1
|
Arya D, Pawar P, Gajbhiye R, Tandon D, Kothari P, Goankar R, Singh D. Status of sperm mitochondrial functions and DNA methylation in infertile men with clinical varicocele before and after treatment. Mol Cell Endocrinol 2025; 595:112393. [PMID: 39481748 DOI: 10.1016/j.mce.2024.112393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Varicocele has been associated with reduced male fertility potential. Treatment modalities for varicocele improve semen parameters, yet more than 50% of cases remain infertile. Varicocele-induced heat and hypoxia stress may affect sperm mitochondrial functions, possibly leading to aberrant epigenetic modifications. This study includes 30 fertile men and 40 infertile men with clinical varicocele. The effect of varicocele treatment (antioxidant supplementation and or varicocelectomy) was evaluated after 3 months of treatment. Mitochondrial membrane potential (MMP) and intracellular reactive oxygen species (iROS) were measured by flow cytometry using JC-1 and DCFDA, respectively. mtDNA copy number and deletions were determined by PCR. DNA methylation was analysed by pyrosequencing. Present investigations suggest that infertile men with varicocele have abnormal semen parameters; significantly low MMP, high iROS, and high mtDNA copy number. Semen parameters were improved in a subset of men of both the treatment modalities; however, it was noted that varicocelectomy helped better in improving sperm parameters compared to antioxidant treatment. Both treatment modalities helped in reducing iROS and mtDNA copy number significantly; however, they were noneffective in improving MMP. Altered DNA methylation at mitochondria D loop and mitochondrial structure and function genes UQCRC2, MIC60, TOM22, and LETM1 (promoter region) were observed in varicocele group. The DNA methylation levels were restored after varicocele treatment; however, the restoration was not consistent at all CpG sites. Both the treatment modalities helped in restoring the altered DNA methylation levels of mitochondrial genes but the restoration is nonhomogeneous across the studied CpG sites.
Collapse
Affiliation(s)
- Deepshikha Arya
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India
| | - Prakash Pawar
- Lokmanya Tilak Municipal General Hospital, Sion, Mumbai, 400022, India
| | - Rahul Gajbhiye
- Clinical Research Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India
| | - Deepti Tandon
- Department of Clinical Research, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India
| | - Priyank Kothari
- Topiwala National Medical College and Bai Yamunabai Laxman Nair Charitable Hospital, Mumbai, 400008, India
| | - Reshma Goankar
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India
| | - Dipty Singh
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Zhao W, Gu N, Liu X, Qing N, Sheng J, Lin X, Huang H. D-Mannose-Mediated metabolic pathways sustain the molecular signatures of sperm function and fertilization. J Adv Res 2024:S2090-1232(24)00614-3. [PMID: 39733858 DOI: 10.1016/j.jare.2024.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 12/31/2024] Open
Abstract
INTRODUCTION Mammalian sperm within a single ejaculate exhibit significant heterogeneity, with only a subset possessing the molecular characteristics required for successful fertilization. Identifying the defining traits of these high-fertility sperm remains an open question. OBJECTIVES To elucidate the molecular markers and mechanisms underlying the fertilization potential of sperm in both mice and humans, with a focus on the role of D-mannose. METHODS Sperm morphology and functionality were analyzed using flow cytometry, biochemical assays, and immunofluorescence. Multi-omics analyses, including proteomics, metabolomics, and lipidomics, were conducted to identify distinct molecular signatures. Pharmacological interventions were employed to validate the role of key pathways, particularly Akt/mTOR signaling. RESULTS Sperm with longer flagella demonstrated enhanced motility, mitochondrial activity, and fertilization potential in both mice and humans. Multi-omics analyses revealed distinct molecular profiles in high-fertility sperm, characterized by specific proteins, lipids, and metabolites. Notably, D-mannose supplementation enhanced sperm motility and fertilization capacity, even in asthenozoospermic sperm, by activating the Akt/mTOR pathway. This effect was not replicated by D-glucose or ATP supplementation. Mechanistically, D-mannose bypassed glycolytic rate-limiting steps, increasing ATP production and promoting mitochondrial and acrosomal integrity. CONCLUSION This study identifies key molecular signatures of fertilization-competent sperm and highlights D-mannose as a novel modulator of sperm quality and function. These findings provide valuable insights into sperm biology and propose innovative therapeutic strategies for treating male infertility and optimizing assisted reproduction technologies.
Collapse
Affiliation(s)
- Wenlong Zhao
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 310008, China; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Nihao Gu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 310008, China
| | - Xueyuan Liu
- Hangzhou Women's Hospital, Hangzhou, Zhejiang 310008, China
| | - Ningxin Qing
- Department of Assisted Reproductive Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201306, China
| | - Jianzhong Sheng
- The Fourth Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310008, China
| | - Xianhua Lin
- Hangzhou Women's Hospital, Hangzhou, Zhejiang 310008, China.
| | - Hefeng Huang
- Women's hospital, Ministry education key laboratory, School of Medicine, Zhejiang University, 310006 China.
| |
Collapse
|
3
|
Contreras-Mellado P, Bravo A, Zambrano F, Sánchez R, Boguen R, Risopatrón J, Merino O, Uribe P. Oxidative Stress Induces Changes in Molecular Markers Associated with Ferroptosis in Human Spermatozoa. World J Mens Health 2024; 42:42.e83. [PMID: 39344120 DOI: 10.5534/wjmh.240085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/28/2024] [Accepted: 06/28/2024] [Indexed: 10/01/2024] Open
Abstract
PURPOSE Ferroptosis is a type of iron-dependent regulated cell death characterized by increased bioavailability of redox-active iron, loss of GPX4 antioxidant capacity, and oxidation of polyunsaturated fatty acid-containing phospholipids mediated by reactive oxygen species (ROS). The aim of this study was to evaluate the effect of oxidative stress induced by arachidonic acid (AA) on ferroptotic cell death in human spermatozoa. MATERIALS AND METHODS Spermatozoa from normozoospermic donors were exposed to AA (5, 25, and 50 µM) for 1 hour at 37 ℃, including an untreated control. Oxidative stress was confirmed by evaluation of cytosolic and mitochondrial ROS production, viability, mitochondrial membrane potential (ΔΨm) and motility. Subsequently, molecular markers of ferroptosis including iron content, levels of GPX4, SLC7A11, ACSL4, IREB2 and lipid peroxidation were evaluated. The analyses were carried out using either flow cytometry, a microplate reader or confocal laser microscopy. RESULTS AA-induced oxidative stress showed increased cytosolic and mitochondrial ROS production accompanied by impairedΔΨm, viability and motility in human spermatozoa. These results were associated with biochemical and molecular markers related to ferroptotic cell death including an increase in iron content in the form of ferrous (Fe2+) ions, SLC7A11, ACSL4, IREB2, a decrease in the level of GPX4, and an increase in the level of lipid peroxidation compared to the untreated control. CONCLUSIONS This study revealed that AA-induced oxidative stress induces cell death with biochemical characteristics of ferroptosis in human spermatozoa, demonstrating another mechanism of alteration of sperm function induced by oxidative stress and could establish new therapeutic objectives to prevent the decrease in sperm quality mediated by oxidative stress.
Collapse
Affiliation(s)
- Pablo Contreras-Mellado
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresources Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
- Ph.D. Program in Sciences Mention Applied Cell and Molecular Biology, Faculty of Agricultural Sciences and Environment, Universidad de La Frontera, Temuco, Chile
| | - Anita Bravo
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresources Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Fabiola Zambrano
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresources Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Raúl Sánchez
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresources Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Rodrigo Boguen
- Department of Diagnostic Processes and Evaluation, Faculty of Health Sciences, Universidad Catolica de Temuco, Temuco, Chile
| | - Jennie Risopatrón
- Center of Excellence of Biotechnology in Reproduction (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Osvaldo Merino
- Center of Excellence of Biotechnology in Reproduction (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Pamela Uribe
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresources Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
4
|
Sanyal D, Arya D, Nishi K, Balasinor N, Singh D. Clinical Utility of Sperm Function Tests in Predicting Male Fertility: A Systematic Review. Reprod Sci 2024; 31:863-882. [PMID: 38012524 DOI: 10.1007/s43032-023-01405-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023]
Abstract
Routine semen analysis provides considerable information regarding sperm parameters; however, it is not solely adequate to predict male fertility potential. In the past two decades, several advance sperm function tests have been developed. The present systematic review intends to assess the clinical utility of available advance sperm function tests in predicting the male fertility potential. A systematic literature search was conducted as per PRISMA guidelines using PubMed, MEDLINE, Google Scholar, and Cochrane Library. Different keywords either singly or in combination were used to retrieve the relevant articles related to sperm function tests, male fertility, and pregnancy outcomes. A total of 5169 articles were obtained, out of which 110 meeting the selection criteria were included in this review. The majorly investigated sperm function tests are hypo-osmotic swelling test, acrosome reaction test, sperm capacitation test, hemizona binding assay, sperm DNA fragmentation test, seminal reactive oxygen species test, mitochondrial dysfunction tests, antisperm antibody test, nuclear chromatin de-condensation (NCD) test, etc. The different advance sperm function tests analyse different aspects of sperm function. Hence, any one test may not be helpful to appropriately predict the male fertility potential. Currently, the unavailability of high-quality clinical data, robust thresholds, complex protocols, high cost, etc., are the limiting factors and prohibiting current sperm function tests to reach the clinics. Further multi-centric research efforts are required to fulfil the existing lacunas and pave the way for these tests to be introduced into the clinics.
Collapse
Affiliation(s)
- Debarati Sanyal
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India
| | - Deepshikha Arya
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India
| | - Kumari Nishi
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India
| | - Nafisa Balasinor
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India.
| | - Dipty Singh
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India.
| |
Collapse
|
5
|
Escada-Rebelo S, Ramalho-Santos J. Oxidative and Nitrosative Stress Detection in Human Sperm Using Fluorescent Probes. Methods Mol Biol 2023; 2566:45-52. [PMID: 36152241 DOI: 10.1007/978-1-0716-2675-7_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As a natural by-product of mitochondrial respiration, reactive oxygen species (ROS) in sperm play a role in promoting fertilization, by intervening in a series of events. Nevertheless, an abnormal and uncounteracted increase in ROS production leads to oxidative stress (OS) which can, ultimately, culminate in cell death. An established relationship between OS and male infertility highlights the importance of an accurate detection method for ROS content that can be easily implemented and reproduced in any andrology lab. More recently, reactive nitrogen species (RNS) production and subsequent nitrosative stress have also been described. Here we describe the use of fluorescent probes, including some that targeted to the mitochondria due to the coupling of a cation (TPP+), in order to assess the levels of different ROS and RNS in human sperm using flow cytometry and/or fluorescent microscopy. This methodology is user friendly and accurate and can be safely applied in research- and/or clinical-based contexts.
Collapse
Affiliation(s)
- Sara Escada-Rebelo
- PhD Programme in Experimental Biology and Biomedicine (BEB), IIIUC- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - João Ramalho-Santos
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
6
|
Escada-Rebelo S, Cristo MI, Ramalho-Santos J, Amaral S. Mitochondria-Targeted Compounds to Assess and Improve Human Sperm Function. Antioxid Redox Signal 2022; 37:451-480. [PMID: 34847742 DOI: 10.1089/ars.2021.0238] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Currently 10%-15% of couples in reproductive age face infertility issues. More importantly, male factor contributes to 50% of these cases (either alone or in combination with female causes). Among various reasons, impaired sperm function is the main cause for male infertility. Furthermore, mitochondrial dysfunction and oxidative stress due to increased reactive oxygen species (ROS) production, particularly of mitochondrial origin, are believed to be the main contributors. Recent Advances: Mitochondrial dysfunction, particularly due to increased ROS production, has often been linked to impaired sperm function/quality. For decades, different methods and approaches have been developed to assess mitochondrial features that might correlate with sperm functionality. This connection is now completely accepted, with mitochondrial functionality assessment used more commonly as a readout of sperm functionality. More recently, mitochondria-targeted compounds are on the frontline for both assessment and therapeutic approaches. Critical Issues: In this review, we summarize the current methods for assessing key mitochondrial parameters known to reflect sperm quality as well as therapeutic strategies using mitochondria-targeted antioxidants aiming to improve sperm function in various situations, particularly after sperm cryopreservation. Future Directions: Although more systematic research is needed, mitochondria-targeted compounds definitely represent a promising tool to assess as well as to protect and improve sperm function. Antioxid. Redox Signal. 37, 451-480.
Collapse
Affiliation(s)
- Sara Escada-Rebelo
- PhD Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,IIIUC - Institute for Interdisciplinary Research, Casa Costa Alemão, University of Coimbra, Coimbra, Portugal
| | - Maria Inês Cristo
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - João Ramalho-Santos
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Sandra Amaral
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,IIIUC - Institute for Interdisciplinary Research, Casa Costa Alemão, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
7
|
Irigoyen P, Pintos-Polasky P, Rosa-Villagran L, Skowronek MF, Cassina A, Sapiro R. Mitochondrial metabolism determines the functional status of human sperm and correlates with semen parameters. Front Cell Dev Biol 2022; 10:926684. [PMID: 36111336 PMCID: PMC9468643 DOI: 10.3389/fcell.2022.926684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/08/2022] [Indexed: 12/02/2022] Open
Abstract
The diagnosis of male infertility is based essentially on the patient’s medical history and a standard semen analysis. However, the latter rarely provides information on the causes of a possible infertility, emphasizing the need to extend the analysis of the sperm function. Mitochondrial function has been associated with sperm function and dysfunction, the latter primarily through the production of excessive amounts of reactive oxygen species (ROS). We hypothesized that analysis of sperm mitochondrial metabolism together with sperm ROS production could be an additional tool to improve routine semen analysis, after appropriate validations. To test our hypothesis, we performed several experiments using a non-routine method (high-resolution respirometry, HRR) to access mitochondrial function. First, we investigated whether mitochondrial function is related to human sperm motility and morphology. When mitochondrial metabolism was challenged, sperm motility decreased significantly. Additionally, morphological abnormalities in the sperm mid-piece and mitochondria were associated with global sperm defects evaluated by routine methods. Subsequently, sperm mitochondrial function was assessed by HRR. Respiratory control ratio (RCR) was determined and evaluated in the context of classical sperm analysis. In parallel, sperm hydrogen peroxide (H2O2) production and seminal plasma (SP) antioxidant capacity were measured. The percentage of sperm with progressive motility correlated positively with RCR, SP antioxidant capacity, and negatively with the concentration of extracellular H2O2 production ([H2O2]). The percentage of normal sperm morphology correlated positively with RCR and negatively with [H2O2]. Sperm morphology did not correlate with seminal plasma antioxidant capacity. Furthermore, Receiver Operating Characteristic curves were used for the first time to test the diagnostic ability of RCR, [H2O2], and SP antioxidant capacity as binary classifiers. An RCR cut off value of 3.2 was established with a sensitivity of 73% and a specificity of 61%, using reference values considered normal or abnormal in routine semen analysis. The cut off value for [H2O2] was 0.2 μM/106 sperm (sensitivity = 65%, specificity = 60%). There were no reference values for SP antioxidant capacity that distinguished between abnormal and normal sperm samples. We conclude that sperm mitochondrial function indices in combination with [H2O2] may be useful tools to complement the routine semen analysis.
Collapse
Affiliation(s)
- Pilar Irigoyen
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Paula Pintos-Polasky
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lucia Rosa-Villagran
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Maria Fernanda Skowronek
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Adriana Cassina
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rossana Sapiro
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- *Correspondence: Rossana Sapiro,
| |
Collapse
|
8
|
Ayad B, Omolaoye TS, Louw N, Ramsunder Y, Skosana BT, Oyeipo PI, Du Plessis SS. Oxidative Stress and Male Infertility: Evidence From a Research Perspective. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:822257. [PMID: 36303652 PMCID: PMC9580735 DOI: 10.3389/frph.2022.822257] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Male fertility potential can be influenced by a variety of conditions that frequently coincide. Spermatozoa are particularly susceptible to oxidative damage due to their limited antioxidant capacity and cell membrane rich in polyunsaturated fatty acids (PUFAs). The role of oxidative stress (OS) in the etiology of male infertility has been the primary focus of our Stellenbosch University Reproductive Research Group (SURRG) over the last 10 years. This review aims to provide a novel insight into the impact of OS on spermatozoa and male reproductive function by reviewing the OS-related findings from a wide variety of studies conducted in our laboratory, along with those emerging from other investigators. We will provide a concise overview of the production of reactive oxygen species (ROS) and the development of OS in the male reproductive tract along with the physiological and pathological effects thereof on male reproductive functions. Recent advances in methods and techniques used for the assessment of OS will also be highlighted. We will furthermore consider the current evidence regarding the association between OS and ejaculatory abstinence period, as well as the potential mechanisms involved in the pathophysiology of various systemic diseases such as obesity, insulin resistance, hypertension, and certain mental health disorders which have been shown to cause OS induced male infertility. Finally, special emphasis will be placed on the potential for transferring and incorporating research findings emanating from different experimental studies into clinical practice.
Collapse
Affiliation(s)
- Bashir Ayad
- Department of Physiology, Faculty of Medicine, Misurata University, Misrata, Libya
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Temidayo S. Omolaoye
- Department of Basic Medical Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Nicola Louw
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Yashthi Ramsunder
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Bongekile T. Skosana
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Peter I. Oyeipo
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- Department of Physiology, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - Stefan S. Du Plessis
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- Department of Basic Medical Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
9
|
Escada-Rebelo S, Mora FG, Sousa AP, Almeida-Santos T, Paiva A, Ramalho-Santos J. Fluorescent probes for the detection of reactive oxygen species in human spermatozoa. Asian J Androl 2021; 22:465-471. [PMID: 31939350 PMCID: PMC7523605 DOI: 10.4103/aja.aja_132_19] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) production is a by-product of mitochondrial activity and is necessary for the acquisition of the capacitated state, a requirement for functional spermatozoa. However, an increase in oxidative stress, due to an abnormal production of ROS, has been shown to be related to loss of sperm function, highlighting the importance of an accurate detection of sperm ROS, given the specific nature of this cell. In this work, we tested a variety of commercially available fluorescent probes to detect ROS and reactive nitrogen species (RNS) in human sperm, to define their specificity. Using both flow cytometry (FC) and fluorescence microscopy (FM), we confirmed that MitoSOX™ Red and dihydroethidium (DHE) detect superoxide anion (as determined using antimycin A as a positive control), while DAF-2A detects reactive nitrogen species (namely, nitric oxide). For the first time, we also report that RedoxSensor™ Red CC-1, CellROX® Orange Reagent, and MitoPY1 seem to be mostly sensitive to hydrogen peroxide, but not superoxide. Furthermore, mean fluorescence intensity (and not percentage of labeled cells) is the main parameter that can be reproducibly monitored using this type of methodology.
Collapse
Affiliation(s)
- Sara Escada-Rebelo
- PhD Programme in Experimental Biology and Biomedicine, CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.,Biology of Reproduction and Stem Cell Group, CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.,IIIUC - Institute for Interdisciplinary Research, Casa Costa Alemão, University of Coimbra, Coimbra 3030-789, Portugal
| | - Francisca G Mora
- Biology of Reproduction and Stem Cell Group, CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal
| | - Ana P Sousa
- Biology of Reproduction and Stem Cell Group, CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.,Reproductive Medicine Unit, University Hospitals of Coimbra, Coimbra 3004-561, Portugal
| | - Teresa Almeida-Santos
- Biology of Reproduction and Stem Cell Group, CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.,Reproductive Medicine Unit, University Hospitals of Coimbra, Coimbra 3004-561, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra 3000-370, Portugal
| | - Artur Paiva
- Clinical Pathology Unit, University Hospitals of Coimbra, Coimbra 3004-561, Portugal
| | - João Ramalho-Santos
- Biology of Reproduction and Stem Cell Group, CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra 3000-456, Portugal
| |
Collapse
|
10
|
Kumar A, Singh G, A J, Kumar P, V A, Bala R, Verma N, Sharma RK. IGF-1 supplementation in semen affects mitochondrial functional and calcium status of buffalo sperm following cryopreservation. Anim Reprod Sci 2021; 231:106783. [PMID: 34091430 DOI: 10.1016/j.anireprosci.2021.106783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022]
Abstract
This study was designed to examine the effects of seminal insulin-like growth factor-1 (IGF-1) supplementation on structural and functional properties of buffalo sperm post cryopreservation. Semen ejaculates from buffalo bulls (n = 6) were proportioned into four aliquots and diluted with egg yolk-based extender. Prior to equilibration, IGF-1 was added to extender as four treatments: group IGF0 (no supplementation), IGF150 (150 ng/mL), IGF250 (250 ng/mL) and IGF350 (350 ng/mL). The extended semen was transferred into 0.25 mL mini-straws, equilibrated (4 °C at 4 h), and cryopreserved. Total sperm motility was greater (P < 0.05) when there was the IGF150 treatment compared with values for other groups. Furthermore, with the IGF150 treatment there was the least and greatest (P < 0.05) mitochondrial superoxide status and membrane potential, respectively. Similarly, with the IGF150 treatment there was a greater (P < 0.05) sperm membrane integrity with a lesser (P < 0.05) calcium status compared to values for the other groups. In conclusion, seminal IGF-1 supplementation affects the structural and functional properties of buffalo sperm following cryopreservation.
Collapse
Affiliation(s)
- Amit Kumar
- ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, 125001, India; Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Gyan Singh
- Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India.
| | - Jerome A
- ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, 125001, India.
| | - Pradeep Kumar
- ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, 125001, India
| | - Arjun V
- ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, 125001, India; Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Renu Bala
- ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, 125001, India
| | - Nisha Verma
- ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, 125001, India
| | - R K Sharma
- ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, 125001, India
| |
Collapse
|
11
|
Fuller N, Smith JT, Ford AT. Impacts of ionising radiation on sperm quality, DNA integrity and post-fertilisation development in marine and freshwater crustaceans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109764. [PMID: 31610356 DOI: 10.1016/j.ecoenv.2019.109764] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/27/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
Crustaceans have been designated as internationally important model organisms in the development of environmental radioprotection measures. Despite the known sensitivity of sperm to ionizing radiation, the impacts of chronic radiation exposure on male fertility in crustaceans have not been studied. For the first time, the present study aimed to assess the impacts of chronic radiation exposure on male fertility, sperm DNA damage and concomitant impacts on breeding in two amphipod crustaceans. Echinogammarus marinus and Gammarus pulex (male fertility only) were exposed to phosphorus-32 at dose rates of 0, 0.1, 1 and 10 mGy/d and sperm parameters, DNA damage and knock-on impacts on breeding were assessed. Sperm quality parameters and DNA damage were assessed using a fluorescent staining method and single cell gel electrophoresis respectively. Concomitant effects of male exposure to radiation on fecundity were determined by pairing phosphorus-32 exposed males to unexposed sexually mature females. In E. marinus, a statistically significant reduction of 9 and 11% in the quality of sperm was recorded at dose rates of 1 and 10 mGy/d respectively, with no significant effects recorded on sperm counts. Conversely in the freshwater G. pulex, no significant impact of radiation on sperm quantity or quality was recorded. For E. marinus, a statistically significant increase in DNA damage was recorded at doses of 10 mGy/d. Reduced fecundity and an increase in the frequency of abnormal embryos was recorded in female E. marinus breeding with males exposed to radiation. These findings suggest sperm quality may be a sensitive indicator of radiation exposure in invertebrates with potential impacts on the unexposed embryo, though unclear dose-response and differences between two closely related species necessitate further study before robust conclusions can be drawn.
Collapse
Affiliation(s)
- Neil Fuller
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, Hampshire, PO4 9LY, UK.
| | - Jim T Smith
- School of Earth & Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth, Hampshire, PO1 3QL, UK
| | - Alex T Ford
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, Hampshire, PO4 9LY, UK.
| |
Collapse
|
12
|
Guo H, Chang Z, Zhang Z, Zhao Y, Jiang X, Yu H, Zhang Y, Zhao R, He B. Extracellular ATPs produced in seminal plasma exosomes regulate boar sperm motility and mitochondrial metabolism. Theriogenology 2019; 139:113-120. [PMID: 31401476 DOI: 10.1016/j.theriogenology.2019.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 12/17/2022]
Abstract
Artificial insemination using diluted semen with reduced presence of seminal plasma has been applied worldwide. Sperm stored in seminal plasma rather than diluted or removed show improvement in survival and motility. However, the link between seminal plasma and sperm remains poorly understood. This study focuses on the effect of extracellular adenosine triphosphate (exATP) produced by boar seminal plasma exosomes on sperm motility, as well as the underlying molecular mechanisms. The seminal plasma exosomes had an average diameter of 86.6 nm and showed universal exosome markers, such as heat shock protein 70 (HSP70) and CD63. Production of net ATP increased when exosomes were incubated with glucose and partly inhibited by a glycolytic inhibitor such as iodoacetate. Fresh boar sperm incubated with exATP significantly increased sperm motility and reduced apoptotic rate. Ser21 phosphorylation of glycogen synthase kinase 3α (inactivation) also significantly increased, consistent with the increase in mitochondrial transmembrane potential in the exATP-treated sperm. Moreover, exATP treatment increased the intracellular ATP (inATP) concentration and decreased the ADP/ATP ratio in boar sperm. Lactate content in the incubation medium was decreased, whereas lactate dehydrogenase activity in sperm was increased. This finding suggested that exATP could prompt lactate to produce inATP in order to sustain motility. The combined results indicate that exATP produced in seminal plasma exosomes may finely modulate mitochondrial metabolism to control sperm motility. The results can provide insights into semen dilution and artificial insemination.
Collapse
Affiliation(s)
- Huiduo Guo
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Zhanglin Chang
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Zhilong Zhang
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yuting Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xueyuan Jiang
- Shanghai Engineering Research Center of Breeding Pigs, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, PR China
| | - Hongyan Yu
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yanwen Zhang
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Bin He
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
13
|
Gong Y, Guo H, Zhang Z, Zhou H, Zhao R, He B. Heat Stress Reduces Sperm Motility via Activation of Glycogen Synthase Kinase-3α and Inhibition of Mitochondrial Protein Import. Front Physiol 2017; 8:718. [PMID: 29018353 PMCID: PMC5615227 DOI: 10.3389/fphys.2017.00718] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
The adverse effects of high environmental temperature exposure on animal reproductive functions have been concerned for many decades. However, the molecular basis of heat stress (HS)-induced decrease of sperm motility has not been entirely elucidated. We hypothesized that the deteriorate effects of HS may be mediated by damage of mitochondrial function and ATP synthesis. To test this hypothesis, we use mature boar sperm as model to explore the impacts of HS on mitochondrial function and sperm motility. A 6 h exposure to 42°C (HS) induced significant decrease in sperm progressive motility. Concurrently, HS induced mitochondrial dysfunction that is indicated by decreased of membrane potential, respiratory chain complex I and IV activities and adenosine triphosphate (ATP) contents. Exogenous ATP abolished this effect suggesting that reduced of ATP synthesis is the committed step in HS-induced reduction of sperm motility. At the molecular level, the mitochondrial protein contents were significantly decreased in HS sperm. Notably, the cytochrome c oxidase subunit 4, which was synthesized in cytoplasm and translocated into mitochondria, was significantly lower in mitochondria of HS sperm. Glycogen synthase kinase-3α (GSK3α), a negative regulator of sperm motility that is inactivated by Ser21 phosphorylation, was dephosphorylated after HS. The GSK3α inhibitor CHIR99021 was able to abolish the effects of HS on sperm and their mitochondria. Taken together, our results demonstrate that HS affects sperm motility through downregulation of mitochondrial activity and ATP synthesis yield, which involves dephosphorylation of GSK3α and interference of mitochondrial remodeling.
Collapse
Affiliation(s)
- Yabin Gong
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Huiduo Guo
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Zhilong Zhang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Hao Zhou
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety ControlNanjing, China
| | - Bin He
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety ControlNanjing, China
| |
Collapse
|
14
|
Kumaresan A, Johannisson A, Al-Essawe EM, Morrell JM. Sperm viability, reactive oxygen species, and DNA fragmentation index combined can discriminate between above- and below-average fertility bulls. J Dairy Sci 2017; 100:5824-5836. [DOI: 10.3168/jds.2016-12484] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/12/2017] [Indexed: 01/09/2023]
|
15
|
Gosalvez J, Tvrda E, Agarwal A. Free radical and superoxide reactivity detection in semen quality assessment: past, present, and future. J Assist Reprod Genet 2017; 34:697-707. [PMID: 28341974 PMCID: PMC5445049 DOI: 10.1007/s10815-017-0912-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 03/17/2017] [Indexed: 11/30/2022] Open
Abstract
Oxidative stress is a well-established cause of male infertility, with reactive oxygen species (ROS) impairing sperm production, motility, membrane, and DNA integrity. Currently, most clinics do not test infertile patients for the imbalance between ROS generation and the ability of the antioxidants to scavenge them, although there is a clear need for andrology laboratories to be able to identify and/or quantify seminal oxidative stress. As such there is a clinical urgency for an inexpensive and easy-to-perform assay able to identify oxidative stress in semen. The aim of this review is to provide information on the currently available methods to assess and quantify ROS and particularly superoxide in male reproductive cells, tissues, and fluids which may have a significant clinical utility in identifying men with impaired fertility associated with oxidative stress. Through a deeper understanding of oxidative stress and its assessment options, clinical andrology labs may better assist patients to achieve increased rates of fertility and pregnancy.
Collapse
Affiliation(s)
- Jaime Gosalvez
- Department of Biology, Universidad Autonoma de Madrid, Edificio de Biología, Darwin 2, 28049, Madrid, Spain
| | - Eva Tvrda
- Department of Animal Physiology, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976, Nitra, Slovak Republic.
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Mail Code X-11, 10681 Carnegie Avenue, Cleveland, OH, 44195, USA
| |
Collapse
|
16
|
Relationships between mitochondrial DNA content, mitochondrial activity, and boar sperm motility. Theriogenology 2017; 87:276-283. [DOI: 10.1016/j.theriogenology.2016.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/03/2016] [Accepted: 09/03/2016] [Indexed: 11/20/2022]
|
17
|
Han J, Lee MC, Kim DH, Lee YH, Park JC, Lee JS. Effects of trimethoprim on life history parameters, oxidative stress, and the expression of cytochrome P450 genes in the copepod Tigriopus japonicus. CHEMOSPHERE 2016; 159:159-165. [PMID: 27288646 DOI: 10.1016/j.chemosphere.2016.05.085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/13/2016] [Accepted: 05/29/2016] [Indexed: 06/06/2023]
Abstract
Trimethoprim (TMP) is an antibiotic that has been detected in various environments including marine habitats; however, the toxic effects of TMP are poorly understood in non-target marine organisms. In this study, the effects of TMP on mortality, development, reproduction, intracellular reactive oxygen species (ROS) levels, and transcription levels of antioxidant and xenobiotic detoxification-related enzyme genes were investigated in the copepod Tigriopus japonicus. The TMP half lethal dose at 48 h (LC50-48 h) in nauplius and TMP LC50-96 h in adult T. japonicus copepods was determined as 156 mg/L and 200 mg/L, respectively. In TMP-exposed T. japonicus, delayed developmental time and impaired reproduction were observed as harmful effects on the life history parameters. Increased ROS levels were also shown in response to TMP exposure at the highest concentration (100 mg/L TMP) and the expression of antioxidant- (e.g. GST-kappa, GST-sigma) and xenobiotic detoxification (e.g. CYPs)-related genes were upregulated in a time and/or dose-dependent manner in response to TMP. Particularly, significant upregulation of three CYP genes (Tj-CYP3024A2, Tj-CYP3024A3 and Tj-CYP3027C2) were examined, suggesting that these CYP genes are likely playing an important role in the TMP detoxification metabolism in T. japonicus. In summary, we found that TMP induced oxidative stress via the transcriptional regulation of antioxidant- and xenobiotic detoxification-related genes, leading to changes in life history parameters such as developmental delay and reproduction impairment. Three Tj-CYP genes (Tj-CYP3024A2, Tj-CYP3024A3 and Tj-CYP3027C2) could be useful as potential T. japonicus biomarkers in response to antibiotics.
Collapse
Affiliation(s)
- Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University (SKKU), Suwon 16419, South Korea
| | - Min-Chul Lee
- Department of Biological Science, College of Science, Sungkyunkwan University (SKKU), Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Science, College of Science, Sungkyunkwan University (SKKU), Suwon 16419, South Korea
| | - Young Hwan Lee
- Department of Biological Science, College of Science, Sungkyunkwan University (SKKU), Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University (SKKU), Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University (SKKU), Suwon 16419, South Korea.
| |
Collapse
|
18
|
Fuller N, Lerebours A, Smith JT, Ford AT. The biological effects of ionising radiation on Crustaceans: A review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 167:55-67. [PMID: 26261880 DOI: 10.1016/j.aquatox.2015.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/15/2015] [Accepted: 07/23/2015] [Indexed: 06/04/2023]
Abstract
Historic approaches to radiation protection are founded on the conjecture that measures to safeguard humans are adequate to protect non-human organisms. This view is disparate with other toxicants wherein well-developed frameworks exist to minimise exposure of biota. Significant data gaps for many organisms, coupled with high profile nuclear incidents such as Chernobyl and Fukushima, have prompted the re-evaluation of our approach toward environmental radioprotection. Elucidating the impacts of radiation on biota has been identified as priority area for future research within both scientific and regulatory communities. The crustaceans are ubiquitous in aquatic ecosystems, comprising greater than 66,000 species of ecological and commercial importance. This paper aims to assess the available literature of radiation-induced effects within this subphylum and identify knowledge gaps. A literature search was conducted pertaining to radiation effects on four endpoints as stipulated by a number of regulatory bodies: mortality, morbidity, reproduction and mutation. A major finding of this review was the paucity of data regarding the effects of environmentally relevant radiation doses on crustacean biology. Extremely few studies utilising chronic exposure durations or wild populations were found across all four endpoints. The dose levels at which effects occur was found to vary by orders of magnitude thus presenting difficulties in developing phyla-specific benchmark values and reference levels for radioprotection. Based on the limited data, mutation was found to be the most sensitive endpoint of radiation exposure, with mortality the least sensitive. Current phyla-specific dose levels and limits proposed by major regulatory bodies were found to be inadequate to protect species across a range of endpoints including morbidity, mutation and reproduction and examples are discussed within. These findings serve to prioritise areas for future research that will significantly advance understanding of radiation-induced effects in aquatic invertebrates and consequently enhance ability to predict the impacts of radioactive releases on the environment.
Collapse
Affiliation(s)
- Neil Fuller
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, Hampshire PO4 9LY, UK
| | - Adélaïde Lerebours
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, Hampshire PO4 9LY, UK
| | - Jim T Smith
- School of Earth & Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth, Hampshire PO1 3QL, UK
| | - Alex T Ford
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, Hampshire PO4 9LY, UK.
| |
Collapse
|
19
|
Han J, Won EJ, Kim IC, Yim JH, Lee SJ, Lee JS. Sublethal gamma irradiation affects reproductive impairment and elevates antioxidant enzyme and DNA repair activities in the monogonont rotifer Brachionus koreanus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 155:101-109. [PMID: 25000471 DOI: 10.1016/j.aquatox.2014.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/13/2014] [Accepted: 06/17/2014] [Indexed: 06/03/2023]
Abstract
To examine the effects of gamma radiation on marine organisms, we irradiated several doses of gamma ray to the microzooplankton Brachionus koreanus, and measured in vivo and in vitro endpoints including the survival rate, lifespan, fecundity, population growth, gamma ray-induced oxidative stress, and modulated patterns of enzyme activities and gene expressions after DNA damage. After gamma radiation, no individuals showed any mortality within 96 h even at a high intensity (1200 Gy). However, a reduced fecundity (e.g. cumulated number of offspring) of B. koreanus at over 150 Gy was observed along with a slight decrease in lifespan. At 150 Gy and 200 Gy, the reduced fecundity of the rotifers led to a significant decrease in population growth, although in the second generation the population growth pattern was not affected even at 200 Gy when compared to the control group. At sub-lethal doses, reactive oxygen species (ROS) levels dose-dependently increased with GST enzyme activity. In addition, up-regulations of the antioxidant and chaperoning genes in response to gamma radiation were able to recover cellular damages, and life table parameters were significantly influenced, particularly with regard to fecundity. DNA repair-associated genes showed significantly up-regulated expression patterns in response to sublethal doses (150 and 200 Gy), as shown in the expression of the gamma-irradiated B. koreanus p53 gene, suggesting that these sublethal doses were not significantly fatal to B. koreanus but induced DNA damages leading to a decrease of the population size.
Collapse
Affiliation(s)
- Jeonghoon Han
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Eun-Ji Won
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Il-Chan Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 406-840, South Korea
| | - Joung Han Yim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 406-840, South Korea
| | - Su-Jae Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea.
| |
Collapse
|