1
|
Wang L, Yong YL, Wang KK, Xie YX, Qian YC, Zhou FM, Qiu JG, Jiang BH. MKRN2 knockout causes male infertility through decreasing STAT1, SIX4, and TNC expression. Front Endocrinol (Lausanne) 2023; 14:1138096. [PMID: 36967804 PMCID: PMC10036822 DOI: 10.3389/fendo.2023.1138096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
Makorin-2 (Mkrn2) is an evolutionarily conserved gene whose biological functions are not fully known. Although recent studies have shed insights on the potential causes of male infertility, its underlining mechanisms still remain to be elucidated. We developed a Mrkn2 knockout mice model to study this gene and found that deletion of Mkrn2 in mice led to male infertility. Interestingly, the expression level of signal transducer and activator of the transcription (STAT)1 was significantly decreased in MKRN2 knockout testis and MEF cells. Co-IP assay showed an interaction between MKRN2 and STAT1. Moreover, our results further indicated that MKRN2 regulated the expression level of SIX4 and tenascin C (TNC) via the EBF transcription factor 2 (EBF2) in mice. The results of our study will provide insights into a new mechanism of male infertility.
Collapse
Affiliation(s)
- Lin Wang
- The First Affiliated Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Yan-Ling Yong
- The First Affiliated Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Kun-Kun Wang
- The First Affiliated Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Yun-Xia Xie
- The First Affiliated Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Ying-Chen Qian
- The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng-Mei Zhou
- The First Affiliated Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Jian-Ge Qiu
- The First Affiliated Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Bing-Hua Jiang, ; Jian-Ge Qiu,
| | - Bing-Hua Jiang
- The First Affiliated Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Bing-Hua Jiang, ; Jian-Ge Qiu,
| |
Collapse
|
2
|
Elango K, Kumaresan A, Sharma A, Nag P, Prakash MA, Sinha MK, Manimaran A, Peter ESKJ, Jeyakumar S, Selvaraju S, Ramesha KP, Datta TK. Sub-fertility in crossbred bulls: deciphering testicular level transcriptomic alterations between zebu (Bos indicus) and crossbred (Bos taurus x Bos indicus) bulls. BMC Genomics 2020; 21:502. [PMID: 32693775 PMCID: PMC7372791 DOI: 10.1186/s12864-020-06907-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 07/10/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The incidence of poor semen quality and sub-fertility/infertility is higher in crossbred as compared to Zebu males. Several attempts have been made to understand the possible reasons for higher incidence of fertility problems in crossbred males, at sperm phenotype, proteome and genome level but with variable results. Since the quality of the ejaculated spermatozoa is determined by the testicular environment, assessing the testicular transcriptome between these breeds would help in identifying the possible mechanisms associated with infertility in crossbred bulls. However, such information is not available. We performed global transcriptomic profiling of testicular tissue from crossbred and Zebu bulls using Agilent Bos taurus GXP 8X60k AMADID: 29411 array. To the best of our knowledge, this is the first study comparing the testicular mRNAs between crossbred and Zebu bulls. RESULTS Out of the 14,419 transcripts detected in bovine testis, 1466 were differentially expressed between crossbred and Zebu bulls, in which 1038 were upregulated and 428 were downregulated in crossbred bulls. PI4KB and DPY19L2 genes, reported to be involved in sperm capacitation and acrosome formation respectively, were among the top 10 downregulated transcripts in crossbred testis. Genes involved in ubiquitination and proteolysis were upregulated, while genes involved in cell proliferation, stem cell differentiation, stem cell population maintenance, steroidogenesis, WNT signalling, protein localization to plasma membrane, endocannabinoid signalling, heparin binding, cAMP metabolism and GABA receptor activity were downregulated in crossbred testis. Among the 10 genes validated using qPCR, expression of CCNYL, SOX2, MSMB, SPATA7, TNP1, TNP2 and CRISP2 followed the same trend as observed in microarray analysis with SPATA7 being significantly downregulated and transition proteins (TNP1, TNP2) being significantly upregulated in crossbred bulls. CONCLUSIONS Abundant proteolysis by ubiquitination and downregulation of WNT signaling, cell proliferation, differentiation and steroidogenesis might be associated with higher incidence of poor semen quality and/or sub-fertility/infertility in crossbred bulls as compared to Zebu bulls. Downregulation of SPATA7 (Spermatogenesis Associated 7) and upregulation of transition proteins (TNP1 and TNP2) in crossbred bull testis might be associated with impaired spermatogenesis processes including improper chromatin compaction in crossbred bulls.
Collapse
Affiliation(s)
- Kamaraj Elango
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India.
| | - Ankur Sharma
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Pradeep Nag
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Mani Arul Prakash
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Ayyasamy Manimaran
- Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Ebenezer Samuel King John Peter
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Sakthivel Jeyakumar
- Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Sellappan Selvaraju
- Reproductive physiology Laboratory, ICAR - National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka, 560030, India
| | - Kerekoppa P Ramesha
- Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Tirtha K Datta
- Animal Genomics Laboratory, ICAR - National Dairy Research Institute, Karnal, Haryana, 132 001, India
| |
Collapse
|
3
|
de Melo TP, Salinas Fortes MR, Hayes B, de Albuquerque LG, Carvalheiro R. Across-breed validation study confirms and identifies new loci associated with sexual precocity in Brahman and Nellore cattle. J Anim Breed Genet 2019; 137:139-154. [PMID: 31414510 DOI: 10.1111/jbg.12429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/05/2019] [Accepted: 07/15/2019] [Indexed: 11/28/2022]
Abstract
The aim of this study was to identify candidate regions associated with sexual precocity in Bos indicus. Nellore and Brahman were set as validation and discovery populations, respectively. SNP selected in Brahman to validate in Nellore were from gene regions affecting reproductive traits (G1) and significant SNP (p ≤ 10-3 ) from a meta-analysis (G2). In the validation population, early pregnancy (EP) and scrotal circumference (SC) were evaluated. To perform GWAS in validation population, we used regression and Bayes C. SNP with p ≤ 10-3 in regression and Bayes factor ≥3 in Bayes C were deemed significant. Significant SNP (for EP or SC) or SNP in their ±250 Kb vicinity region, which were in at least one discovery set (G1 or G2), were considered validated. SNP identified in both G1 and G2 were considered candidate. For EP, 145 SNP were validated in G1 and 41 in G2, and for SC, these numbers were 14 and 2. For EP, 21 candidate SNP were detected (G1 and G2). For SC, no candidate SNP were identified. Validated SNP and their vicinity region were located close to quantitative trait loci or genes related to reproductive traits and were enriched in gene ontology terms related to reproductive success. These are therefore strong candidate regions for sexual precocity in Nellore and Brahman.
Collapse
Affiliation(s)
- Thaise Pinto de Melo
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
| | - Marina Rufino Salinas Fortes
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Qld, Australia.,Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Qld, Australia
| | - Ben Hayes
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Qld, Australia
| | - Lucia Galvão de Albuquerque
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil.,National Council for Scientific and Technological Development (CNPq), Brasília, Distrito Federal, Brazil
| | - Roberto Carvalheiro
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil.,National Council for Scientific and Technological Development (CNPq), Brasília, Distrito Federal, Brazil
| |
Collapse
|
4
|
Kavarthapu R, Dufau ML. Germ Cell Nuclear Factor (GCNF/RTR) Regulates Transcription of Gonadotropin-Regulated Testicular RNA Helicase (GRTH/DDX25) in Testicular Germ Cells--The Androgen Connection. Mol Endocrinol 2015; 29:1792-804. [PMID: 26484580 DOI: 10.1210/me.2015-1198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Gonadotropin-regulated testicular RNA helicase (GRTH) (GRTH/DDX25), is a testis-specific protein essential for completion of spermatogenesis. Transgenic mice carrying 5'-flanking regions of the GRTH gene/green fluorescence protein (GFP) reporter revealed a region (-6.4/-3.6 kb) which directs its expression in germ cells (GCs) via androgen action. This study identifies a functional cis-binding element on the GRTH gene for GC nuclear factor (GCNF) (GCNF/RTR) required to regulate GRTH gene expression in postmeiotic testis GCs and explore the action of androgen on GCNF and GRTH transcription/expression. GCNF expression decreased in mice testis upon flutamide (androgen receptor antagonist) treatment, indicating the presence of an androgen/GCNF network to direct GRTH expression in GC. Binding studies and chromatin immunoprecipitation demonstrated specific association of GCNF to a consensus half-site (-5270/-5252) of the GRTH gene in both round spermatids and spermatocytes, which was abolished by flutamide treatment in round spermatids. Moreover, flutamide treatment of wild-type mice caused selective reduction of GCNF and GRTH in round spermatids. GCNF knock-down in seminiferous tubules from GRTH-transgenic mice (dark zone, round spermatid rich) caused decreased GFP expression. Exposure of tubules to flutamide caused decrease in GCNF and GFP expression, whereas androgen exposure induced significant increase. Our studies provide evidence for actions of androgen on GCNF cell-specific regulation of GRTH expression in GC. GRTH associates with GCNF mRNA, its absence caused increase on GCNF expression and mRNA stability indicative of a negative autocrine regulation of GCNF by GRTH. These in vivo/in vitro models link androgen actions to GC through GCNF, as regulated transfactor that controls transcription/expression of GRTH.
Collapse
Affiliation(s)
- Raghuveer Kavarthapu
- Section on Molecular Endocrinology, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Maria L Dufau
- Section on Molecular Endocrinology, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
5
|
Silva JV, Freitas MJ, Correia BR, Korrodi-Gregório L, Patrício A, Pelech S, Fardilha M. Profiling signaling proteins in human spermatozoa: biomarker identification for sperm quality evaluation. Fertil Steril 2015. [PMID: 26209830 DOI: 10.1016/j.fertnstert.2015.06.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To determine the correlation between semen basic parameters and the expression and activity of signaling proteins. DESIGN In vitro studies with human spermatozoa. SETTING Academic research institute. PATIENT(S) Thirty-seven men provided semen samples for routine analysis. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Basic semen parameters tracked included sperm DNA fragmentation (SDF), the expression levels of 75 protein kinases, and the phosphorylation/cleavage patterns of 18 signaling proteins in human spermatozoa. RESULT(S) The results indicated that the phosphorylated levels of several proteins (Bad, GSK-3β, HSP27, JNK/SAPK, mTOR, p38 MAPK, and p53), as well as cleavage of PARP (at D214) and Caspase-3 (at D175), were significantly correlated with motility parameters. Additionally, the percentage of morphologically normal spermatozoa demonstrated a significant positive correlation with the phosphorylated levels of p70 S6 kinase and, in turn, head defects and the teratozoospermia index (TZI) showed a significant negative correlation with the phosphorylated levels of Stat3. There was a significant positive correlation between SDF and the teratozoospermia index, as well as the presence of head defects. In contrast, SDF negatively correlated with the percentage of morphologically normal spermatozoa and the phosphorylation of Akt and p70 S6 kinase. Subjects with varicocele demonstrated a significant negative correlation between head morphological defects and the phosphorylated levels of Akt, GSK3β, p38 MAPK, and Stat1. Additionally, 34 protein kinases were identified as expressed in their total protein levels in normozoospermic samples. CONCLUSION(S) This study contributed toward establishing a biomarker "fingerprint" to assess sperm quality on the basis of molecular parameters.
Collapse
Affiliation(s)
- Joana Vieira Silva
- Laboratory of Signal Transduction, Institute for Research in Biomedicine, Health Sciences Program, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Maria João Freitas
- Laboratory of Signal Transduction, Institute for Research in Biomedicine, Health Sciences Program, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Bárbara Regadas Correia
- Laboratory of Signal Transduction, Institute for Research in Biomedicine, Health Sciences Program, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Luís Korrodi-Gregório
- Laboratory of Signal Transduction, Institute for Research in Biomedicine, Health Sciences Program, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | | | - Steven Pelech
- Kinexus Bioinformatics Corporation, Vancouver, British Columbia, Canada; Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Institute for Research in Biomedicine, Health Sciences Program, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.
| |
Collapse
|
6
|
Lachance C, Goupil S, Leclerc P. Stattic V, a STAT3 inhibitor, affects human spermatozoa through regulation of mitochondrial activity. J Cell Physiol 2013; 228:704-13. [PMID: 22911368 DOI: 10.1002/jcp.24215] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 08/08/2012] [Indexed: 11/10/2022]
Abstract
We have recently shown that many mediators of the JAK/STAT signaling pathway are present in ejaculated human spermatozoa. Among them, STAT3 is detected mainly in membranes and flagellar cytoskeletal fractions. In order to determine the importance of STAT3-mediated signaling, sperm were incubated with Stattic V, a specific inhibitor. Effects on motility were evaluated by CASA, sperm acrosomal integrity was evaluated by FITC conjugated lectin (PSA or PNA) staining, and protein phosphotyrosine content was assessed by Western blot using a monoclonal anti-phosphotyrosine antibody. INDO1-AM and JC-1 were used to measure sperm intracellular calcium and mitochondrial membrane potential, respectively, by flow cytometry, and reactive oxygen species (ROS) production was investigated by luminol-based assay. Percentages of motility and motility parameters were significantly affected by Stattic V. This later also significantly increased intracellular Ca(2+) levels, progesterone- and calcium ionophore (A23187)-induced acrosome reaction. On the other hand, a significant decrease in ATP content was measured when sperm were treated with Stattic V, associated with depolarization of mitochondrial membrane and elevated ROS production. These results suggest that STAT3 is involved in sperm functions, at least through regulation of mitochondrial activity. This further emphasizes that STAT3 mediates cellular activities in a manner different than strictly the activation of gene transcription.
Collapse
Affiliation(s)
- Catherine Lachance
- Département d'Obstétrique et de Gynécologie, Centre de recherche en biologie de la reproduction, Université Laval, Axe reproduction, santé périnatale et santé de l'enfant, Centre de recherche du CHUQ-CHUL, Québec, Canada
| | | | | |
Collapse
|
7
|
Sagare-Patil V, Modi D. Progesterone activates Janus Kinase 1/2 and activators of transcription 1 (JAK1-2/STAT1) pathway in human spermatozoa. Andrologia 2012; 45:178-86. [PMID: 22748021 DOI: 10.1111/j.1439-0272.2012.01332.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2012] [Indexed: 12/21/2022] Open
Abstract
Ejaculated spermatozoa undergo capacitation and acrosome reaction by responding to extrinsic clues and activate signalling cascades to induce protein tyrosine phosphorylation. In the present study, we investigated the existence, the Janus kinase (JAK) and activator of transcription (STAT) pathway and determined its physiological relevance. JAK1 and STAT1 are localised on the equatorial region and the midpiece of their human spermatozoa, JAK2 is detected on the sperm tail. Capacitation leads to phosphorylation of JAK2 but not JAK1 and STAT1. In the uncapacitated sperm, phosphorylated JAK2 (pJAK2) is localised mainly in the tail region; in response to capacitation, the JAK2 is phosphorylated in the midpiece and the head region along with the tail. Progesterone (5 μm) leads to phosphorylation of JAK1, JAK2 and STAT1 in a time-dependent manner. In progesterone-treated spermatozoa, the JAK2 in the tail is hyperphosphorylated, the JAK2 in the head and the midpiece is dephosphorylated. We conclude that in human spermatozoa, the JAK1/2 pathway is activated upon capacitation and is further modulated by progesterone; the biological processes controlled by this pathway in sperm need to be elucidated.
Collapse
Affiliation(s)
- V Sagare-Patil
- Molecular and Cellular Biology Laboratory, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Parel, Mumbai 400012, India
| | | |
Collapse
|
8
|
Lachance C, Leclerc P. Mediators of the Jak/STAT signaling pathway in human spermatozoa. Biol Reprod 2011; 85:1222-31. [PMID: 21880948 DOI: 10.1095/biolreprod.111.092379] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In their journey to acquire the ability to fertilize the egg, numerous intracellular signaling systems are activated in spermatozoa, leading to an increase in protein tyrosine phosphorylation. Although the JAK/STAT signaling pathway is usually associated with the activation of transcription of specific genes, our laboratory previously demonstrated the presence of the IL6 receptor (IL6R) and the Janus kinase 1 (JAK1) in human spermatozoa, a cell that is mostly transcriptionally inactive. In order to determine the importance of the JAK/STAT signaling pathway, our objectives were to identify and characterize the mediators of this system in human sperm. Cell fractionation and surface biotinylation assays clearly demonstrated that IL6R is expressed at the sperm membrane surface. The kinase JAK1 is enriched in membrane fractions and is activated during human sperm capacitation as suggested by its increase in phosphotyrosine content. Many signal transducer and activator of transcription (STAT) proteins are expressed in human sperm, including STAT1, STAT3, STAT4, STAT5, and STAT6. Among them, only STAT1 and STAT5 were detected in the cytosolic fraction. All the detected STAT proteins were enriched in the cytoskeletal structures. STAT4 was present in the perinuclear theca, whereas JAK1, STAT1, and STAT5 were detected in the fibrous sheath. Indirect immunofluorescence studies showed that JAK1 and STAT1 colocalized in the neck region and that STAT4 is present at the equatorial segment and flagella. The presence of STAT proteins in sperm structural components suggests that their role is different from their well-known transcription factor activity in somatic cells, but further investigations are required to determine their role in sperm function.
Collapse
Affiliation(s)
- Catherine Lachance
- Département d'Obstétrique et de Gynécologie, Centre de recherche en biologie de la reproduction, Université Laval, Unité de recherche en Ontogénie et Reproduction, Centre de recherche du CHUQ-CHUL, Québec, Québec, Canada
| | | |
Collapse
|