1
|
Strategies to Improve the Efficiency of Somatic Cell Nuclear Transfer. Int J Mol Sci 2022; 23:ijms23041969. [PMID: 35216087 PMCID: PMC8879641 DOI: 10.3390/ijms23041969] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/04/2023] Open
Abstract
Mammalian oocytes can reprogram differentiated somatic cells into a totipotent state through somatic cell nuclear transfer (SCNT), which is known as cloning. Although many mammalian species have been successfully cloned, the majority of cloned embryos failed to develop to term, resulting in the overall cloning efficiency being still low. There are many factors contributing to the cloning success. Aberrant epigenetic reprogramming is a major cause for the developmental failure of cloned embryos and abnormalities in the cloned offspring. Numerous research groups attempted multiple strategies to technically improve each step of the SCNT procedure and rescue abnormal epigenetic reprogramming by modulating DNA methylation and histone modifications, overexpression or repression of embryonic-related genes, etc. Here, we review the recent approaches for technical SCNT improvement and ameliorating epigenetic modifications in donor cells, oocytes, and cloned embryos in order to enhance cloning efficiency.
Collapse
|
2
|
Srirattana K, Hufana‐Duran D, Atabay EP, Duran PG, Atabay EC, Lu K, Liang Y, Chaikhun‐Marcou T, Theerakittayakorn K, Parnpai R. Current status of assisted reproductive technologies in buffaloes. Anim Sci J 2022; 93:e13767. [PMID: 36123790 PMCID: PMC9787342 DOI: 10.1111/asj.13767] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/05/2022] [Accepted: 08/25/2022] [Indexed: 12/30/2022]
Abstract
Buffaloes are raised by small farm holders primarily as source of draft power owing to its resistance to hot climate, disease, and stress conditions. Over the years, transformation of these animals from draft to dairy was deliberately carried out through genetic improvement program leading to the development of buffalo-based enterprises. Buffalo production is now getting more attention and interest from buffalo raisers due to its socioeconomic impact as well as its contribution to propelling the livestock industry in many developing countries. Reproduction of buffaloes, however, is confronted with huge challenge and concern as being generally less efficient to reproduce compared with cattle due to both intrinsic and extrinsic factors such as poor estrus manifestation, silent heat, marked seasonal infertility, postpartum anestrus, long calving interval, delayed puberty, inherently low number of primordial follicles in their ovaries, high incidence of atresia, and apoptosis. Assisted reproductive technologies (ARTs) are major interventions for the efficient utilization of follicle reserve in buffaloes. The present review focuses on estrus and ovulation synchronization for fixed time artificial insemination, in vitro embryo production, intracytoplasmic sperm injection, cryopreservation of oocytes and embryos, somatic cell nuclear transfer, the factors affecting utilization in various ARTs, and future perspectives in buffaloes.
Collapse
Affiliation(s)
- Kanokwan Srirattana
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural TechnologySuranaree University of TechnologyNakhon RatchasimaThailand
| | - Danilda Hufana‐Duran
- Reproduction and Physiology SectionDepartment of Agriculture‐Philippine Carabao CenterScience City of MunozNueva EcijaPhilippines,Department of Animal ScienceCentral Luzon State UniversityScience City of MunozNueva EcijaPhilippines
| | - Eufrocina P. Atabay
- Reproduction and Physiology SectionDepartment of Agriculture‐Philippine Carabao CenterScience City of MunozNueva EcijaPhilippines
| | - Peregrino G. Duran
- Reproduction and Physiology SectionDepartment of Agriculture‐Philippine Carabao CenterScience City of MunozNueva EcijaPhilippines,Department of Animal ScienceCentral Luzon State UniversityScience City of MunozNueva EcijaPhilippines
| | - Edwin C. Atabay
- Reproduction and Physiology SectionDepartment of Agriculture‐Philippine Carabao CenterScience City of MunozNueva EcijaPhilippines,Department of Animal ScienceCentral Luzon State UniversityScience City of MunozNueva EcijaPhilippines
| | - Kehuan Lu
- Animal Reproduction InstituteGuangxi UniversityNanningGuangxiChina
| | - Yuanyuan Liang
- Department of Reproductive MedicineLiuzhou General HospitalLiuzhouGuangxiChina
| | - Thuchadaporn Chaikhun‐Marcou
- Obstetrics Gynecology Andrology and Animal Biotechnology Clinic, Faculty of Veterinary MedicineMahanakorn University of TechnologyBangkokThailand
| | - Kasem Theerakittayakorn
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural TechnologySuranaree University of TechnologyNakhon RatchasimaThailand
| | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural TechnologySuranaree University of TechnologyNakhon RatchasimaThailand
| |
Collapse
|
3
|
Tsuchiya M, Giuliani A, Zimatore G, Erenpreisa J, Yoshikawa K. A Unified Genomic Mechanism of Cell-Fate Change. Results Probl Cell Differ 2022; 70:35-69. [PMID: 36348104 DOI: 10.1007/978-3-031-06573-6_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The purpose of our studies is to elucidate the nature of massive control of the whole genome expression with a particular emphasis on cell-fate change. The whole genome expression is coordinated by the emergence of a critical point (CP: a peculiar set of biphasic genes) with the genome acting as an integrated dynamical system. In response to stimuli, the genome expression self-organizes into local sub-, near-, and super-critical states, each exhibiting distinct collective behaviors with its center of mass acting as a local attractor, coexisting with the whole genome attractor (GA). The CP serves as the organizing center of cell-fate change, and its activation makes local perturbation to spread over the genome affecting GA. The activation of CP is in turn elicited by genes with elevated temporal variance (oscillating-mode genes), normally in charge to keep genome expression at pace with microenvironment fluctuations. When oscillation exceeds a given threshold, the CP synchronizes with the GA driving genome expression state transition. The expression synchronization wave invading the entire genome is fostered by the fusion-splitting dynamics of silencing pericentromere-associated heterochromatin domains and the consequent folding-unfolding transitions of transcribing euchromatin domains. The proposed mechanism is a unified step toward a time-evolutional transition theory of biological regulation.
Collapse
Affiliation(s)
- Masa Tsuchiya
- SEIKO Life Science Laboratory, SEIKO Research Institute for Education, Osaka, Japan.
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanitá, Rome, Italy.
| | | | | | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| |
Collapse
|
4
|
Bonnet-Garnier A, Kiêu K, Aguirre-Lavin T, Tar K, Flores P, Liu Z, Peynot N, Chebrout M, Dinnyés A, Duranthon V, Beaujean N. Three-dimensional analysis of nuclear heterochromatin distribution during early development in the rabbit. Chromosoma 2018; 127:387-403. [PMID: 29666907 PMCID: PMC6096579 DOI: 10.1007/s00412-018-0671-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/06/2018] [Accepted: 04/03/2018] [Indexed: 01/29/2023]
Abstract
Changes to the spatial organization of specific chromatin domains such as constitutive heterochromatin have been studied extensively in somatic cells. During early embryonic development, drastic epigenetic reprogramming of both the maternal and paternal genomes, followed by chromatin remodeling at the time of embryonic genome activation (EGA), have been observed in the mouse. Very few studies have been performed in other mammalian species (human, bovine, or rabbit) and the data are far from complete. During this work, we studied the three-dimensional organization of pericentromeric regions during the preimplantation period in the rabbit using specific techniques (3D-FISH) and tools (semi-automated image analysis). We observed that the pericentromeric regions (identified with specific probes for Rsat I and Rsat II genomic sequences) changed their shapes (from pearl necklaces to clusters), their nuclear localizations (from central to peripheral), as from the 4-cell stage. This reorganization goes along with histone modification changes and reduced amount of interactions with nucleolar precursor body surface. Altogether, our results suggest that the 4-cell stage may be a crucial window for events necessary before major EGA, which occurs during the 8-cell stage in the rabbit.
Collapse
Affiliation(s)
| | - Kiên Kiêu
- UR341 MaIAGE, INRA, Université Paris Saclay, 78350 Jouy-en-Josas, France
| | | | - Krisztina Tar
- Present Address: Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- BioTalentum Ltd., Aulich Lajos str. 26, Gödöllő, 2100 Hungary
| | - Pierre Flores
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy-en-Josas, France
| | - Zichuan Liu
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy-en-Josas, France
- Present Address: Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Nathalie Peynot
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy-en-Josas, France
| | - Martine Chebrout
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy-en-Josas, France
| | - András Dinnyés
- BioTalentum Ltd., Aulich Lajos str. 26, Gödöllő, 2100 Hungary
| | | | - Nathalie Beaujean
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy-en-Josas, France
- Present Address: Univ Lyon, Université Claude Bernard Lyon 1, Inserm, INRA, Stem Cell and Brain Research Institute U1208, USC1361, 69500 Bron, France
| |
Collapse
|
5
|
Chi D, Zeng Y, Xu M, Si L, Qu X, Liu H, Li J. LC3-Dependent Autophagy in Pig 2-Cell Cloned Embryos Could Influence the Degradation of Maternal mRNA and the Regulation of Epigenetic Modification. Cell Reprogram 2017; 19:354-362. [PMID: 29058487 DOI: 10.1089/cell.2017.0016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In this study, the distribution as well as the effect of autophagy on reprogramming in pig cloned embryos were observed immediately after somatic cell nuclear transfer. Results showed that the LC3 was at the highest level in cloned embryos at 2-cell stage, and it decreased with the development from 2-cell stage to blastocyst. Different to cloned embryos, the intensity of LC3 in parthenogenetic activation (PA) embryos was at the highest level at 4-cell stage. A markedly higher level of Bmp15, H1foo, and Dppa3 was shown in cloned embryos at 2-cell stage (p < 0.05 or p < 0.01), but a significantly lower level of LC3, Sox2, and eIF1A was observed at 4-cell stage (p < 0.05), compared with PA embryos. When the efficient interfering by the LC3 siRNA was performed on the cloned embryos (p < 0.01), not only the mRNA level of maternal Cyclin B, Bmp15, Gdf9, c-mos, H1foo, and Dppa3 was increased significantly (p < 0.05), but also the expression of Dnmt1 and Dnmt3b was obviously upregulated (p < 0.05). Although the expression of Sox2 and Oct4 is not changed, the expression of Stat3 decreased significantly (p < 0.05). Furthermore with the treatment of 200 nM rapamycin, the expression of eIF1A and Stat3 was significantly increased at 4-cell stage. In conclusion, the LC3-dependent autophagy mainly occurred in cloned embryos at 2-cell stage, but at 4-cell stage in PA embryos. In addition, the modulation of autophagy could affect genome activation by influencing the degradation of maternal mRNA and regulating the expression of DNA methyltransferase.
Collapse
Affiliation(s)
- Daming Chi
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing Weigang No. 1, Jiangsu Province, P.R. China
| | - Yaqiong Zeng
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing Weigang No. 1, Jiangsu Province, P.R. China
| | - Mingzhu Xu
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing Weigang No. 1, Jiangsu Province, P.R. China
| | - Linan Si
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing Weigang No. 1, Jiangsu Province, P.R. China
| | - Xiao Qu
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing Weigang No. 1, Jiangsu Province, P.R. China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing Weigang No. 1, Jiangsu Province, P.R. China
| | - Juan Li
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing Weigang No. 1, Jiangsu Province, P.R. China
| |
Collapse
|
6
|
Tsuchiya M, Giuliani A, Hashimoto M, Erenpreisa J, Yoshikawa K. Self-Organizing Global Gene Expression Regulated through Criticality: Mechanism of the Cell-Fate Change. PLoS One 2016; 11:e0167912. [PMID: 27997556 PMCID: PMC5173342 DOI: 10.1371/journal.pone.0167912] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A fundamental issue in bioscience is to understand the mechanism that underlies the dynamic control of genome-wide expression through the complex temporal-spatial self-organization of the genome to regulate the change in cell fate. We address this issue by elucidating a physically motivated mechanism of self-organization. PRINCIPAL FINDINGS Building upon transcriptome experimental data for seven distinct cell fates, including early embryonic development, we demonstrate that self-organized criticality (SOC) plays an essential role in the dynamic control of global gene expression regulation at both the population and single-cell levels. The novel findings are as follows: i) Mechanism of cell-fate changes: A sandpile-type critical transition self-organizes overall expression into a few transcription response domains (critical states). A cell-fate change occurs by means of a dissipative pulse-like global perturbation in self-organization through the erasure of initial-state critical behaviors (criticality). Most notably, the reprogramming of early embryo cells destroys the zygote SOC control to initiate self-organization in the new embryonal genome, which passes through a stochastic overall expression pattern. ii) Mechanism of perturbation of SOC controls: Global perturbations in self-organization involve the temporal regulation of critical states. Quantitative evaluation of this perturbation in terminal cell fates reveals that dynamic interactions between critical states determine the critical-state coherent regulation. The occurrence of a temporal change in criticality perturbs this between-states interaction, which directly affects the entire genomic system. Surprisingly, a sub-critical state, corresponding to an ensemble of genes that shows only marginal changes in expression and consequently are considered to be devoid of any interest, plays an essential role in generating a global perturbation in self-organization directed toward the cell-fate change. CONCLUSION AND SIGNIFICANCE 'Whole-genome' regulation of gene expression through self-regulatory SOC control complements gene-by-gene fine tuning and represents a still largely unexplored non-equilibrium statistical mechanism that is responsible for the massive reprogramming of genome expression.
Collapse
Affiliation(s)
- Masa Tsuchiya
- Systems Biology Program, School of Media and Governance, Keio University, Fujisawa, Japan
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanitá, Rome, Italy
| | - Midori Hashimoto
- Graduate School of Frontier Science, the University of Tokyo, Kashiwa, Japan
| | | | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| |
Collapse
|
7
|
Sepulveda-Rincon LP, Solanas EDL, Serrano-Revuelta E, Ruddick L, Maalouf WE, Beaujean N. Early epigenetic reprogramming in fertilized, cloned, and parthenogenetic embryos. Theriogenology 2016; 86:91-8. [DOI: 10.1016/j.theriogenology.2016.04.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/25/2016] [Accepted: 03/14/2016] [Indexed: 12/17/2022]
|
8
|
Liu Y, Wang H, Lu J, Miao Y, Cao X, Zhang L, Wu X, Wu F, Ding B, Wang R, Luo M, Li W, Tan J. Rex Rabbit Somatic Cell Nuclear Transfer with In Vitro-Matured Oocytes. Cell Reprogram 2016; 18:187-94. [PMID: 27159389 DOI: 10.1089/cell.2015.0086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) requires large numbers of matured oocytes. In vitro-matured (IVM) oocytes have been used in SCNT in many animals. We investigated the use of IVM oocytes in Rex rabbit SCNT using Rex rabbit ovaries obtained from a local abattoir. The meiotic ability of oocytes isolated from follicles of different diameters was studied. Rex rabbit SCNT was optimized for denucleation, activation, and donor cell synchronization. Rex rabbit oocytes grew to the largest diameter (110 μm) when the follicle diameter was 1.0 mm. Oocytes isolated from <0.5-mm follicles lacked the ability to resume meiosis. More than 90% of these oocytes remained in the germinal vesicle (GV) stage after in vitro culture (IVC) for 18 h. Oocytes isolated from >0.7-mm follicles acquired maturation ability. More than 90% of these oocytes matured after IVC for 18 h. The developmental potential of oocytes isolated from >1-mm follicles was greater than that of oocytes isolated from 0.7- to 1.0-mm follicles. The highest activation rates for IVM Rex rabbit oocytes were seen after treatment with 2.5 μM ionomycin for 5 min followed by 2 mM 6-dimethylaminopurine (6-DMAP) and 5 μg/mL cycloheximide (CHX) for 1 h. Ionomycin induced the chromatin of IVM oocytes to protrude from the oocyte surface, promoting denucleation. Fetal fibroblast cells (FFCs) and cumulus cells (CCs) were more suitable for Rex rabbit SCNT than skin fibroblast cells (SFCs) (blastocyst rate was 35.6 ± 2.2% and 38.0 ± 6.0% vs. 19.7 ± 3.1%). The best fusion condition was a 2DC interval for 1 sec, 1.6 kV/cm voltages, and 40 μsec duration in 0.28 M mannitol. In conclusion, the in vitro maturation of Rex rabbit oocytes and SCNT procedures were studied systematically and optimized in this study.
Collapse
Affiliation(s)
- Yong Liu
- 1 Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, College of Biological and Food Engineering, Fuyang Teachers College , Fuyang City, Anhui Province 236037, China
| | - Huili Wang
- 2 Laboratory for Animal Reproduction and Embryology, College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Tai'an City, Shandong Province 271018, China
| | - Jinhua Lu
- 2 Laboratory for Animal Reproduction and Embryology, College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Tai'an City, Shandong Province 271018, China
| | - Yiliang Miao
- 2 Laboratory for Animal Reproduction and Embryology, College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Tai'an City, Shandong Province 271018, China
| | - Xinyan Cao
- 2 Laboratory for Animal Reproduction and Embryology, College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Tai'an City, Shandong Province 271018, China
| | - Ling Zhang
- 1 Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, College of Biological and Food Engineering, Fuyang Teachers College , Fuyang City, Anhui Province 236037, China
| | - Xiaoqing Wu
- 1 Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, College of Biological and Food Engineering, Fuyang Teachers College , Fuyang City, Anhui Province 236037, China
| | - Fengrui Wu
- 1 Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, College of Biological and Food Engineering, Fuyang Teachers College , Fuyang City, Anhui Province 236037, China
| | - Biao Ding
- 1 Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, College of Biological and Food Engineering, Fuyang Teachers College , Fuyang City, Anhui Province 236037, China
| | - Rong Wang
- 1 Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, College of Biological and Food Engineering, Fuyang Teachers College , Fuyang City, Anhui Province 236037, China
| | - Mingjiu Luo
- 2 Laboratory for Animal Reproduction and Embryology, College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Tai'an City, Shandong Province 271018, China
| | - Wenyong Li
- 1 Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, College of Biological and Food Engineering, Fuyang Teachers College , Fuyang City, Anhui Province 236037, China
| | - Jinghe Tan
- 2 Laboratory for Animal Reproduction and Embryology, College of Animal Science and Veterinary Medicine, Shandong Agricultural University , Tai'an City, Shandong Province 271018, China
| |
Collapse
|
9
|
Popken J, Brero A, Koehler D, Schmid VJ, Strauss A, Wuensch A, Guengoer T, Graf A, Krebs S, Blum H, Zakhartchenko V, Wolf E, Cremer T. Reprogramming of fibroblast nuclei in cloned bovine embryos involves major structural remodeling with both striking similarities and differences to nuclear phenotypes of in vitro fertilized embryos. Nucleus 2015; 5:555-89. [PMID: 25482066 PMCID: PMC4615760 DOI: 10.4161/19491034.2014.979712] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nuclear landscapes were studied during preimplantation development of bovine embryos, generated either by in vitro fertilization (IVF), or generated as cloned embryos by somatic cell nuclear transfer (SCNT) of bovine fetal fibroblasts, using 3-dimensional confocal laser scanning microscopy (3D-CLSM) and structured illumination microscopy (3D-SIM). Nuclear landscapes of IVF and SCNT embryonic nuclei were compared with each other and with fibroblast nuclei. We demonstrate that reprogramming of fibroblast nuclei in cloned embryos requires changes of their landscapes similar to nuclei of IVF embryos. On the way toward the 8-cell stage, where major genome activation occurs, a major lacuna, enriched with splicing factors, was formed in the nuclear interior and chromosome territories (CTs) were shifted toward the nuclear periphery. During further development the major lacuna disappeared and CTs were redistributed throughout the nuclear interior forming a contiguous higher order chromatin network. At all stages of development CTs of IVF and SCNT embryonic nuclei were built up from chromatin domain clusters (CDCs) pervaded by interchromatin compartment (IC) channels. Quantitative analyses revealed a highly significant enrichment of RNA polymerase II and H3K4me3, a marker for transcriptionally competent chromatin, at the periphery of CDCs. In contrast, H3K9me3, a marker for silent chromatin, was enriched in the more compacted interior of CDCs. Despite these striking similarities, we also detected major differences between nuclear landscapes of IVF and cloned embryos. Possible implications of these differences for the developmental potential of cloned animals remain to be investigated. We present a model, which integrates generally applicable structural and functional features of the nuclear landscape.
Collapse
Key Words
- 3D-CLSM, 3-dimensional confocal laser scanning microscopy
- 3D-SIM, 3-dimensional structured illumination microscopy
- B23, nucleophosmin B23
- BTA, Bos taurus
- CDC, chromatin domain cluster
- CT, chromosome territory
- EM, electron microscopy
- ENC, embryonic nuclei with conventional nuclear architecture
- ENP, embryonic nuclei with peripheral CT distribution
- H3K4me3
- H3K4me3, histone H3 with tri-methylated lysine 4
- H3K9me3
- H3K9me3, histone H3 with tri-methylated lysine 9
- H3S10p, histone H3 with phosphorylated serine 10
- IC, interchromatin compartment
- IVF, in vitro fertilization
- MCB, major chromatin body
- PR, perichromatin region
- RNA polymerase II
- RNA polymerase II-S2p, RNA polymerase II with phosphorylated serine 2 of its CTD domain
- RNA polymerase II-S5p, RNA polymerase II with phosphorylated serine 5 of its CTD domain
- SC-35, splicing factor SC-35
- SCNT, somatic cell nuclear transfer.
- bovine preimplantation development
- chromatin domain
- chromosome territory
- embryonic genome activation
- in vitro fertilization (IVF)
- interchromatin compartment
- major EGA, major embryonic genome activation
- somatic cell nuclear transfer (SCNT)
Collapse
Affiliation(s)
- Jens Popken
- a Division of Anthropology and Human Genetics ; Biocenter; LMU Munich ; Munich , Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Boulesteix C, Beaujean N. Fluorescent immunodetection of epigenetic modifications on preimplantation mouse embryos. Methods Mol Biol 2015; 1222:113-26. [PMID: 25287342 DOI: 10.1007/978-1-4939-1594-1_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A common problem in research laboratories that study the mammalian embryo after nuclear transfer is the limited supply of material. For this reason, new methods are continually developed, and existing methods for cells in culture are adapted to suit this peculiar experimental model. Among them is the fluorescent immunodetection. Fluorescent immuno-detection on fixed embryos is an invaluable technique to detect and locate proteins, especially nuclear ones such as modified histones, in single embryos thanks to its specificity and its sensitivity. Moreover, with specific fixation procedures that preserve the 3D shape of the embryos, immunostaining can now be performed on whole-mount embryos. Target proteins are detected by specific binding of first antibody usually nonfluorescent, and revealed with a second antibody conjugated with a fluorochrome directed specifically against the host animal in which the first antibody was produced. The result can then be observed on a microscope equipped with fluorescent detection. Here, we describe the 3D fluorescent immunodetection of epigenetic modifications in mouse embryos. This procedure can be used on nuclear transferred embryos but also on in vivo-collected, in vitro-developed and in vitro-fertilized ones.
Collapse
Affiliation(s)
- Claire Boulesteix
- UMR1198 Biologie du Développement et Reproduction, INRA, Domaine de Vilvert, 78352, Jouy-en-Josas Cedex, France
| | | |
Collapse
|
11
|
Beaujean N. Epigenetics, embryo quality and developmental potential. Reprod Fertil Dev 2015; 27:53-62. [DOI: 10.1071/rd14309] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It is very important for embryologists to understand how parental inherited genomes are reprogrammed after fertilisation in order to obtain good-quality embryos that will sustain further development. In mammals, it is now well established that important epigenetic modifications occur after fertilisation. Although gametes carry special epigenetic signatures, they should attain embryo-specific signatures, some of which are crucial for the production of healthy embryos. Indeed, it appears that proper establishment of different epigenetic modifications and subsequent scaffolding of the chromatin are crucial steps during the first cleavages. This ‘reprogramming’ is promoted by the intimate contact between the parental inherited genomes and the oocyte cytoplasm after fusion of the gametes. This review introduces two main epigenetic players, namely histone post-translational modifications and DNA methylation, and highlights their importance during early embryonic development.
Collapse
|
12
|
Recipient of the 2015 IETS Pioneer Award: Jean Paul Renard, Ingénieur Agronome, PhD. Reprod Fertil Dev 2014; 27:xxiii-xxv. [PMID: 25472413 DOI: 10.1071/rdv27n1_pa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. Cell 2014; 159:884-95. [PMID: 25417163 DOI: 10.1016/j.cell.2014.09.055] [Citation(s) in RCA: 343] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/01/2014] [Accepted: 09/19/2014] [Indexed: 01/20/2023]
Abstract
Mammalian oocytes can reprogram somatic cells into a totipotent state enabling animal cloning through somatic cell nuclear transfer (SCNT). However, the majority of SCNT embryos fail to develop to term due to undefined reprogramming defects. Here, we identify histone H3 lysine 9 trimethylation (H3K9me3) of donor cell genome as a major barrier for efficient reprogramming by SCNT. Comparative transcriptome analysis identified reprogramming resistant regions (RRRs) that are expressed normally at 2-cell mouse embryos generated by in vitro fertilization (IVF) but not SCNT. RRRs are enriched for H3K9me3 in donor somatic cells and its removal by ectopically expressed H3K9me3 demethylase Kdm4d not only reactivates the majority of RRRs, but also greatly improves SCNT efficiency. Furthermore, use of donor somatic nuclei depleted of H3K9 methyltransferases markedly improves SCNT efficiency. Our study thus identifies H3K9me3 as a critical epigenetic barrier in SCNT-mediated reprogramming and provides a promising approach for improving mammalian cloning efficiency.
Collapse
|
14
|
Burton A, Torres-Padilla ME. Chromatin dynamics in the regulation of cell fate allocation during early embryogenesis. Nat Rev Mol Cell Biol 2014; 15:723-34. [PMID: 25303116 DOI: 10.1038/nrm3885] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Following fertilization, gametes undergo epigenetic reprogramming in order to revert to a totipotent state. How embryonic cells subsequently acquire their fate and the role of chromatin dynamics in this process are unknown. Genetic and experimental embryology approaches have identified some of the players and morphological changes that are involved in early mammalian development, but the exact events underlying cell fate allocation in single embryonic cells have remained elusive. Experimental and technological advances have recently provided novel insights into chromatin dynamics and nuclear architecture in single cells; these insights have reshaped our understanding of the mechanisms underlying cell fate allocation and plasticity in early mammalian development.
Collapse
Affiliation(s)
- Adam Burton
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM U964, Université de Strasbourg, F-67404 ILLKIRCH, Cité Universitaire de Strasbourg, France
| | - Maria-Elena Torres-Padilla
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM U964, Université de Strasbourg, F-67404 ILLKIRCH, Cité Universitaire de Strasbourg, France
| |
Collapse
|
15
|
Duranthon V, Beaujean N, Brunner M, Odening KE, Santos AN, Kacskovics I, Hiripi L, Weinstein EJ, Bosze Z. On the emerging role of rabbit as human disease model and the instrumental role of novel transgenic tools. Transgenic Res 2012; 21:699-713. [PMID: 22382461 DOI: 10.1007/s11248-012-9599-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 02/04/2012] [Indexed: 12/19/2022]
Abstract
The laboratory rabbit (Oryctolagus cuniculus) is widely used as a model for human diseases, because of its size, which permits non-lethal monitoring of physiological changes and similar disease characteristics. Novel transgenic tools such as, the zinc finger nuclease method and the sleeping beauty transposon mediated or BAC transgenesis were recently adapted to the laboratory rabbit and opened new opportunities in precise tissue and developmental stage specific gene expression/silencing, coupled with increased transgenic efficiencies. Many facets of human development and diseases cannot be investigated in rodents. This is especially true for early prenatal development, its long-lasting effects on health and complex disorders, and some economically important diseases such as atherosclerosis or cardiovascular diseases. The first transgenic rabbits models of arrhythmogenesis mimic human cardiac diseases much better than transgenic mice and hereby underline the importance of non-mouse models. Another emerging field is epigenetic reprogramming and pathogenic mechanisms in diabetic pregnancy, where rabbit models are indispensable. Beyond that rabbit is used for decades as major source of polyclonal antibodies and recently in monoclonal antibody production. Alteration of its genome to increase the efficiency and value of the antibodies by humanization of the immunoglobulin genes, or by increasing the expression of a special receptor (Fc receptor) that augments humoral immune response is a current demand.
Collapse
Affiliation(s)
- V Duranthon
- INRA, UMR 1198 Biologie du Développement et Reproduction, 78350 Jouy en Josas, France
| | | | | | | | | | | | | | | | | |
Collapse
|