapse
Affiliation(s)
- Begoña Anguita
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
31
|
Morikawa M, Seki M, Kume S, Endo T, Nishimura Y, Kano K, Naito K. Meiotic resumption of porcine immature oocytes is prevented by ooplasmic Gsalpha functions. J Reprod Dev 2007; 53:1151-7. [PMID: 17693700 DOI: 10.1262/jrd.19055] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A high cyclic adenosine monophosphate (cAMP) level in fully-grown immature oocytes prevents meiotic resumption. In Xenopus, inhibitory cAMP is synthesized within oocytes depending on a stimulatory alpha-subunit of G-protein (Gsalpha). In the present study, we examined whether ooplasmic Gsalpha is involved in meiotic arrest of porcine oocytes. First, we studied the presence of Gsalpha molecules in porcine oocytes by immunoblotting, and this suggested the presence of reported isoforms (45 and 48 kDa) not only in cumulus cells but also in porcine oocytes. Then we injected an anti-Gsalpha antibody into porcine immature oocytes and found that inhibition of ooplasmic Gsalpha functions significantly promoted germinal vesicle breakdown of the oocytes, whose spontaneous meiotic resumption was prevented by 3-isobutyl-l-methylxanthine (IBMX) treatment. Although cyclin B synthesis and M-phase promoting factor (MPF) activation were largely prevented until 30 h of culture in IBMX-treated oocytes, injection of anti-Gsalpha antibody into these oocytes partially recovered cyclin B synthesis and activated MPF activity at 30 h. These results suggest that meiotic resumption of porcine oocytes is prevented by ooplasmic Gsalpha, which may stimulate cAMP synthesis within porcine oocytes, and that synthesized cAMP prevents meiotic resumption of oocytes through the signaling pathways involved in MPF activation.
Collapse
Affiliation(s)
- Marie Morikawa
- Laboratory of Applied Genetics, Graduate School of Agriculture and Life Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Kume S, Endo T, Nishimura Y, Kano K, Naito K. Porcine SPDYA2 (RINGO A2) Stimulates CDC2 Activity and Accelerates Meiotic Maturation of Porcine Oocytes1. Biol Reprod 2007; 76:440-7. [PMID: 17151349 DOI: 10.1095/biolreprod.106.057588] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
RINGO, a protein with no homology to cyclin B, has been reported to be involved in activation of CDC2 and regulation of meiotic maturation in Xenopus oocytes. Although the presence of homologues of RINGO families, which are known as SPDY families, has been reported in mammals, their roles in meiotic maturation of mammalian oocytes have never been examined. In the present study, the effects of SPDY on meiotic maturation of porcine oocytes were examined. At first, Xenopus RINGO (xRINGO) mRNA was injected into immature porcine oocytes and found to significantly accelerate CDC2 activation and meiotic resumption. The CCNB (also known as cyclin B) synthesis was prematurely started at 12 h of culture, whereas it started at 18 h in normal oocytes. We next cloned RINGO A2 homologue in pig (pigSPDYA2) from total RNA of immature porcine oocytes by RT-PCR and obtained full-length cDNA that was more than 85% and 40% homologous with mammalian SPDYA2 and xRINGO, respectively. Acceleration effects similar to those by xRINGO were observed in CDC2 activation, meiotic resumption, and the start of CCNB synthesis in pigSPDYA2 mRNA-injected porcine oocytes. In clear contrast with the effects of xRINGO, which was accumulated abnormally in porcine oocytes and arrested them in the first meiotic metaphase (M1), pigSPDYA2 accelerated the meiotic progression, with about half of pigSPDYA2 mRNA-injected oocytes completing meiotic maturation within 30 h. These results suggest that pigSPDYA2 has important roles on meiotic maturation of porcine oocytes and that the rapid degradation of SPDY was necessary for the normal maturation of oocytes.
Collapse
Affiliation(s)
- Sachi Kume
- Department of Animal Resource Sciences, Graduate School of Agricultural Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
33
|
Maedomari N, Kikuchi K, Ozawa M, Noguchi J, Kaneko H, Ohnuma K, Nakai M, Shino M, Nagai T, Kashiwazaki N. Cytoplasmic glutathione regulated by cumulus cells during porcine oocyte maturation affects fertilization and embryonic development in vitro. Theriogenology 2007; 67:983-93. [PMID: 17208291 DOI: 10.1016/j.theriogenology.2006.11.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 11/17/2006] [Indexed: 11/20/2022]
Abstract
It is generally accepted that cumulus cells support the nuclear maturation of mammalian oocytes. In the present study, we examined relationships between the cytoplasmic glutathione (GSH) content of porcine oocytes, and oocyte nuclear maturation, fertilization or subsequent embryonic development. Cumulus-oocyte complexes (COCs; control group) and oocytes denuded of cumulus cells after collection (DO 0h group) were cultured for 24h with dibutyryl cAMP, eCG and hCG (first culture step) and then for a further 20h without supplements (second culture step; 44h total culture). After the first culture step, some of the COCs were denuded, either completely (DO 24h group) or partly (H-DO 24h group), and then matured by the second culture step. Also, in the second culture step, some DOs were co-cultured with cumulus cells that had been pre-cultured for 24h (DO 24h+CC group). The maturation rates of all the cumulus-removed groups (DO 0h, DO 24h, H-DO 24h and DO 24h+CC groups) were lower (34.3-45.0%) than that of the control group (64.5%; P<0.05). The GSH contents of matured oocytes in the completely denuded groups (DO 0h, DO 24h and DO 24h+CC groups) were lower (4.03-5.26pmol/oocyte) than that of the control group (9.60pmol/oocyte; P<0.05); however, the H-DO 24h group had an intermediate value (7.0pmol/oocyte). The male pronuclear formation rates of completely denuded oocytes were lower (41.4-59.3%) than that of the control group (89.4%; P<0.05), whereas the H-DO 24h group had an intermediate rate (80.0%). The blastocyst formation rates of the completely denuded oocytes were lower (3.0-4.5%) than that of the control group (19.9%; P<0.05), and the H-DO 24h group again had an intermediate rate (11.6%). The GSH content was correlated with the rates of male pronuclear formation (P<0.01) and blastocyst formation (P<0.01), and also with the number of cells per blastocyst (P<0.01). In conclusion, we inferred that GSH synthesized by intact cumulus cells during maturation culture improved oocyte maturation and played an important role in fertilization and embryonic development.
Collapse
Affiliation(s)
- N Maedomari
- Division of Animal Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Anguita B, Jimenez-Macedo AR, Izquierdo D, Mogas T, Paramio MT. Effect of oocyte diameter on meiotic competence, embryo development, p34 (cdc2) expression and MPF activity in prepubertal goat oocytes. Theriogenology 2007; 67:526-36. [PMID: 17014901 DOI: 10.1016/j.theriogenology.2006.09.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 09/01/2006] [Accepted: 09/01/2006] [Indexed: 10/24/2022]
Abstract
The aim of this study was to analyze the relationship between oocyte diameter, meiotic and embryo developmental competence and the expression of the catalytic subunit of MPF, the p34(cdc2), at mRNA, RNA and protein level, as well as its kinase activity, in prepubertal (1-2 months old) goat oocytes. MPF is the main meiotic regulator and a possible regulator of cytoplasmic maturation; therefore, it could be a key factor in understanding the differences between competent and incompetent oocytes. Oocytes were classified according to oocyte diameter in four categories: <110, 110-125, 125-135 and >135 microm and matured, fertilized and cultured in vitro. The p34(cdc2) was analyzed in oocytes at the time of collection (0 h) and after 27 h of IVM (27 h) in each of the oocyte diameter categories. The oocyte diameter was positively related to the percentage of oocytes at MII after IVM (0, 20.7, 58 and 78%, respectively) and the percentage of blastocysts obtained at 8 days postinsemination (0, 0, 1.95 and 12.5%, respectively). The expression of RNA and mRNA p34(cdc2) did not vary between oocyte diameters at 0 and 27h. Protein expression of p34(cdc2) increased in each oocyte category after 27 h of maturation. MPF activity among diameter groups did not vary at 0h but after IVM there was a clear and statistically significant increase of MPF activity in the biggest oocytes.
Collapse
Affiliation(s)
- Begoña Anguita
- Departament de Ciència Animal I dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | |
Collapse
|
35
|
Endo T, Naito K, Kume S, Nishimura Y, Kashima K, Tojo H. Activities of maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK) are not required for the global histone deacetylation observed after germinal vesicle breakdown (GVBD) in porcine oocytes. Reproduction 2006; 131:439-47. [PMID: 16514187 DOI: 10.1530/rep.1.00924] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The acetylation of nuclear core histone has been suggested to work as an epigenetic mark for transmitting gene expression patterns to daughter cells. Global histone deacetylations, presumably involved in the reprogramming of the gene expression, have been observed after germinal vesicle breakdown (GVBD) in a cell cycle-dependent manner during meiotic maturation of mouse and porcine oocytes, although the regulation mechanism of histone deacetylation has not been studied well. In the present study, we examined the involvement of a crucial cell-cycle-regulator, maturation-promoting factor (MPF), and a meiosis-related kinase, mitogen-activated protein kinase (MAPK), in the global histone deacetylation during porcine oocyte maturation. In order to know whether the activities of MPF and MAPK were required, or the breakdown of GV membrane was sufficient, for the global histone deacetylation observed after GVBD, we artificially destroyed the GV membrane of the porcine immature oocytes. The artificial GV destruction (AGVD) induced histone deacetylation without the activation of MPF and MAPK. This deacetylation after AGVD was not affected by an MPF inhibitor, roscovitine, or an inhibitor of protein synthesis, cycloheximide, but was completely prevented by an inhibitor of histone deactylases (HDACs), trichostatine A. HDAC1 was present in the GV of the immature oocytes and localized on chromosomes after GVBD and AGVD. These results suggest that the MPF and MAPK activities were dispensable and the breakdown of the GV membrane was sufficient for the global histone deacetylation, which was catalyzed by HDAC activity
Collapse
Affiliation(s)
- Tsutomu Endo
- Laboratory of Applied Genetics, Graduate School of Agriculture and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Sugiura K, Naito K, Endo T, Tojo H. Study of germinal vesicle requirement for the normal kinetics of maturation/M-phase-promoting factor activity during porcine oocyte maturation. Biol Reprod 2005; 74:593-600. [PMID: 16319287 DOI: 10.1095/biolreprod.105.046375] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Mammalian immature oocytes contain large nuclei referred to as germinal vesicles (GVs). The translocation of maturation/M-phase promoting factor (MPF) into GVs just before the activation of MPF has been reported in several species. To examine whether the GV is required for MPF activation in mammalian oocytes, porcine immature oocytes were enucleated and their MPF activity and CCNB (also known as cyclin B) levels were investigated. The activation of MPF at the start of maturation was detected at normal levels in enucleated oocytes, whereas reactivation to induce the second meiosis was not observed. Although protein synthesis was found to be normal both qualitatively and quantitatively, even in the absence of the nucleus, CCNB1 did not sufficiently accumulate in the enucleated oocytes. The defects in the enucleated oocytes were reversed by the injection of GV material into the enucleated oocytes. Furthermore, the inhibition of CCNB1 degradation revealed drastic accumulation of CCNB1, indicating active synthesis of CCNB1 in enucleated oocytes. The mitogen-activated protein kinase cascade remained unaffected by enucleation. These results indicate that GV is not required for the activation of MPF during the first meiosis, but that it is required for the second meiosis because of its promotion of CCNB1 accumulation.
Collapse
Affiliation(s)
- Koji Sugiura
- Department of Animal Resource Sciences, Graduate School of Agricultural Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
37
|
Ogushi S, Fulka J, Miyano T. Germinal vesicle materials are requisite for male pronucleus formation but not for change in the activities of CDK1 and MAP kinase during maturation and fertilization of pig oocytes. Dev Biol 2005; 286:287-98. [PMID: 16153631 DOI: 10.1016/j.ydbio.2005.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 07/21/2005] [Accepted: 08/02/2005] [Indexed: 10/25/2022]
Abstract
In amphibian oocytes, it is known that germinal vesicle (GV) materials are essential for sperm head decondensation but not for activation of MPF (CDK1 and cyclin B). However, in large animals, the role of GV materials in maturation and fertilization is not defined. In this study, we prepared enucleated pig oocytes at the GV stage and cultured them to examine the activation and inactivation of CDK1 and MAP kinase during maturation and after electro-activation. Moreover, enucleated GV-oocytes after maturation culture were inseminated or injected intracytoplasmically with spermatozoa to examine their ability to decondense the sperm chromatin. Enucleated oocytes showed similar activation/inactivation patterns of CDK1 and MAP kinase as sham-operated oocytes during maturation and after electro-stimulation or intracytoplasmic sperm injection. During the time corresponding to MI/MII transition of sham-operated oocytes, enucleated oocytes inactivated CDK1. However, penetrating sperm heads in enucleated oocytes did not decondense enough to form male pronuclei. To determine whether the factor(s) involved in sperm head decondensation remains associated with the chromatin after GV breakdown (GVBD), we did enucleation soon after GVBD (corresponding to pro-metaphase I, pMI) to remove only chromosomes. The injected sperm heads in pMI-enucleated oocytes decondensed and formed the male pronuclei. These results suggest that in pig oocytes, GV materials are not required for activation/inactivation of CDK1 and MAP kinase, but they are essential for male pronucleus formation.
Collapse
Affiliation(s)
- Sugako Ogushi
- Laboratory of Reproductive Biology and Biotechnology, Graduate School of Science and Technology, Kobe University, Nada-ku, Kobe 657-8501, Japan.
| | | | | |
Collapse
|
38
|
Takakura I, Naito K, Iwamori N, Yamashita M, Kume S, Tojo H. Inhibition of mitogen activated protein kinase activity induces parthenogenetic activation and increases cyclin B accumulation during porcine oocyte maturation. J Reprod Dev 2005; 51:617-26. [PMID: 16034193 DOI: 10.1262/jrd.17034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inhibition of mitogen activated protein kinase (MAPK) activation during porcine oocyte maturation leads to decreased maturation promoting factor (MPF) activity and to the induction of parthenogenetic activation. In the present study, in order to analyze the mechanism underlying the suppression of MPF activity in MAPK-inhibited porcine oocytes, we injected mRNA of SASA-MEK, a dominant negative MAPK kinase, or antisense RNA of c-mos, a MAPK kinase kinase, into immature porcine oocyte cytoplasm. The injection of SASA-MEK mRNA or c-mos antisense RNA inhibited the MAPK activity partially or completely, respectively, decreased the MPF activity slightly or significantly, respectively, and induced parthenogenetic activation in 17.1% or 96.6% of mature oocytes, respectively, although no parthenogenetic activation was observed in the control oocytes. Immunoblotting experiments revealed that cyclin B accumulation in these MAPK-suppressed porcine oocytes was increased significantly after 50 h of culture and that a considerable amount of MPF was converted into inactive pre-MPF by hyperphosphorylation. These results indicate that the inhibition of MAPK activity in porcine oocytes did not promote cyclin B degradation but rather suppressed it; also the decrease in MPF activity in MAPK-suppressed porcine oocytes correlated with the conversion of active MPF into inactive pre-MPF.
Collapse
Affiliation(s)
- Ikuko Takakura
- Department of Applied Genetics, Graduate School of Agriculture and Life Science University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Sugiura K, Naito K, Tojo H. Cdk2 Activity is Essential for the First to Second Meiosis Transition in Porcine Oocytes. J Reprod Dev 2005; 51:143-9. [PMID: 15750306 DOI: 10.1262/jrd.51.143] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The meiotic progression of Xenopus oocytes has been suggested to depend on the activity of cyclin-dependent kinase 2 (Cdk2). We examined whether Cdk2 is involved in the regulation of mammalian oocyte meiosis by injecting porcine oocytes with anti-Cdk2 antibody. At first, the cross-reactivity of the anti-Cdk2 antibody with Cdc2 kinase was evaluated by immunoprecipitation and immunoblotting experiments using porcine granulosa cell extract, and no cross-reactivity with Cdc2 kinase was observed in the antibody used. In the anti-Cdk2 antibody-injected group, 50.7% of the oocytes were arrested in the second metaphase after 50 h of culture and this rate was significantly lower than those in the non-injected intact oocytes or the oocytes injected with mouse IgG (84.5% and 86.7%, respectively). Most of the other oocytes in the antibody-injected group formed a pronucleus without polar bodies or with only one polar body. The cyclin B1 amount in the antibody-injected and activated oocytes was dramatically decreased compared with that in the intact or mouse IgG-injected oocytes after 50 h of culture. These results suggest that Cdk2 is involved in the meiotic maturation of mammalian oocytes, and that the block of Cdk2 activity results in the failure of cyclin B1 accumulation and second meiosis induction.
Collapse
Affiliation(s)
- Koji Sugiura
- Department of Applied Genetics, Graduate School of Agricultural and Life Sciences, University of Tokyo, Japan
| | | | | |
Collapse
|
40
|
Wang X, Swain JE, Bollen M, Liu XT, Ohl DA, Smith GD. Endogenous regulators of protein phosphatase-1 during mouse oocyte development and meiosis. Reproduction 2004; 128:493-502. [PMID: 15509695 DOI: 10.1530/rep.1.00173] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Reversible phosphorylation, involving protein kinases and phosphatases (PP), is important in regulating oocyte meiosis. Okadaic acid (OA) inhibition of PP1 and/or PP2A stimulates oocyte germinal vesicle breakdown (GVB). In oocytes, PP1 is localized in the cytoplasm and nucleus, yet endogenous regulation of oocyte PP1 has not been investigated. The objectives of the study were to identify intra-oocyte mechanisms regulating PP1 during acquisition of OA-sensitive meiotic competence and meiotic resumption. Immunohistochemical studies revealed that GVB-incompetent oocytes contained equivalent cytoplasmic and nuclear PP1. Upon development of OA-sensitive meiotic competence, PP1 displayed differential intracellular localization with significantly greater nuclear staining with distinct nucleolar rimming compared with cytoplasmic staining. Germinal vesicle-intact oocytes contained neither nuclear inhibitor of PP1, nor PP1 cytoplasmic inhibitor-1 transcripts or proteins. Reverse transcription-PCR with PP1 cytoplasmic inhibitor-2 (I2) primers and oocyte RNA amplified a predicted 330-bp product with the identical sequence to mouse liver I2. Oocytes contained a heat-stable PP1 inhibitor with biochemical properties of I2. Phosphorylation of PP1 at Thr320 by cyclin dependent kinase-1 (CDK1) causes PP1 inactivation. Germinal vesicle-intact oocytes did not contain phospho-Thr320-PP1. Upon GVB, PP1 became phosphorylated at Thr320 and this phosphorylation did not occur if GVB was blocked with the CDK1 inhibitor, roscovitine (ROSC). Inhibition of oocyte GVB with ROSC was reversible and coincided with PP1 phosphorylation at Thr320. Increased oocyte staining of nuclear PP1 compared with cytoplasmic staining at a chronological stage when oocytes gain meiotic competence, and phosphorylation and inhibition of PP1 by CDK1 at or around GVB appear to be important mechanisms in regulating oocyte PP1 activity and meiosis. In addition, these studies provide further support for PP1 being the OA-sensitive PP important in the regulation of the acquisition of meiotic competence, nuclear events during meiotic arrest, and GVB.
Collapse
Affiliation(s)
- Xia Wang
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan 48109-0617, USA
| | | | | | | | | | | |
Collapse
|
41
|
Savard C, Novak S, Saint-Cyr A, Moreau M, Pothier F, Sirard MA. Comparison of bulk enucleation methods for porcine oocytes. Mol Reprod Dev 2004; 67:70-6. [PMID: 14648876 DOI: 10.1002/mrd.20011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cloning of mammalian oocytes requires that the recipient oocyte is enucleated to remove all genetic material associated with the chromosomes. The procedure currently used in most species requires careful micromanipulation of oocytes treated with cytochalasin B to prevent structural damage. Although functional, this procedure requires time and limits the number of oocytes available for cloning, and our ability to understand the mechanisms of nuclear reprogramming. Therefore, this study aimed at evaluating different procedures to enucleate large pools of oocytes in a time-efficient manner. Two different approaches were tested. The first approach involved centrifugation of zona-free oocytes through a percoll gradient to separate the portion containing the chromatin from the cytoplasmic portion. The second used etoposide to prevent chromatin segregation at first metaphase and resulting in the expulsion of all chromosomes in the polar body. Using the chemical approach an average enucleation rate of 39.4 +/- 7.5% was obtained, while the centrifugation approach resulted in an average enucleation rate of 66.9 +/- 6. In terms of time efficiency, the control manipulation method takes 0.11 min and the centrifugation took an average of 0.52 min per oocyte. The MPF activity at the end of procedure was estimated through the measurement of H1 activity and as expected, the etoposide-cycloheximide treated oocytes had lower H1 activity which was restored by further incubation in the maturation medium for 5 hr while the centrifugation gave a nonsignificant intermediary result. In conclusion, the results presented suggest that both the chemical and the mechanical methods are usable alternatives to micromanipulation of oocytes to generate a large number of chromosome free cytoplasm for biochemical analysis. Mol. Reprod. Dev. 67: 70-76, 2004.
Collapse
Affiliation(s)
- Christian Savard
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Université Laval, Sainte-Foy, Québec, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Bui HT, Yamaoka E, Miyano T. Involvement of Histone H3 (Ser10) Phosphorylation in Chromosome Condensation Without Cdc2 Kinase and Mitogen-Activated Protein Kinase Activation in Pig Oocytes1. Biol Reprod 2004; 70:1843-51. [PMID: 14960481 DOI: 10.1095/biolreprod.103.026070] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
When oocytes resume meiosis, chromosomes start to condense and Cdc2 kinase becomes activated. However, recent findings show that the chromosome condensation does not always correlate with the Cdc2 kinase activity in pig oocytes. The objectives of this study were to examine 1) the correlation between chromosome condensation and histone H3 phosphorylation at serine 10 (Ser10) during the meiotic maturation of pig oocytes and 2) the effects of protein phosphatase 1/2A (PP1/ PP2A) inhibitors on the chromosome condensation and the involvement of Cdc2 kinase, MAP kinase, and histone H3 kinase in this process. The phosphorylation of histone H3 (Ser10) was first detected in the clump of condensed chromosomes at the diakinesis stage and was maintained until metaphase II. The kinase assay showed that histone H3 kinase activity was low in oocytes at the germinal vesicle stage (GV) and increased at the diakinesis stage and that high activity was maintained until metaphase II. Treatment of GV-oocytes with okadaic acid (OA) or calyculin-A (CL-A), the PP1/PP2A inhibitors, induced rapid chromosome condensation with histone H3 (Ser10) phosphorylation after 2 h. Both histone H3 kinase and MAP kinase were activated in the treated oocytes, although Cdc2 kinase was not activated. In the oocytes treated with CL-A and the MEK inhibitor U0126, neither Cdc2 kinase nor MAP kinase were activated and no oocytes underwent germinal vesicle breakdown (GVBD), although histone H3 kinase was still activated and the chromosomes condensed with histone H3 (Ser10) phosphorylation. These results suggest that the phosphorylation of histone H3 (Ser10) occurs in condensed chromosomes during maturation in pig oocytes. Furthermore, the chromosome condensation is correlated with histone H3 kinase activity but not with Cdc2 kinase and MAP kinase activities.
Collapse
Affiliation(s)
- Hong-Thuy Bui
- Department of Life Science, Graduate School of Science and Technology, Kobe University, Rokkodai-cho Nada-ku, Kobe 657-8501, Japan
| | | | | |
Collapse
|
43
|
Bogliolo L, Leoni G, Ledda S, Zedda MT, Bonelli P, Madau L, Santucciu C, Naitana S, Pau S. M-phase promoting factor (MPF) and mitogen activated protein kinases (MAPK) activities of domestic cat oocytes matured in vitro and in vivo. CLONING AND STEM CELLS 2004; 6:15-23. [PMID: 15107242 DOI: 10.1089/15362300460743790] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This work was undertaken in order to examine M-phase promoting factor (MPF) and mitogen-activated protein kinases (MAPK) activities during meiotic progression of cat oocytes cultured in two different media for two different incubation times and preovulatory cat oocytes that reached MII in vivo. Oocytes recovered from ovaries of ovariectomized cats were cultured either in TCM 199 or SOF for 24 h and 40 h. In vivo matured oocytes were recovered by follicular aspiration from ovaries of domestic cats ovariectomized 24 h to 26 h after hormonal treatment. Results showed that the kinetic of MPF and MAPK activity was similar during meiotic progression of cat oocytes matured in TCM 199 and SOF. After 24 h of incubation, MII oocytes had significantly (p < 0.001) higher MPF and MAPK levels than MII oocytes cultured for 40 h in both culture media. MPF and MAPK activity was significantly (p < 0.01) lower in the oocytes matured in vitro than in those matured in vivo. This study provides evidence that the two different maturation media did not determine differences in MPF and MAPK fluctuations and levels during meiotic progression of cat oocytes and that the time of maturation influenced the level of the two kinases. Moreover, it shows that MPF and MPK activity is higher in in vivo matured oocytes than in in vitro matured oocytes, suggesting a possible incomplete cytoplasmic maturation after culture.
Collapse
Affiliation(s)
- L Bogliolo
- Obstetrics Section of the Institute of General Pathology, Pathological Anatomy and Veterinary Obstetrics-Surgery Clinic, University of Sassari, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yokoo M, Sato E. Cumulus-oocyte complex interactions during oocyte maturation. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 235:251-91. [PMID: 15219785 DOI: 10.1016/s0074-7696(04)35006-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In most mammals, the oocyte in the Graafian follicle is surrounded by tightly packed layers of cumulus cells, forming the cumulus-oocyte complex. During the preovulatory period, cumulus cells change from a compact cell mass into a dispersed structure of cells for the synthesis and deposition of a mucoid intercellular matrix, a process referred to as cumulus expansion. Cumulus expansion is thought to influence a variety of fundamental developmental changes during oocyte maturation. Volumetric expansion of the cumulus-oocyte complex correlates, at least in pig, with the outcome of oocyte maturation, fertilization, and embryo development. Therefore, detailed functional studies of cumulus expansion seem to be required to elucidate the mechanism of oocyte maturation. We summarize the current knowledge about (1) morphological changes of cumulus-oocyte complexes during oocyte maturation, (2) follicle factors inducing cumulus expansion, (3) the role of cumulus expansion in oocyte maturation, (4) cytoplasmic regulators of oocyte maturation, and (5) possible roles of cumulus expansion.
Collapse
Affiliation(s)
- Masaki Yokoo
- Laboratory of Animal Reproduction, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | | |
Collapse
|
45
|
Kuroda T, Naito K, Sugiura K, Yamashita M, Takakura I, Tojo H. Analysis of the roles of cyclin B1 and cyclin B2 in porcine oocyte maturation by inhibiting synthesis with antisense RNA injection. Biol Reprod 2004; 70:154-9. [PMID: 12954723 DOI: 10.1095/biolreprod.103.021519] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The function of cyclin B1 (CB1) and cyclin B2 (CB2) during porcine oocyte maturation was investigated by injecting oocytes with their antisense RNAs (asRNAs). At first, protein levels of both cyclin Bs were examined by immunoblotting, revealing that immature oocytes had only CB2, at a level comparable to 1/20 to 1/40 of that detected in first metaphase oocytes. Both cyclin B syntheses were started around germinal vesicle breakdown (GVBD); CB1 and CB2 peaked at the second metaphase and first metaphase, respectively. We obtained a porcine CB2 cDNA fragment, which was 88% homologous with human CB2, by reverse-transcriptase polymerase chain reaction (RT-PCR) using total RNAs of immature porcine oocytes and a primer set of human CB2. Specific asRNAs of CB1 and CB2 were prepared in vitro. Then one, the other, or both were injected into the cytoplasm of immature oocytes. CB1 asRNA inhibited CB1 synthesis specifically; the injected oocytes underwent first meiosis normally but could not arrest at the second meiotic metaphase. CB2 asRNA inhibited CB2 synthesis specifically, but had almost no effect on the maturation of injected oocytes. When both CB1 and CB2 asRNAs were injected, synthesis of both cyclin Bs was inhibited, and GVBD was significantly suppressed but occurred slowly. These results suggest that CB1 is the principal molecule for regulation in mammalian oocyte maturation, whereas CB2 has only an accessory role. They also show that in porcine oocytes, cyclin B synthesis is not necessary for GVBD induction itself, but synthesis of at least one cyclin B, CB1 or CB2, is necessary for GVBD induction in a normal time course.
Collapse
Affiliation(s)
- Takao Kuroda
- Department of Applied Genetics, Graduate School of Agriculture and Life Science, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Saint-Dizier M, Reynaud K, Chastant-Maillard S. Chromatin, microtubules, and kinases activities during meiotic resumption in bitch oocytes. Mol Reprod Dev 2004; 68:205-12. [PMID: 15095342 DOI: 10.1002/mrd.20062] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In contrast to the majority of mammals, canine oocytes are ovulated at immature germinal vesicle (GV) stage and complete meiotic maturation to metaphase II during 48-72 hr within the oviducts. This study aims to characterize meiotic maturation process in bitch oocytes, with both morphological and biochemical approaches. The follow-up of chromatin and microtubules during maturation was described, and MPF and MAP kinase activities were quantified at different stages of maturation. Since bitch oocyte cytoplasm is darkly pigmented, the first step was to setup an appropriate staining method for DNA. We thus compared the efficiency of two visualization techniques and demonstrated that propidium iodide coupled to confocal microscopy was a better method than Hoechst/fluorescence microscopy for nuclear stage observation (determination rates: 98.6 vs. 69.5%, respectively; P < 0.01, n = 1622 oocytes). Microtubule organization, evaluated by tubulin immunodetection, revealed subcortical and perinuclear alpha-tubulin and asters in GV oocytes and a clear network of microtubules in GVBD oocytes. In MI and MII oocytes, a symmetrical, barrel-shaped, and radially located spindle was observed. MPF and MAP kinase activities were assayed concomitantly using histone H1 and MBP as substrates. Kinase activities were detected at low levels in oocytes at GV and GVBD stages and were significantly higher at MI and MII stages. In conclusion, despite the particular pattern of meiotic resumption in canine oocytes (ovulated at GV stage), cytoskeleton/chromatin organization and kinase activities follow a similar pattern to those observed in other mammalian species.
Collapse
Affiliation(s)
- Marie Saint-Dizier
- UMR 1198 INRA/ENVA Biologie du Développement et Reproduction, Ecole Nationale Vétérinaire d'Alfort, 7 Avenue du Général de Gaulle, 94704 Maisons-Alfort Cedex, France
| | | | | |
Collapse
|
47
|
Dode MAN, Graves CN. Role of estradiol-17beta on nuclear and cytoplasmic maturation of pig oocytes. Anim Reprod Sci 2003; 78:99-110. [PMID: 12753786 DOI: 10.1016/s0378-4320(03)00080-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of estradiol-17beta on nuclear and cytoplasmic maturation of pig oocytes was investigated in the present study. To determine the estradiol effect, oocytes were cultured for 42 h in a steroid free medium composed of mTCM-199 supplemented with LH, FSH and 10% charcoal extracted follicular fluid. Estradiol receptor (ER), detected by a binding assay, were present in cumulus cells and oocytes during maturation with higher levels observed at 24 h of culture in the oocytes and at 36 h in the cumulus cells. To block estradiol action an antiestrogen (1-p-dimethylaminoethoxyphenyl-1,2-diphenyl-1-butene (tamoxifen)) was added to the maturation medium at various concentrations. The percentage of treated oocytes that underwent nuclear maturation was similar (P>0.05) to the control group. Cytoplasmic maturation, determined by the ability to form female pronucleus (FPN) and male pronucleus (MPN), was not different (P>0.05) among all groups. The presence of 4-hydroxy-4-androstene-3-17-dione (4-OHA) also did not influence nuclear (P>0.05) or cytoplasmic maturation (P>0.05). The results suggest that estradiol is not involved in maturation of pig oocytes. However, the present experiment used pronuclei formation as the endpoint, no studies were done in regard to estradiol's effects on the embryonic development.
Collapse
Affiliation(s)
- M A N Dode
- Animal Reproduction Laboratory, Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, Avenue W5 Final Norte, Brasília CEP 70770-900, DF, Brazil.
| | | |
Collapse
|
48
|
Abstract
In the ovary, mammalian oocytes resume meiosis and mature to the second metaphase when they are stimulated with gonadotrophins. Similarly, oocytes can mature in vitro when they are liberated from ovarian follicles and cultured under appropriate conditions. Early in the process of maturation, oocytes undergo dramatic but well-ordered changes at the G2/M transition in the cell cycle including: (i) chromosome condensation; (ii) nucleolus disassembly; (iii) germinal vesicle breakdown (GVBD); and (iv) spindle formation in the first metaphase (MI-spindle). These events have been thought to be induced by MPF (maturation-promoting factor or M-phase promoting factor), now known as Cdc2 kinase or Cdk1 kinase, which consists of a catalytic subunit, Cdc2, and a cyclin B regulatory subunit. In fact, nuclear lamins are phosphorylated by Cdc2 kinase, and nuclear membrane breakdown occurs concomitantly with the activation of Cdc2 kinase in the M-phase of both somatic cells and oocytes. Based on the classical and recent studies of the pig oocyte, however, the chromosomes start to condense and the nucleolus disassembles before full activation of Cdc2 kinase, and the MI-spindle is formed after activation of both Cdc2 kinase and MAP kinase; another kinase known to become activated during oocyte maturation. These findings suggest that chromosome condensation and nucleolus disassembly in oocytes are induced by either some kinase(s) other than Cdc2 kinase and MAP kinase or some phosphatase(s). The accumulation of new results regarding the molecular nature of oocyte maturation is important for improving the reproductive technologies in domestic animals as well as in humans. (Reprod Med Biol 2003; 2: 91-99).
Collapse
Affiliation(s)
- Takashi Miyano
- Laboratory of Reproductive Biology and Biotechnology, Faculty of Agriculture, Kobe University, Kobe, Japan
| | - Jibak Lee
- Graduate School of Science and Technology, Kobe University, Kobe, Japan and
| | - Josef Fulka
- Institute of Animal Production, Prague, Czech Republic
| |
Collapse
|
49
|
Kikuchi K, Naito K, Noguchi J, Kaneko H, Tojo H. Maturation/M-phase promoting factor regulates aging of porcine oocytes matured in vitro. CLONING AND STEM CELLS 2003; 4:211-22. [PMID: 12398802 DOI: 10.1089/15362300260339494] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Control of oocyte aging during manipulation of matured oocytes should have advantages for recently developed reproductive technologies, such as cloning after nuclear transfer. We have shown that the enhanced activation ability and fragmentation of porcine in vitro matured and aged oocytes bore a close relationship to the gradual decrease in maturation/M-phase promoting factor (MPF) activity and that porcine aged oocytes contained plenty of MPF, but it was in an inactive form, pre-MPF, as a result of phosphorylation of its catalytic subunit p34(cdc2) and, therefore, had low MPF activity. We incubated porcine oocytes with vanadate and caffeine, which affected the phosphorylation status and MPF activity, and evaluated their activation abilities and fragmentation frequencies. Incubation of nonaged oocytes with vanadate increased p34(cdc2) phosphorylation and reduced MPF activity to levels similar to those of aged oocytes and increased their parthenogenetic activation and fragmentation rates compared with those of the control oocytes. Conversely, treating aged oocytes with caffeine reduced p34(cdc2) phosphorylation and increased MPF activity. These oocytes showed significantly lower parthenogenetic activation and fragmentation rates than aged mature oocytes. These results suggest that MPF activity is a key mechanism of oocyte aging and controlling MPF activity by altering p34(cdc2) phosphorylation with these chemicals may enable oocyte aging to be manipulated in vitro. We expect those ideas will be applied practically to pig cloning.
Collapse
Affiliation(s)
- Kazuhiro Kikuchi
- Genetic Diversity Department, National Institute of Agrobiological Sciences, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
50
|
Abstract
The in vitro ability between fetal and cow oocytes to resume meiosis and progression to metaphase-II (M-II) was compared. Cumulus oocyte complexes (COCs) were harvested from 2 to 6 mm follicles from ovaries of 7.5 month to term fetuses and adult cows. Cumulus cells were removed using 3 mg/ml hyaluronidase and repeated pipetting. Denuded oocytes were fixed in 3% glutaraldehyde, stained with DAPI and evaluated under fluorescent microscopy for nuclear status before in vitro maturation (IVM). COCs from fetal and adult ovaries were also matured in 200 microl droplets of medium 199 supplemented with 10 microg/ml FSH, 10/ml LH, 1.5 microg/ml estradiol, 75 microg/ml streptomycin, 100 IU/ml penicillin, 10 mM hepes and 10% FBS for 24 h at 39 degrees C and 5% CO(2). Matured oocytes were fixed, stained and evaluated as explained above for nuclear status namely stage of germinal vesicle (GV) development and subsequent meiotic competence. Data were analyzed using chi-square analysis. The majority of fetal oocytes (P<0.05) before IVM were at GV stages GV-I (27.7%), GV-II (37.6%) and GV-V (22.8%) compared to cow oocytes, which were at GV stages IV (28.3%) and V (46.7%). After IVM, fewer fetal oocytes were at earlier stages of GV development and majority (P<0.05) were at GV-V (24.0%), premetaphase (17.4%) and metaphase-I (M-I: 7.2%) stages. However, after IVM, more cow oocytes matured to M-II than did fetal oocytes (93.7% versus 26.9%; P<0.05). In conclusion, fetal oocytes do not mature in vitro as well as cow oocytes. Our findings suggest that the low meiotic competence of fetal oocytes can be attributed to their being at earlier stages of GV development before IVM.
Collapse
Affiliation(s)
- Kazim R Chohan
- Division of Theriogenology, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA.
| | | |
Collapse
|