1
|
Sharma S, Klaverkamp RS, Wistuba J, Schlatt S. Limited spermatogenic differentiation of testicular tissue from prepubertal marmosets (Callithrix jacchus) in an in vitro organ culture system. Mol Cell Endocrinol 2022; 539:111488. [PMID: 34637880 DOI: 10.1016/j.mce.2021.111488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE of the research: To achieve male fertility preservation and restoration, experimental strategies for in vitro germ cell differentiation are required. The effects of two different culture conditions on in vitro maintenance and differentiation of non-human primate germ cells was studied. Three testes from three 6-month-old marmosets were cultured using a gas-liquid interphase system for 12 days. Testicular maturation in pre-culture control and samples cultured in gonadotropin and serum supplemented and non-supplemented culture samples was evaluated using Periodic Acid-Schiff (PAS) and immunohistochemical stainings. PRINCIPLE RESULTS Gonadotropins and serum-supplemented tissues demonstrate up to meiotic differentiation (BOULE + Pachytene spermatocyte) and advanced localization of germ cells (MAGEA4+). Moreover, complex (with gonadotropin and marmoset monkey serum) conditions induced progression in somatic cell maturation with advanced seminiferous epithelial organization, maintenance of encapsulation of cultured fragments with peritubular-myoid cells, preservation of tubular structural integrity and architecture. MAJOR CONCLUSIONS We report stimulation-dependent in vitro meiotic transition in non-human primate testes. This model represents a novel ex vivo approach to obtain crucial developmental progression.
Collapse
Affiliation(s)
- Swati Sharma
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer Campus 1, Building D11, 48149, Münster, Germany
| | - Reinhild-Sandhowe Klaverkamp
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer Campus 1, Building D11, 48149, Münster, Germany
| | - Joachim Wistuba
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer Campus 1, Building D11, 48149, Münster, Germany
| | - Stefan Schlatt
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer Campus 1, Building D11, 48149, Münster, Germany.
| |
Collapse
|
2
|
Heckmann L, Langenstroth-Röwer D, Wistuba J, Portela JMD, van Pelt AMM, Redmann K, Stukenborg JB, Schlatt S, Neuhaus N. The initial maturation status of marmoset testicular tissues has an impact on germ cell maintenance and somatic cell response in tissue fragment culture. Mol Hum Reprod 2021; 26:374-388. [PMID: 32236422 DOI: 10.1093/molehr/gaaa024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/13/2020] [Indexed: 11/13/2022] Open
Abstract
Successful in vitro spermatogenesis was reported using immature mouse testicular tissues in a fragment culture approach, raising hopes that this method could also be applied for fertility preservation in humans. Although maintaining immature human testicular tissue fragments in culture is feasible for an extended period, it remains unknown whether germ cell survival and the somatic cell response depend on the differentiation status of tissue. Employing the marmoset monkey (Callithrix jacchus), we aimed to assess whether the maturation status of prepubertal and peri-/pubertal testicular tissues influence the outcome of testis fragment culture. Testicular tissue fragments from 4- and 8-month-old (n = 3, each) marmosets were cultured and evaluated after 0, 7, 14, 28 and 42 days. Immunohistochemistry was performed for identification and quantification of germ cells (melanoma-associated antigen 4) and Sertoli cell maturation status (anti-Müllerian hormone: AMH). During testis fragment culture, spermatogonial numbers were significantly reduced (P < 0.05) in the 4- but not 8-month-old monkeys, at Day 0 versus Day 42 of culture. Moreover, while Sertoli cells from 4-month-old monkeys maintained an immature phenotype (i.e. AMH expression) during culture, AMH expression was regained in two of the 8-month-old monkeys. Interestingly, progression of differentiation to later meiotic stage was solely observed in one 8-month-old marmoset, which was at an intermediate state regarding germ cell content, with gonocytes as well as spermatocytes present, as well as Sertoli cell maturation status. Although species-specific differences might influence the outcome of testis fragment experiments in vitro, our study demonstrated that the developmental status of the testicular tissues needs to be considered as it seems to be decisive for germ cell maintenance, somatic cell response and possibly the differentiation potential.
Collapse
Affiliation(s)
- L Heckmann
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| | - D Langenstroth-Röwer
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| | - J Wistuba
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| | - J M D Portela
- Center for Reproductive Medicine, Research Institute Reproduction and Development, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - A M M van Pelt
- Center for Reproductive Medicine, Research Institute Reproduction and Development, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - K Redmann
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| | - J B Stukenborg
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, 17164 Solna, Sweden
| | - S Schlatt
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| | - N Neuhaus
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, Albert-Schweitzer-Campus 1, Building D11, 48149 Münster, Germany
| |
Collapse
|
3
|
Wistuba J, Beumer C, Warmeling AS, Sandhowe-Klaverkamp R, Stypmann J, Kuhlmann M, Holtmeier R, Damm OS, Tüttelmann F, Gromoll J. Testicular blood supply is altered in the 41,XX Y* Klinefelter syndrome mouse model. Sci Rep 2020; 10:14369. [PMID: 32873847 PMCID: PMC7462989 DOI: 10.1038/s41598-020-71377-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 08/10/2020] [Indexed: 11/09/2022] Open
Abstract
Hypergonadotropic hypogonadism is a major feature of Klinefelter syndrome (KS), assumed to be caused by testicular hormone resistance. It was previously shown that intratesticular testosterone levels in vivo and Leydig cell function in vitro seem to be normal indicating other functional constraints. We hypothesized that impaired testicular vascularization/blood flow could be a co-factor to the observed hypergonadotropic hypogonadism. We evaluated the testicular vascular system by measuring blood vessel sizes during postnatal development and testis blood flow in adult 41,XXY* mice. Proportional distribution and size of blood vessels were analyzed during testicular development (1, 3, 5, 7, 10, 21 dpp, 15 wpp). While ratios of the vessel/testis area were different at 15 wpp only, a lower number of smaller and mid-sized blood vessels were detected in adult KS mice. For testicular blood flow determination we applied contrast enhanced ultrasound. Floating and reperfusion time for testicular blood flow was increased in 41,XXY* mice (floating: XY* 28.8 ± 1.69 s vs XXY* 44.6 ± 5.6 s, p = 0.0192; reperfusion XY* 19.7 ± 2.8 s vs XXY*: 29.9 ± 6.2 s, p = 0.0134), indicating a diminished blood supply. Our data strengthen the concept that an impaired vascularization either in conjunction or as a result of altered KS testicular architecture contributes to hormone resistance.
Collapse
Affiliation(s)
- Joachim Wistuba
- Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University of Münster, University Clinics, Albert-Schweitzer-Campus 1, Building D11, 48149, Munster, Germany.
| | - Cristin Beumer
- Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University of Münster, University Clinics, Albert-Schweitzer-Campus 1, Building D11, 48149, Munster, Germany
| | - Ann-Sophie Warmeling
- Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University of Münster, University Clinics, Albert-Schweitzer-Campus 1, Building D11, 48149, Munster, Germany
| | - Reinhild Sandhowe-Klaverkamp
- Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University of Münster, University Clinics, Albert-Schweitzer-Campus 1, Building D11, 48149, Munster, Germany
| | - Jörg Stypmann
- Department of Cardiovascular Medicine, University of Münster, Albert-Schweitzer-Campus 1 Building A1, 48149, Munster, Germany
| | - Michael Kuhlmann
- European Institute for Molecular Imaging (EIMI), University of Münster, Waldeyerstraße 15, 48149, Munster, Germany
| | - Richard Holtmeier
- European Institute for Molecular Imaging (EIMI), University of Münster, Waldeyerstraße 15, 48149, Munster, Germany
| | - Oliver S Damm
- Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University of Münster, University Clinics, Albert-Schweitzer-Campus 1, Building D11, 48149, Munster, Germany
| | - Frank Tüttelmann
- Institute of Human Genetics, University of Münster, Vesaliusweg 12-14, 48149, Munster, Germany
| | - Jörg Gromoll
- Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University of Münster, University Clinics, Albert-Schweitzer-Campus 1, Building D11, 48149, Munster, Germany
| |
Collapse
|
4
|
Mecklenburg L, Luetjens CM, Weinbauer GF. Toxicologic Pathology Forum*: Opinion on Sexual Maturity and Fertility Assessment in Long-tailed Macaques ( Macaca fascicularis) in Nonclinical Safety Studies. Toxicol Pathol 2019; 47:444-460. [PMID: 30898082 DOI: 10.1177/0192623319831009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
If nonhuman primates represent the only relevant species for nonclinical safety evaluation of biotechnology-derived products, male and female fertility effects can be assessed in repeat dose toxicity studies given that sexually mature monkeys are used. This opinion piece provides recommendations for determining sexual maturity and when/how fertility assessments should be conducted in the cynomolgus monkey. Male sexual maturity should be proven by presence of sperm in a semen sample, female sexual maturity by at least two consecutive menstrual bleedings. As per regulatory guidance, default parameters for an indirect assessment of fertility in both sexes are reproductive organ weight and histopathology. Beyond default parameters, daily vaginal swabs are recommended for females, and for males, it is recommended to include blood collections (for potential analysis of reproductive hormones), testis volume sonography, and collection of frozen testis samples at necropsy. Only if there is a cause for concern, blood collection for potential reproductive hormone analysis should be conducted in females and semen analysis in males. In principle, adverse reproductive effects can be detected within 4 weeks of test article administration, depending on study design and reproductive end point chosen. Therefore, there are options for addressing reproductive toxicity aspects with studies of less than 3 months dosing duration. *This is an opinion article submitted to the Toxicologic Pathology Forum. It represents the views of the authors. It does not constitute an official position of the Society of Toxicologic Pathology, British Society of Toxicological Pathology, or European Society of Toxicologic Pathology, and the views expressed might not reflect the best practices recommended by these Societies. This article should not be construed to represent the policies, positions, or opinions of their respective organizations, employers, or regulatory agencies.
Collapse
|
5
|
Debowski K, Drummer C, Lentes J, Cors M, Dressel R, Lingner T, Salinas-Riester G, Fuchs S, Sasaki E, Behr R. The transcriptomes of novel marmoset monkey embryonic stem cell lines reflect distinct genomic features. Sci Rep 2016; 6:29122. [PMID: 27385131 PMCID: PMC4935898 DOI: 10.1038/srep29122] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 06/13/2016] [Indexed: 12/21/2022] Open
Abstract
Embryonic stem cells (ESCs) are useful for the study of embryonic development. However, since research on naturally conceived human embryos is limited, non-human primate (NHP) embryos and NHP ESCs represent an excellent alternative to the corresponding human entities. Though, ESC lines derived from naturally conceived NHP embryos are still very rare. Here, we report the generation and characterization of four novel ESC lines derived from natural preimplantation embryos of the common marmoset monkey (Callithrix jacchus). For the first time we document derivation of NHP ESCs derived from morula stages. We show that quantitative chromosome-wise transcriptome analyses precisely reflect trisomies present in both morula-derived ESC lines. We also demonstrate that the female ESC lines exhibit different states of X-inactivation which is impressively reflected by the abundance of the lncRNA X inactive-specific transcript (XIST). The novel marmoset ESC lines will promote basic primate embryo and ESC studies as well as preclinical testing of ESC-based regenerative approaches in NHP.
Collapse
Affiliation(s)
- Katharina Debowski
- Platform Degenerative Diseases, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Charis Drummer
- Platform Degenerative Diseases, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Jana Lentes
- Platform Degenerative Diseases, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Maren Cors
- Platform Degenerative Diseases, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Ralf Dressel
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen (UMG), Humboldtallee 34, 37073 Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Germany
| | - Thomas Lingner
- Microarray and Deep-Sequencing Core Facility, University Medical Center Göttingen (UMG), Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Gabriela Salinas-Riester
- Microarray and Deep-Sequencing Core Facility, University Medical Center Göttingen (UMG), Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Sigrid Fuchs
- Department of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Erika Sasaki
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, 3-25-12 Tonomachi Kawasaki-ku, Kawasaki, 210-0821 Japan.,Keio Advanced Research Center, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Rüdiger Behr
- Platform Degenerative Diseases, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Germany
| |
Collapse
|
6
|
Debowski K, Warthemann R, Lentes J, Salinas-Riester G, Dressel R, Langenstroth D, Gromoll J, Sasaki E, Behr R. Non-viral generation of marmoset monkey iPS cells by a six-factor-in-one-vector approach. PLoS One 2015; 10:e0118424. [PMID: 25785453 PMCID: PMC4365012 DOI: 10.1371/journal.pone.0118424] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/01/2014] [Indexed: 02/07/2023] Open
Abstract
Groundbreaking studies showed that differentiated somatic cells of mouse and human origin could be reverted to a stable pluripotent state by the ectopic expression of only four proteins. The resulting pluripotent cells, called induced pluripotent stem (iPS) cells, could be an alternative to embryonic stem cells, which are under continuous ethical debate. Hence, iPS cell-derived functional cells such as neurons may become the key for an effective treatment of currently incurable degenerative diseases. However, besides the requirement of efficacy testing of the therapy also its long-term safety needs to be carefully evaluated in settings mirroring the clinical situation in an optimal way. In this context, we chose the long-lived common marmoset monkey (Callithrix jacchus) as a non-human primate species to generate iPS cells. The marmoset monkey is frequently used in biomedical research and is gaining more and more preclinical relevance due to the increasing number of disease models. Here, we describe, to our knowledge, the first-time generation of marmoset monkey iPS cells from postnatal skin fibroblasts by non-viral means. We used the transposon-based, fully reversible piggyback system. We cloned the marmoset monkey reprogramming factors and established robust and reproducible reprogramming protocols with a six-factor-in-one-construct approach. We generated six individual iPS cell lines and characterized them in comparison with marmoset monkey embryonic stem cells. The generated iPS cells are morphologically indistinguishable from marmoset ES cells. The iPS cells are fully reprogrammed as demonstrated by differentiation assays, pluripotency marker expression and transcriptome analysis. They are stable for numerous passages (more than 80) and exhibit euploidy. In summary, we have established efficient non-viral reprogramming protocols for the derivation of stable marmoset monkey iPS cells, which can be used to develop and test cell replacement therapies in preclinical settings.
Collapse
Affiliation(s)
- Katharina Debowski
- Stem Cell Biology Unit, German Primate Center—Leibniz Institute for Primate Research, Göttingen, Germany
- * E-mail: (KD); (RB)
| | - Rita Warthemann
- Stem Cell Biology Unit, German Primate Center—Leibniz Institute for Primate Research, Göttingen, Germany
| | - Jana Lentes
- Stem Cell Biology Unit, German Primate Center—Leibniz Institute for Primate Research, Göttingen, Germany
| | - Gabriela Salinas-Riester
- Microarray and Deep-Sequencing Core Facility, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Ralf Dressel
- Department of Cellular and Molecular Immunology, University of Göttingen, Göttingen, Germany
| | - Daniel Langenstroth
- Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - Jörg Gromoll
- Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - Erika Sasaki
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki, Kanagawa, Japan, Keio Advanced Research Center, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Rüdiger Behr
- Stem Cell Biology Unit, German Primate Center—Leibniz Institute for Primate Research, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- * E-mail: (KD); (RB)
| |
Collapse
|
7
|
Siegeler K, Wistuba J, Damm OS, von Engelhardt N, Sachser N, Kaiser S. Early social instability affects plasma testosterone during adolescence but does not alter reproductive capacity or measures of stress later in life. Physiol Behav 2013; 120:143-9. [DOI: 10.1016/j.physbeh.2013.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/25/2013] [Accepted: 08/07/2013] [Indexed: 11/17/2022]
|