1
|
Mukherjee A, Verma A, Das T, Ghosh B, Ghosh Z. Circulating microRNAs in Body Fluid: "Fingerprint" RNA Snippets Deeply Impact Reproductive Biology. Reprod Sci 2025; 32:555-574. [PMID: 39658771 DOI: 10.1007/s43032-024-01753-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024]
Abstract
Circulating miRNAs (C-miRNAs) occuring in a cell-free form within body fluids and other extracellular environments have garnered attention in recent times. They offer deeper insight into various physiological and pathological processes which include reproductive health. This review delves into their diagnostic potential across a spectrum of reproductive disorders, including conditions affecting ovarian function, male infertility and post pregnancy issues. Through analysis of C-miRNA profiles in bodily fluids, researchers uncover crucial markers indicative of reproductive challenges. Dysregulated C-miRNAs emerge as important players in the progression of several reproductive disorders which is the main focus of this review. Advancements in technology, facilitate precise detection and quantification of C-miRNAs, paving the way for innovative diagnostic approaches. Challenges in studying C-miRNAs, such as their low abundance and variability in expression levels, underscore the need for standardized protocols and rigorous validation methods. Despite these challenges, ongoing research endeavors aim to unravel the complex regulatory roles of C-miRNAs in reproductive biology, with potential implications for clinical practice and therapeutic interventions.
Collapse
Affiliation(s)
- Ayan Mukherjee
- Department of Animal Biotechnology, West Bengal University of Animal and Fishery Sciences, Mohanpur, West Bengal, 741252, India.
| | - Arpana Verma
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Kolkata, West Bengal, 700091, India
| | - Troyee Das
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Kolkata, West Bengal, 700091, India
| | - Byapti Ghosh
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Kolkata, West Bengal, 700091, India
| | - Zhumur Ghosh
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
2
|
Chen Z, Xu J, Hu P, Du W, Chen J, Zhang X, Zhou W, Gao J, Zhang Y, Dai B, Nie G, Hu J, Zhou L, Xu S, Chan H, Cheung W, Ruan Y, Qin L. Defective Cystic Fibrosis Transmembrane Conductance Regulator Accelerates Skeletal Muscle Aging by Impairing Autophagy/Myogenesis. J Cachexia Sarcopenia Muscle 2025; 16:e13708. [PMID: 39887939 PMCID: PMC11780116 DOI: 10.1002/jcsm.13708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/20/2024] [Accepted: 12/08/2024] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Regenerative capacity of skeletal muscles decreases with age. Deficiency in cystic fibrosis transmembrane conductance regulator (CFTR) is associated with skeletal muscle weakness as well as epithelial cell senescence. However, whether and how CFTR plays a role in skeletal muscle regeneration and aging were unclear. METHODS Vastus lateralis biopsy samples from male and female human subjects (n = 23) of 7- to 86-year-old and gastrocnemii tissues from mice of 4- to 29-month-old were examined for CFTR expression. Skeletal muscle tissues or cultured myoblasts from mice carrying CFTR mutation (DF508) at 4- to 18-month-old were used for assessment of muscle mass, contractile force and regenerative capacity as well as myogenic and autophagy signalling. Overexpression of LC3-β, an autophagy mediator, was conducted to reverse myogenic defects in DF508 myoblasts. Adenoviruses containing CFTR gene or pharmaceuticals that enhance CFTR (VX809) were locally injected into the gastrocnemius or femoris quadricep to rescue age-related skeletal muscle defects in mice. RESULTS mRNA levels of CFTR in human vastus lateralis exhibited significantly negative correlations with age (r = -0.87 in males and -0.62 in females, p < 0.05). Gastrocnemius mRNA level of CFTR decreased by 77.7 ± 4.6% in 29-month-old wild-type mice compared to the 4-month-old. At 18-month-old, DF508 mice showed significantly reduced lean mass (by 35.6%), lower specific twitch force of the gastrocnemius (by 46.2%), decrease in fast/slow-twitch muscle isoform ratio as well as downregulation of myogenic (e.g., MYOD and MYOG) or autophagy/mitophagy (e.g., LC3-β) genes, compared to age-matched wild-types. Post-injury gastrocnemius regeneration was found impaired in DF508 mice. Myoblast cultures from DF508 mice showed defective myogenic differentiation, which was reversed by overexpressing LC3-β. In aged (> 15-month-old) mice, overexpressing CFTR or VX809 restored the expression of autophagy or myogenic genes, increased mitochondrial LC3-β level and improved skeletal muscle mass and function. CONCLUSION Age-related reduction in skeletal muscle expression of CFTR impairs autophagy and myogenesis, exacerbating skeletal muscle aging. Enhancing CFTR might be a potential treatment strategy for age-related skeletal muscle disorders.
Collapse
Affiliation(s)
- Ziyi Chen
- Musculoskeletal Research Laboratory, Department of Orthopedics & TraumatologyThe Chinese University of Hong KongHong KongChina
- Department of Biomedical Engineering, Faculty of EngineeringThe Hong Kong Polytechnic UniversityHong KongChina
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics & TraumatologyThe Chinese University of Hong KongHong KongChina
| | - Peijie Hu
- Department of Biomedical Engineering, Faculty of EngineeringThe Hong Kong Polytechnic UniversityHong KongChina
| | - Wanting Du
- Department of Biomedical Engineering, Faculty of EngineeringThe Hong Kong Polytechnic UniversityHong KongChina
| | - Junjiang Chen
- Department of Biomedical Engineering, Faculty of EngineeringThe Hong Kong Polytechnic UniversityHong KongChina
| | - Xiaotian Zhang
- Department of Biomedical Engineering, Faculty of EngineeringThe Hong Kong Polytechnic UniversityHong KongChina
| | - Wei Zhou
- State Key Laboratory of Respiratory Disease for Allergy Shenzhen Key Laboratory of Allergy & Immunology School of MedicineShenzhen UniversityShenzhenChina
| | - Jiayang Gao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongHong KongChina
| | - Yuantao Zhang
- Musculoskeletal Research Laboratory, Department of Orthopedics & TraumatologyThe Chinese University of Hong KongHong KongChina
| | - Bingyang Dai
- Musculoskeletal Research Laboratory, Department of Orthopedics & TraumatologyThe Chinese University of Hong KongHong KongChina
| | - Guangshuai Nie
- Orthopaedic Research Centre, Department of OrthopaedicsThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Jun Hu
- Orthopaedic Research Centre, Department of OrthopaedicsThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Liangbin Zhou
- Musculoskeletal Research Laboratory, Department of Orthopedics & TraumatologyThe Chinese University of Hong KongHong KongChina
| | - Shunxiang Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics & TraumatologyThe Chinese University of Hong KongHong KongChina
| | - Hisao Chang Chan
- Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of MedicineThe Chinese University of Hong KongHong KongChina
| | - Wing‐hoi Cheung
- Musculoskeletal Research Laboratory, Department of Orthopedics & TraumatologyThe Chinese University of Hong KongHong KongChina
| | - Ye Chun Ruan
- Department of Biomedical Engineering, Faculty of EngineeringThe Hong Kong Polytechnic UniversityHong KongChina
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopedics & TraumatologyThe Chinese University of Hong KongHong KongChina
| |
Collapse
|
3
|
Ribeiro JC, Rodrigues BC, Bernardino RL, Alves MG, Oliveira PF. The interactome of cystic fibrosis transmembrane conductance regulator and its role in male fertility: A critical review. J Cell Physiol 2024; 239:e31422. [PMID: 39324358 DOI: 10.1002/jcp.31422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/27/2024]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic adenosine monophosphate (cAMP)-regulated chloride and bicarbonate ion channel found in many human cells. Its unique biochemical characteristics and role as a member of the adenosine triphosphate (ATP)-binding cassette transporters superfamily are pivotal for the transport of several substrates across cellular membranes. CFTR is known to interact, physically and functionally, with several other cellular proteins. Hence, its properties are essential for moving various substances across cell membranes and ensuring correct cell functioning. Genetic mutations or environmental factors may disrupt CFTR's function resulting in different possible phenotypes due to gene variations that affect not only CFTR's function, localization, and processing within cells, but also those of its interactors. This has been reported as an underlying cause of various diseases, including cystic fibrosis. The severe clinical implications of cystic fibrosis have driven intense research into the role of CFTR in lung function but its significance to fertility, particularly in men, has been comparatively understudied. However, ongoing and more recent research into CFTR and its interacting proteins in the testis or specific testicular cells is beginning to shed light on this field. Herein, we provide a comprehensive and up-to-date overview of the CFTR, its interactome, and its crucial role in male reproduction, highlighting recent discoveries and advancements in understanding the molecular mechanisms involved. The comprehension of these complex interactions may pave the way for potential therapeutic approaches to improve fertility of men suffering from alterations in the function of CFTR.
Collapse
Grants
- This research was funded by "Fundação para a Ciência e a Tecnologia"-FCT to UMIB (UIDB/00215/2020, and UIDP/00215/2020), ITR-Laboratory for Integrative and Translational Research in Population Health (LA/P/0064/2020) and the post-graduation students João C. Ribeiro (UI/BD/150749/2020). The work was co-funded by FEDER through the COMPETE/QREN, FSE/POPH and POCI-COMPETE 2020 (POCI-01-0145-FEDER-007491) funds.
- Pedro F. Oliveira is funded by national funds through FCT-Fundação para a Ciência e a Tecnologia, I.P., under the Scientific Employment Stimulus-Institutional Call-reference CEEC-INST/00026/2018.
- This work also received support and help from FCT/MCTES to LAQV-REQUIMTE (LA/P/0008/202 - DOI 10.54499/LA/P/0008/2020; UIDP/50006/2020 - DOI 10.54499/UIDP/50006/2020; and UIDB/50006/2020 - DOI 10.54499/UIDB/50006/2020) and to iBiMed (UIDB/04501/2020 - DOI 10.54499/UIDB/04501/2020 and UIDP/04501/2020 - DOI 10.54499/UIDP/04501/2020), through national funds
- This research was funded by "Fundação para a Ciência e a Tecnologia"-FCT to UMIB (UIDB/00215/2020, and UIDP/00215/2020), ITR-Laboratory for Integrative and Translational Research in Population Health (LA/P/0064/2020) and the post-graduation students João C. Ribeiro (UI/BD/150749/2020). The work was co-funded by FEDER through the COMPETE/QREN, FSE/POPH and POCI-COMPETE 2020 (POCI-01-0145-FEDER-007491) funds. Pedro F. Oliveira is funded by national funds through FCT-Fundação para a Ciência e a Tecnologia, I.P., under the Scientific Employment Stimulus-Institutional Call-reference CEEC-INST/00026/2018. This work also received support and help from FCT/MCTES to LAQV-REQUIMTE (LA/P/0008/202 - DOI 10.54499/LA/P/0008/2020; UIDP/50006/2020 - DOI 10.54499/UIDP/50006/2020; and UIDB/50006/2020 - DOI 10.54499/UIDB/50006/2020) and to iBiMed (UIDB/04501/2020 - DOI 10.54499/UIDB/04501/2020 and UIDP/04501/2020 - DOI 10.54499/UIDP/04501/2020), through national funds
Collapse
Affiliation(s)
- João C Ribeiro
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Bernardo C Rodrigues
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Raquel L Bernardino
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
| | - Marco G Alves
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), Aveiro, Portugal
| | - Pedro F Oliveira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
4
|
Miravitlles M, Criner GJ, Mall MA, Rowe SM, Vogelmeier CF, Hederer B, Schoenberger M, Altman P. Potential systemic effects of acquired CFTR dysfunction in COPD. Respir Med 2024; 221:107499. [PMID: 38104786 DOI: 10.1016/j.rmed.2023.107499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/25/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation, respiratory symptoms, inflammation of the airways, and systemic manifestations of the disease. Genetic susceptibility and environmental factors are important in the development of the disease, particularly exposure to cigarette smoke which is the most notable risk factor. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene are the cause of cystic fibrosis (CF), which shares several pathophysiological pulmonary features with COPD, including airway obstruction, chronic airway inflammation and bacterial colonization; in addition, both diseases also present systemic defects leading to comorbidities such as pancreatic, gastrointestinal, and bone-related diseases. In patients with COPD, systemic CFTR dysfunction can be acquired by cigarette smoking, inflammation, and infection. This dysfunction is, on average, about half of that found in CF. Herein we review the literature focusing on acquired CFTR dysfunction and the potential role in the pathogenesis of comorbidities associated with COPD and chronic bronchitis.
Collapse
Affiliation(s)
- Marc Miravitlles
- Pneumology Department Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Campus, Barcelona, Spain.
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Berlin Institute of Health at the Charité - Universitätsmedizin Berlin, Berlin, Germany; German Centre for Lung Research, Berlin, Germany
| | - Steven M Rowe
- Univeristy of Alabama at Birmingham, Birmingham, USA
| | - Claus F Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, University Hospital Marburg UKGM, German Centre for Lung Research (DZL), Marburg, Germany
| | | | | | - Pablo Altman
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| |
Collapse
|
5
|
Cordero-Martínez J, Jimenez-Gutierrez GE, Aguirre-Alvarado C, Alacántara-Farfán V, Chamorro-Cevallos G, Roa-Espitia AL, Hernández-González EO, Rodríguez-Páez L. Participation of signaling proteins in sperm hyperactivation. Syst Biol Reprod Med 2022; 68:315-330. [DOI: 10.1080/19396368.2022.2122761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Joaquín Cordero-Martínez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | | | - Charmina Aguirre-Alvarado
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
- Unidad de Investigación Médica en Inmunología e Infectología Centro Médico Nacional La Raza, IMSS, Ciudad de México, Mexico
| | - Verónica Alacántara-Farfán
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Germán Chamorro-Cevallos
- Laboratorio de Toxicología Preclínica Departamento de Farmacia Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Ana L. Roa-Espitia
- Departamento de Biología Celular Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional, México City, Mexico
| | - Enrique O. Hernández-González
- Departamento de Biología Celular Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional, México City, Mexico
| | - Lorena Rodríguez-Páez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
6
|
The number of the intraepithelial T cells correlate with the proliferation index in human bulbourethral gland epithelium. Heliyon 2022; 8:e11658. [DOI: 10.1016/j.heliyon.2022.e11658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 04/25/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
|
7
|
Dong S, Chen C, Zhang J, Gao Y, Zeng X, Zhang X. Testicular aging, male fertility and beyond. Front Endocrinol (Lausanne) 2022; 13:1012119. [PMID: 36313743 PMCID: PMC9606211 DOI: 10.3389/fendo.2022.1012119] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/26/2022] [Indexed: 11/15/2022] Open
Abstract
Normal spermatogenesis and sperm function are crucial for male fertility. The effects of healthy testicular aging and testicular premature aging on spermatogenesis, sperm function, and the spermatogenesis microenvironment cannot be ignored. Compared with younger men, the testis of older men tends to have disturbed spermatogenic processes, sperm abnormalities, sperm dysfunction, and impaired Sertoli and Leydig cells, which ultimately results in male infertility. Various exogenous and endogenous factors also contribute to pathological testicular premature aging, such as adverse environmental stressors and gene mutations. Mechanistically, Y-chromosomal microdeletions, increase in telomere length and oxidative stress, accumulation of DNA damage with decreased repair ability, alterations in epigenetic modifications, miRNA and lncRNA expression abnormalities, have been associated with impaired male fertility due to aging. In recent years, the key molecules and signaling pathways that regulate testicular aging and premature aging have been identified, thereby providing new strategies for diagnosis and treatment. This review provides a comprehensive overview of the underlying mechanisms of aging on spermatogenesis. Furthermore, potential rescue measures for reproductive aging have been discussed. Finally, the inadequacy of testicular aging research and future directions for research have been envisaged to aid in the diagnosis and treatment of testicular aging and premature aging.
Collapse
Affiliation(s)
- Shijue Dong
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Chen Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Jiali Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Yuan Gao
- Laboratory Animal Center, Nantong University, Nantong, China
| | - Xuhui Zeng
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| |
Collapse
|
8
|
Shteinberg M, Taylor-Cousar JL, Durieu I, Cohen-Cymberknoh M. "Fertility and Pregnancy in Cystic fibrosis". Chest 2021; 160:2051-2060. [PMID: 34284004 DOI: 10.1016/j.chest.2021.07.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/22/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
People with Cystic fibrosis (pwCF) have experienced increased survival and wellbeing in recent decades, such that more than half of those living with CF are adults. Consequently, sexual and reproductive health is increasingly important for pwCF as many are considering parenthood. Most men and some women with CF (wwCF) will have reduced fertility, which in both sexes is multifactorial. However, unplanned pregnancies in women are not rare, and contraception and its interaction with CF complications need to be addressed by the CF team. Reduced fertility may be overcome in most pwCF through use of assisted reproductive technologies; however, the risk of having offspring with CF must be considered. Most wwCF will have normal pregnancies, but premature birth is common especially in the setting of reduced lung function and CF related diabetes (CFRD); optimization of treatment is recommended during pregnancy planning. Parenting imposes an increased burden on pwCF, with the challenges of caring for the newborn, postpartum physiologic changes and maintaining CF treatments. Most drugs used to treat CF are considered safe in pregnancy and lactation, but exceptions need to be acknowledged, including the limited data regarding safety of CF transmembrane conductance regulator (CFTR) modulators during conception, pregnancy, and lactation. As most pwCF are eligible for highly effective CFTR modulators, fertility, contraception, and pregnancy in people with CF is changing. Prospective studies regarding these issues in people treated with CFTR modulators are paramount to provide evidence-based guidance for management in the current era of CF care.
Collapse
Affiliation(s)
- Michal Shteinberg
- Pulmonology Institute and CF Center, Carmel Medical Center and the Technion-Israel Institute of Technology, Haifa, Israel.
| | - Jennifer L Taylor-Cousar
- Divisions of Pulmonary, Critical Care and Sleep Medicine and Pediatric Pulmonary Medicine, National Jewish Health, Denver, CO
| | - Isabelle Durieu
- RESearch on HealthcAre PErformance (RESHAPE), Lyon University, Lyon, and Hospices Civils de Lyon, Lyon Sud Hospital, Cystic Fibrosis Center, Lyon, France
| | - Malena Cohen-Cymberknoh
- Pediatric Pulmonology Unit and Cystic Fibrosis Center, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| |
Collapse
|
9
|
Wu L, Ding Y, Han S, Wang Y. Role of Exosomes in the Exchange of Spermatozoa after Leaving the Seminiferous Tubule: A Review. Curr Drug Metab 2021; 21:330-338. [PMID: 32433001 DOI: 10.2174/1389200221666200520091511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/05/2020] [Accepted: 01/15/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Exosomes are extracellular vesicles (EVs) released from cells upon fusion of an intermediate endocytic compartment with the plasma membrane. They refer to the intraluminal vesicles released from the fusion of multivesicular bodies with the plasma membrane. The contents and number of exosomes are related to diseases such as metabolic diseases, cancer and inflammatory diseases. Exosomes have been used in neurological research as a drug delivery tool and also as biomarkers for diseases. Recently, exosomes were observed in the seminal plasma of the one who is asthenozoospermia, which can affect sperm motility and capacitation. OBJECTIVE The main objective of this review is to deeply discuss the role of exosomes in spermatozoa after leaving the seminiferous tubule. METHODS We conducted an extensive search of the literature available on relationships between exosomes and exosomes in spermatozoa on the bibliographic database. CONCLUSION This review thoroughly discussed the role that exosomes play in the exchange of spermatozoa after leaving the seminiferous tubule and its potential as a drug delivery tool and biomarkers for diseases as well.
Collapse
Affiliation(s)
- Luming Wu
- Gansu Key Laboratory of Reproductive Medicine and Embryo,The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuan Ding
- Gansu Key Laboratory of Reproductive Medicine and Embryo,The First Hospital of Lanzhou University, Lanzhou, China
| | - Shiqiang Han
- Linxia Hui Autonomous Prefecture Maternity and Childcare Hospital, Linxia, China
| | - Yiqing Wang
- Gansu Key Laboratory of Reproductive Medicine and Embryo,The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
10
|
Mahdavinezhad F, Gharaei R, Farmani AR, Hashemi F, Kouhestani M, Amidi F. The Potential Relationship Between Different Human Female Reproductive Disorders and Sperm Quality in Female Genital Tract. Reprod Sci 2021; 29:695-710. [PMID: 33852138 DOI: 10.1007/s43032-021-00520-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 02/25/2021] [Indexed: 11/26/2022]
Abstract
Spermatozoa should travel throughout the female reproductive tract to reach its ultimate goal, fertilization of the oocyte. At the ejaculation moment, millions of sperm within a few milliliters of the ejaculate are deposited at the cranial segment of vagina and make their journey to the fertilization site. This is done by means of various factors, such as sperm motility, the uterine and fallopian tubes contractility, and the ciliary movement of the lining cells. During this migration, spermatozoa interact with the female microenvironment both physically and molecularly. In this regard, the quality of the environmental conditions may affect this interaction. Therefore, some alterations in women's genital tract microenvironment, such as conditions that occur in female reproductive disorders, may have detrimental effects on sperm reproductive function. In this review, human sperm migration through the female tract is described, and the potential effects of different reproductive disorders at reproductive organs, such as vagina, uterine cervix, uterus, fallopian tubes, and ovary on sperm survival and quality, are also argued. The understanding of those conditions that may impair sperm fertility in the female genital tract can provide a more accurate diagnosis of the causes of infertility in couples. This can ultimately lead to the discovery of effective treatment approaches.
Collapse
Affiliation(s)
- Forough Mahdavinezhad
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Roghaye Gharaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Farmani
- Department of Tissue Engineering, Faculty of Advanced Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Hashemi
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Kouhestani
- Department of Tissue Engineering, Faculty of Advanced Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
McBride JA, Kohn TP, Mazur DJ, Lipshultz LI, Coward RM. Sperm retrieval and intracytoplasmic sperm injection outcomes in men with cystic fibrosis disease versus congenital bilateral absence of the vas deferens. Asian J Androl 2021; 23:140-145. [PMID: 32930103 PMCID: PMC7991824 DOI: 10.4103/aja.aja_48_20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent data suggest that cystic fibrosis transmembrane conductance regulator (CFTR) gene alterations negatively impact male fertility beyond obstruction. We sought to compare gene alterations, sperm retrieval rates, and intracytoplasmic sperm injection (ICSI) outcomes among men with cystic fibrosis (CF) disease and congenital bilateral absence of the vas deferens (CBAVD) only. We retrospectively evaluated all men who underwent surgical sperm retrieval at two academic, high-volume andrology centers from 2010 to 2018. Only men with documented CFTR alterations and obstructive azoospermia from either CBAVD or CF were included. Differences between groups for CFTR abnormality, sperm retrieval, and ICSI outcomes were statistically analyzed. Overall,39 patients were included with 10 in the CF and 29 in the CBAVD groups. Surgical sperm retrieval rates were significantly lower in the CF group for sperm concentration (14.8 × 106 ml-1vs 61.4 × 106 m-1, P = 0.02) and total motile sperm count (2.9 million vs 11.4 million, P = 0.01). This difference was only predicted by homozygous delta F508 CFTR mutations (P < 0.05). The CF group also demonstrated a significantly higher rate of rescue testicular sperm extraction (70.0% vs 27.6%, P < 0.03) and lower fertilization rate with ICSI (32.5% vs 68.9%, P < 0.01). In conclusion, those with CF demonstrated lower sperm quality, greater difficulty with sperm retrieval, and worse ICSI outcomes compared with CBAVD-only patients. Homozygous delta F508 CFTR mutations appear to significantly impair spermatogenesis and sperm function.
Collapse
Affiliation(s)
- J Abram McBride
- Scott Department of Urology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Taylor P Kohn
- Scott Department of Urology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel J Mazur
- Scott Department of Urology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Larry I Lipshultz
- Scott Department of Urology, Baylor College of Medicine, Houston, TX 77030, USA
| | - R Matthew Coward
- Department of Urology, UNC School of Medicine, Chapel Hill, NC 27599, USA.,UNC Fertility, Raleigh, NC 27617, USA
| |
Collapse
|
12
|
Cui X, Wu X, Li Q, Jing X. Mutations of the cystic fibrosis transmembrane conductance regulator gene in males with congenital bilateral absence of the vas deferens: Reproductive implications and genetic counseling (Review). Mol Med Rep 2020; 22:3587-3596. [PMID: 33000223 PMCID: PMC7533508 DOI: 10.3892/mmr.2020.11456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/21/2020] [Indexed: 11/05/2022] Open
Abstract
Congenital bilateral absence of the vas deferens (CBAVD) is predominantly caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CBAVD accounts for 2–6% of male infertility cases and up to 25% of cases of obstructive azoospermia. With the use of pre-implantation genetic diagnosis, testicular or epididymal sperm aspiration, intracytoplasmic sperm injection and in vitro fertilization, patients affected by CBAVD are able to have children who do not carry CFTR gene mutations, thereby preventing disease. Therefore, genetic counseling should be provided to couples receiving assisted reproductive techniques to discuss the impact of CFTR gene mutations on reproductive health. In the present article, the current literature concerning the CFTR gene and its association with CBAVD is reviewed.
Collapse
Affiliation(s)
- Xiangrong Cui
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women's Health Center of Shanxi, Taiyuan, Shanxi 030001, P.R. China
| | - Xueqing Wu
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women's Health Center of Shanxi, Taiyuan, Shanxi 030001, P.R. China
| | - Qiang Li
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women's Health Center of Shanxi, Taiyuan, Shanxi 030001, P.R. China
| | - Xuan Jing
- Clinical Laboratory, Shanxi Province People's Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
13
|
Matamoros-Volante A, Treviño CL. Capacitation-associated alkalization in human sperm is differentially controlled at the subcellular level. J Cell Sci 2020; 133:jcs238816. [PMID: 31932506 DOI: 10.1242/jcs.238816] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/20/2019] [Indexed: 12/28/2022] Open
Abstract
Capacitation in mammalian sperm involves the accurate balance of intracellular pH (pHi), but the mechanisms controlling this process are not fully understood, particularly regarding the spatiotemporal regulation of the proteins involved in pHi modulation. Here, we employed an image-based flow cytometry technique combined with pharmacological approaches to study pHi dynamics at the subcellular level during capacitation. We found that, upon capacitation induction, sperm cells undergo intracellular alkalization in the head and principal piece regions. The observed localized pHi increases require the initial uptake of HCO3-, which is mediated by several proteins acting consistently with their subcellular localization. Hv1 proton channel (also known as HVCN1) and cAMP-activated protein kinase (protein kinase A, PKA) antagonists impair alkalization mainly in the principal piece. Na+/HCO3- cotransporter (NBC) and cystic fibrosis transmembrane regulator (CFTR) antagonists impair alkalization only mildly, predominantly in the head. Motility measurements indicate that inhibition of alkalization in the principal piece prevents the development of hyperactivated motility. Altogether, our findings shed light on the complex control mechanisms of pHi and underscore their importance during human sperm capacitation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Arturo Matamoros-Volante
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos 62210, México
| | - Claudia L Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos 62210, México
| |
Collapse
|
14
|
Lee D, Hong JH. The Fundamental Role of Bicarbonate Transporters and Associated Carbonic Anhydrase Enzymes in Maintaining Ion and pH Homeostasis in Non-Secretory Organs. Int J Mol Sci 2020; 21:ijms21010339. [PMID: 31947992 PMCID: PMC6981687 DOI: 10.3390/ijms21010339] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/18/2022] Open
Abstract
The bicarbonate ion has a fundamental role in vital systems. Impaired bicarbonate transport leads to various diseases, including immune disorders, cystic fibrosis, tumorigenesis, kidney diseases, brain dysfunction, tooth fracture, ischemic reperfusion injury, hypertension, impaired reproductive system, and systemic acidosis. Carbonic anhydrases are involved in the mechanism of bicarbonate movement and consist of complex of bicarbonate transport systems including bicarbonate transporters. This review focused on the convergent regulation of ion homeostasis through various ion transporters including bicarbonate transporters, their regulatory enzymes, such as carbonic anhydrases, pH regulatory role, and the expression pattern of ion transporters in non-secretory systems throughout the body. Understanding the correlation between these systems will be helpful in order to obtain new insights and design potential therapeutic strategies for the treatment of pH-related disorders. In this review, we have discussed the broad prospects and challenges that remain in elucidation of bicarbonate-transport-related biological and developmental systems.
Collapse
Affiliation(s)
| | - Jeong Hee Hong
- Correspondence: ; Tel.: +82-32-899-6682; Fax: +82-32-899-6039
| |
Collapse
|
15
|
Puga Molina LC, Pinto NA, Torres NI, González-Cota AL, Luque GM, Balestrini PA, Romarowski A, Krapf D, Santi CM, Treviño CL, Darszon A, Buffone MG. CFTR/ENaC-dependent regulation of membrane potential during human sperm capacitation is initiated by bicarbonate uptake through NBC. J Biol Chem 2018; 293:9924-9936. [PMID: 29743243 DOI: 10.1074/jbc.ra118.003166] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/29/2018] [Indexed: 12/16/2022] Open
Abstract
To fertilize an egg, sperm must reside in the female reproductive tract to undergo several maturational changes that are collectively referred to as capacitation. From a molecular point of view, the HCO3--dependent activation of the atypical soluble adenylyl cyclase (ADCY10) is one of the first events that occurs during capacitation and leads to the subsequent cAMP-dependent activation of protein kinase A (PKA). Capacitation is also accompanied by hyperpolarization of the sperm plasma membrane. We previously reported that PKA activation is necessary for CFTR (cystic fibrosis transmembrane conductance regulator channel) activity and for the modulation of membrane potential (Em). However, the main HCO3- transporters involved in the initial transport and the PKA-dependent Em changes are not well known nor characterized. Here, we analyzed how the activity of CFTR regulates Em during capacitation and examined its relationship with an electrogenic Na+/HCO3- cotransporter (NBC) and epithelial Na+ channels (ENaCs). We observed that inhibition of both CFTR and NBC decreased HCO3- influx, resulting in lower PKA activity, and that events downstream of the cAMP activation of PKA are essential for the regulation of Em. Addition of a permeable cAMP analog partially rescued the inhibitory effects caused by these inhibitors. HCO3- also produced a rapid membrane hyperpolarization mediated by ENaC channels, which contribute to the regulation of Em during capacitation. Altogether, we demonstrate for the first time, that NBC cotransporters and ENaC channels are essential in the CFTR-dependent activation of the cAMP/PKA signaling pathway and Em regulation during human sperm capacitation.
Collapse
Affiliation(s)
- Lis C Puga Molina
- From the Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1425FQB Buenos Aires, Argentina
| | - Nicolás A Pinto
- From the Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1425FQB Buenos Aires, Argentina
| | - Nicolás I Torres
- From the Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1425FQB Buenos Aires, Argentina
| | - Ana L González-Cota
- the Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Guillermina M Luque
- From the Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1425FQB Buenos Aires, Argentina
| | - Paula A Balestrini
- From the Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1425FQB Buenos Aires, Argentina
| | - Ana Romarowski
- From the Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1425FQB Buenos Aires, Argentina
| | - Dario Krapf
- the Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario 2000, Argentina, and
| | - Celia M Santi
- the Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Claudia L Treviño
- the Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, 62210 Morelos, México
| | - Alberto Darszon
- the Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, 62210 Morelos, México
| | - Mariano G Buffone
- From the Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1425FQB Buenos Aires, Argentina,
| |
Collapse
|
16
|
Li X, Fok KL, Guo J, Wang Y, Liu Z, Chen Z, Wang C, Ruan YC, Yu SS, Zhao H, Wu J, Jiang X, Chan HC. Retinoic acid promotes stem cell differentiation and embryonic development by transcriptionally activating CFTR. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:605-615. [DOI: 10.1016/j.bbamcr.2018.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/03/2018] [Accepted: 01/07/2018] [Indexed: 01/11/2023]
|
17
|
da Silveira JC, de Ávila ACFCM, Garrett HL, Bruemmer JE, Winger QA, Bouma GJ. Cell-secreted vesicles containing microRNAs as regulators of gamete maturation. J Endocrinol 2018; 236:R15-R27. [PMID: 28870888 DOI: 10.1530/joe-17-0200] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/04/2017] [Indexed: 12/21/2022]
Abstract
Mammalian gamete maturation requires extensive signaling between germ cells and their surrounding somatic cells. In the ovary, theca cells, mural granulosa cells, cumulus cells and the oocyte all secrete factors throughout follicle growth and maturation that are critical for ovulation of a high-quality oocyte with the competence to develop into an embryo. Similarly, maturation of sperm occurs as it transits the epididymis during which epididymal epithelium and sperm exchange secretory factors that are required for sperm to gain motility and fertility. Recent studies in a variety of species have uncovered the presence of cell-secreted vesicles in follicular fluid (microvesicles and exosomes) and epididymal fluid (epididymosomes). Moreover, these cell-secreted vesicles contain small non-coding regulatory RNAs called microRNAs, which can be shuttled between maturing gametes and surrounding somatic cells. Although little is known about the exact mechanism of how microRNAs are loaded into these cell-secreted vesicles or are transferred and modulate gene expression and function in gametes, recent studies clearly suggest that cell-secreted vesicle microRNAs play a role in oocyte and sperm maturation. Moreover, a role for cell-secreted vesicular microRNAs in gamete maturation provides for novel opportunities to modulate and discover new diagnostic markers associated with male or female fertility. This manuscript provides an overview of cell-secreted vesicles in ovarian follicular fluid and epididymal fluid and microRNAs and discusses recent discoveries on the potential function of cell-secreted vesicles as carriers of microRNAs in oocyte and sperm maturation.
Collapse
Affiliation(s)
- Juliano C da Silveira
- Department of Veterinary MedicineFaculty of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga, Sao Paulo, Brazil
| | - Ana Clara F C M de Ávila
- Department of Veterinary MedicineFaculty of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga, Sao Paulo, Brazil
| | - Hannah L Garrett
- Department of Biomedical SciencesCollege of Veterinary and Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - Jason E Bruemmer
- Department of Biomedical SciencesCollege of Veterinary and Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - Quinton A Winger
- Department of Biomedical SciencesCollege of Veterinary and Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - Gerrit J Bouma
- Department of Biomedical SciencesCollege of Veterinary and Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
18
|
|
19
|
Puga Molina LC, Pinto NA, Torres Rodríguez P, Romarowski A, Vicens Sanchez A, Visconti PE, Darszon A, Treviño CL, Buffone MG. Essential Role of CFTR in PKA-Dependent Phosphorylation, Alkalinization, and Hyperpolarization During Human Sperm Capacitation. J Cell Physiol 2016; 232:1404-1414. [PMID: 27714810 DOI: 10.1002/jcp.25634] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/05/2016] [Indexed: 12/17/2022]
Abstract
Mammalian sperm require to spend a limited period of time in the female reproductive tract to become competent to fertilize in a process called capacitation. It is well established that HCO3- is essential for capacitation because it activates the atypical soluble adenylate cyclase ADCY10 leading to cAMP production, and promotes alkalinization of cytoplasm, and membrane hyperpolarization. However, how HCO3- is transported into the sperm is not well understood. There is evidence that CFTR activity is involved in the human sperm capacitation but how this channel is integrated in the complex signaling cascades associated with this process remains largely unknown. In the present work, we have analyzed the extent to which CFTR regulates different events in human sperm capacitation. We observed that inhibition of CFTR affects HCO3- -entrance dependent events resulting in lower PKA activity. CFTR inhibition also affected cAMP/PKA-downstream events such as the increase in tyrosine phosphorylation, hyperactivated motility, and acrosome reaction. In addition, we demonstrated for the first time, that CFTR and PKA activity are essential for the regulation of intracellular pH, and membrane potential in human sperm. Addition of permeable cAMP partially recovered all the PKA-dependent events altered in the presence of inh-172 which is consistent with a role of CFTR upstream of PKA activation. J. Cell. Physiol. 232: 1404-1414, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lis C Puga Molina
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Nicolás A Pinto
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Paulina Torres Rodríguez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Ana Romarowski
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Alberto Vicens Sanchez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Pablo E Visconti
- Department of Veterinary and Animal Science, Paige Labs, University of Massachusetts, Amherst, Massachusetts
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Claudia L Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
20
|
Sengupta P, Dutta S, Krajewska-Kulak E. The Disappearing Sperms: Analysis of Reports Published Between 1980 and 2015. Am J Mens Health 2016; 11:1279-1304. [PMID: 27099345 DOI: 10.1177/1557988316643383] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Reports regarding the changes in sperm concentration in different counties of the world are inconsistent. Furthermore, the reports that sprung up from specific epidemiological and experimental examinations did not include data of prior studies or geographical variations. The current study, following a previous report of massive fall in semen volume over the past 33 years, attempts to delineate the trend of altering sperm concentrations and factors responsible for this by reviewing article published from 1980 to July 2015 with geographic differences. The current study identified an overall 57% diminution in mean sperm concentration over the past 35 years ( r = -.313, p = .0002), which, when analyzed for each geographical region, identified a significant decline in North America, Europe, Asia, and Africa. An increasing trend of sperm concentration was identified only in Australia. The association of male age with such a trend ( R2 = .979) is reported. The authors also correlated male fertility with sperm concentration. Thus, this comprehensive, evidence-based literature review aims to concisely and systematically present the available data on sperm concentration from 1980 to 2015, as well as to statistically analyze the same and correlate male health with the declining pattern of sperm count in a single scientific review to serve the scientific research zone related to reproductive health. It points to the threat of male infertility in times ahead.
Collapse
Affiliation(s)
| | - Sulagna Dutta
- 2 Ex-guest Teacher, Serampore College, University of Calcutta, Kolkata, West Bengal, India
| | | |
Collapse
|
21
|
Sengupta P. Reviewing reports of semen volume and male aging of last 33 years: From 1980 through 2013. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2015. [DOI: 10.1016/j.apjr.2015.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
22
|
Johnson SL, Dunleavy J, Gemmell NJ, Nakagawa S. Consistent age-dependent declines in human semen quality: a systematic review and meta-analysis. Ageing Res Rev 2015; 19:22-33. [PMID: 25462195 DOI: 10.1016/j.arr.2014.10.007] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 12/12/2022]
Abstract
Reduced fertility typically occurs among women in their late 30s, but increasing evidence indicates that advanced paternal age is associated with changes in reproduction as well. Numerous studies have investigated age-based declines in semen traits, but the impact of paternal age on semen parameter values remains inconclusive. Using data from 90 studies (93,839 subjects), we conducted a systematic review and meta-analysis to quantify the effect of male age on seven ejaculate traits (semen volume, sperm concentration, total sperm count, morphology, total motility, progressive motility and DNA fragmentation). Age-associated declines in semen volume, percentage motility, progressive motility, normal morphology and unfragmented cells were statistically significant and results generally seemed to be robust against confounding factors. Unexpectedly, sperm concentration did not decline with increasing male age, even though we found that sperm concentration declined over time. Our findings indicate that male age needs more recognition as a potential contributor to the negative pregnancy outcomes and reduced offspring health associated with delayed first reproduction. We suggest that greater focus on collection of DNA fragmentation and progressive motility in a clinical setting may lead to better patient outcomes during fertility treatments of aging couples.
Collapse
Affiliation(s)
- Sheri L Johnson
- Department of Anatomy, University of Otago, Dunedin 9054, New Zealand; Department of Zoology, University of Otago, Dunedin 9054, New Zealand; Allan Wilson Centre, University of Otago, Dunedin 9054, New Zealand.
| | - Jessica Dunleavy
- Department of Anatomy, University of Otago, Dunedin 9054, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin 9054, New Zealand; Allan Wilson Centre, University of Otago, Dunedin 9054, New Zealand; Gravida: National Centre for Growth and Development, University of Otago, Dunedin 9054, New Zealand
| | - Shinichi Nakagawa
- Department of Zoology, University of Otago, Dunedin 9054, New Zealand; Gravida: National Centre for Growth and Development, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
23
|
Ramasamy R, Lipshultz LI. Cystic fibrosis transmembrane regulator mutation and congenital bilateral absence of the vas deferens: a bad combination for successful intracytoplasmic sperm injection outcomes. Fertil Steril 2014; 101:1246. [PMID: 24636394 DOI: 10.1016/j.fertnstert.2014.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 02/07/2014] [Indexed: 11/24/2022]
|
24
|
Chan HC. Letter from the editor: CFTR and male fertility-Impact beyond cystic fibrosis. SPERMATOGENESIS 2013; 3:e26228. [PMID: 24380037 PMCID: PMC3861173 DOI: 10.4161/spmg.26228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 08/20/2013] [Indexed: 11/19/2022]
Affiliation(s)
- Hsiao Chang Chan
- Epithelial Cell Biology Research Center; School of Biomedical Sciences; Faculty of Medicine; The Chinese University of Hong Kong; Hong Kong, PR China
| |
Collapse
|