1
|
Zhang R, Guo X, Liang C, Pei J, Bao P, Yin M, Wu F, Chu M, Yan P. Identification and Validation of Yak ( Bos grunniens) Frozen-Thawed Sperm Proteins Associated with Capacitation and the Acrosome Reaction. J Proteome Res 2022; 21:2754-2770. [PMID: 36251486 DOI: 10.1021/acs.jproteome.2c00528] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To achieve fertilization, mammalian spermatozoa must undergo capacitation and the acrosome reaction (AR) within the female reproductive tract. However, the effects of cryopreservation on sperm maturation and fertilizing potential have yet to be established. To gain insight into changes in protein levels within sperm cells prepared for use in the context of fertilization, a comprehensive quantitative proteomic profiling approach was used to analyze frozen-thawed Ashidan yak spermatozoa under three sequential conditions: density gradient centrifugation-based purification, incubation in a capacitation medium, and treatment with the calcium ionophore A23187 to facilitate AR induction. In total, 3280 proteins were detected in these yak sperm samples, of which 3074 were quantified, with 68 and 32 being significantly altered following sperm capacitation and AR induction. Differentially abundant capacitation-related proteins were enriched in the metabolism and PPAR signaling pathways, while differentially abundant AR-related proteins were enriched in the AMPK signaling pathway. These data confirmed a role for superoxide dismutase 1 (SOD1) as a regulator of sperm capacitation while also offering indirect evidence that heat shock protein 90 alpha (HSP90AA1) regulates the AR. Together, these findings offer a means whereby sperm fertility-related marker proteins can be effectively identified. Data are available via Proteome Xchange with identifier PXD035038.
Collapse
Affiliation(s)
- Renzheng Zhang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.,College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jie Pei
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Mancai Yin
- Yak Breeding and Extension Service Center in Qinghai Province, Xining 810000, China
| | - Fude Wu
- Yak Breeding and Extension Service Center in Qinghai Province, Xining 810000, China
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
2
|
Parkinson Disease Protein 7 (PARK7) Is Related to the Ability of Mammalian Sperm to Undergo In Vitro Capacitation. Int J Mol Sci 2021; 22:ijms221910804. [PMID: 34639144 PMCID: PMC8509420 DOI: 10.3390/ijms221910804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022] Open
Abstract
Parkinson disease protein 7 (PARK7) is a multifunctional protein known to be involved in the regulation of sperm motility, mitochondrial function, and oxidative stress response in mammalian sperm. While ROS generation is needed to activate the downstream signaling pathways required for sperm to undergo capacitation, oxidative stress has detrimental effects for sperm cells and a precise balance between ROS levels and antioxidant activity is needed. Considering the putative antioxidant role of PARK7, the present work sought to determine whether this protein is related to the sperm ability to withstand in vitro capacitation. To this end, and using the pig as a model, semen samples were incubated in capacitation medium for 300 min; the acrosomal exocytosis was triggered by the addition of progesterone after 240 min of incubation. At each relevant time point (0, 120, 240, 250, and 300 min), sperm motility, acrosome and plasma membrane integrity, membrane lipid disorder, mitochondrial membrane potential, intracellular calcium and ROS were evaluated. In addition, localization and protein levels of PARK7 were also assessed through immunofluorescence and immunoblotting. Based on the relative content of PARK7, two groups of samples were set. As early as 120 min of incubation, sperm samples with larger PARK7 content showed higher percentages of viable and acrosome-intact sperm, lipid disorder and superoxide levels, and lower intracellular calcium levels when compared to sperm samples with lower PARK7. These data suggest that PARK7 could play a role in preventing sperm from undergoing premature capacitation, maintaining sperm viability and providing a better ability to keep ROS homeostasis, which is needed to elicit sperm capacitation. Further studies are required to elucidate the antioxidant properties of PARK7 during in vitro capacitation and acrosomal exocytosis of mammalian sperm, and the relationship between PARK7 and sperm motility.
Collapse
|
3
|
Qin Z, Wang W, Ali MA, Wang Y, Zhang Y, Zhang M, Zhou G, Yang JD, Zeng C. Transcriptome-wide m 6A profiling reveals mRNA post-transcriptional modification of boar sperm during cryopreservation. BMC Genomics 2021; 22:588. [PMID: 34344298 PMCID: PMC8335898 DOI: 10.1186/s12864-021-07904-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Background Cryopreservation induces transcriptomic and epigenetic modifications that strongly impairs sperm quality and function, and thus decrease reproductive performance. N6-methyladenosine (m6A) RNA methylation varies in response to stress and has been implicated in multiple important biological processes, including post-transcriptional fate of mRNA, metabolism, and apoptosis. This study aimed to explore whether cryopreservation induces m6A modification of mRNAs associated with sperm energy metabolism, cryoinjuries, and freezability. Results The mRNA and protein expression of m6A modification enzymes were significantly dysregulated in sperm after cryopreservation. Furthermore, m6A peaks were mainly enriched in coding regions and near stop codons with classical RRACH motifs. The mRNAs containing highly methylated m6A peaks (fts vs. fs) were significantly associated with metabolism and gene expression, while the genes with less methylated m6A peaks were primarily involved in processes regulating RNA metabolism and transcription. Furthermore, the joint analysis of DMMGs and differentially expressed genes indicated that both of these play a vital role in sperm energy metabolism and apoptosis. Conclusions Our study is the first to reveal the dynamic m6A modification of mRNAs in boar sperm during cryopreservation. These epigenetic modifications may affect mRNA expression and are closely related to sperm motility, apoptosis, and metabolism, which will provide novel insights into understanding of the cryoinjuries or freezability of boar sperm during cryopreservation. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07904-8.
Collapse
Affiliation(s)
- Ziyue Qin
- College of Animal Sciences and Technology, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 611130, Chengdu, Sichuan Province, China
| | - Wencan Wang
- College of Animal Sciences and Technology, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 611130, Chengdu, Sichuan Province, China
| | - Malik Ahsan Ali
- College of Animal Sciences and Technology, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 611130, Chengdu, Sichuan Province, China.,Department of Theriogenology, Riphah College of Veterinary Sciences, 54000, Lahore, Pakistan
| | - Yihan Wang
- College of Animal Sciences and Technology, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 611130, Chengdu, Sichuan Province, China
| | - Yan Zhang
- College of Animal Sciences and Technology, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 611130, Chengdu, Sichuan Province, China
| | - Ming Zhang
- College of Animal Sciences and Technology, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 611130, Chengdu, Sichuan Province, China
| | - Guangbin Zhou
- College of Animal Sciences and Technology, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 611130, Chengdu, Sichuan Province, China
| | - Jian-Dong Yang
- College of Animal Sciences and Technology, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 611130, Chengdu, Sichuan Province, China
| | - Changjun Zeng
- College of Animal Sciences and Technology, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China. .,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 611130, Chengdu, Sichuan Province, China.
| |
Collapse
|
4
|
Terán E, Azcona F, Ramón M, Molina A, Dorado J, Hidalgo M, Ross P, Goszczynski D, Demyda-Peyrás S. Sperm morphometry is affected by increased inbreeding in the Retinta cattle breed: A molecular approach. Mol Reprod Dev 2021; 88:416-426. [PMID: 34009693 DOI: 10.1002/mrd.23475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/02/2021] [Accepted: 04/14/2021] [Indexed: 12/11/2022]
Abstract
The effect of inbreeding depression on sperm motility is well documented, but its influence on sperm morphometry has been scarcely examined to date. Here, we combined the use of computer-assisted sperm morphometry analysis (CASMA) with a SNP-based genomic approach to determine and characterize the effect of inbreeding on the sperm shape of a highly inbred cattle population. We determined seven morphometric parameters on frozen-thawed sperm samples of 57 Retinta bulls: length (L, µm), width (W, µm), area (A, µm2 ), perimeter (P, µm), ellipticity (ELI; L/W), elongation (L-W)/(L + W) and perimeter-to-area shape factor (p2a; P2 /4 × π × A). The comparison of highly inbred (HI) and lowly inbreed (LI) individuals based on runs of homozygosity (ROH) inbreeding values (F ROH ) showed no differences between groups. An additional two-step unsupervised sperm subpopulation analysis based on morphometric parameters showed significant differences in the abundance of different sperm subpopulations between groups (p < 0.05). This analysis revealed that HI bulls harbored a higher percentage of narrow-head sperm as opposed to the higher percentage of large- and round-headed sperm detected in LI. A further genomic characterization revealed 23 regions differentially affected by inbreeding in both groups, detecting six genes (SPAG6, ARMC3, PARK7, VAMP3, DYNLRB2, and PHF7) previously related to different spermatogenesis-associated processes.
Collapse
Affiliation(s)
- Ester Terán
- IGEVET - Instituto de Genética Veterinaria, UNLP - CONICET, Facultad de Ciencias Veterinarias Universidad Nacional de la Plata, La Plata, Buenos Aires, Argentina.,Departamento de Producción Animal, Facultad de Ciencias Veterinarias, UNLP - CONICET, Facultad de Ciencias Veterinarias Universidad Nacional de la Plata, La Plata, Buenos Aires, Argentina
| | - Florencia Azcona
- IGEVET - Instituto de Genética Veterinaria, UNLP - CONICET, Facultad de Ciencias Veterinarias Universidad Nacional de la Plata, La Plata, Buenos Aires, Argentina
| | - Manuel Ramón
- CERSYRA-Centro Regional de Selección y Reproducción Animal de Castilla-La Mancha, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Valdepeñas, España
| | - Antonio Molina
- Departamento de Genética, Universidad de Córdoba, Córdoba, España
| | - Jesús Dorado
- Grupo de Reproducción Veterinaria, Departamento de Medicina y Cirugía animal, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, España
| | - Manuel Hidalgo
- Grupo de Reproducción Veterinaria, Departamento de Medicina y Cirugía animal, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, España
| | - Pablo Ross
- Department of Animal Science, University of California at Davis, Davis, California, USA
| | - Daniel Goszczynski
- Department of Animal Science, University of California at Davis, Davis, California, USA
| | - Sebastián Demyda-Peyrás
- Departamento de Producción Animal, Facultad de Ciencias Veterinarias, UNLP - CONICET, Facultad de Ciencias Veterinarias Universidad Nacional de la Plata, La Plata, Buenos Aires, Argentina
| |
Collapse
|
5
|
Turnell BR, Kumpitsch L, Reinhardt K. Production and scavenging of reactive oxygen species both affect reproductive success in male and female Drosophila melanogaster. Biogerontology 2021; 22:379-396. [PMID: 33903991 PMCID: PMC8266701 DOI: 10.1007/s10522-021-09922-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/30/2021] [Indexed: 10/27/2022]
Abstract
Sperm aging is accelerated by the buildup of reactive oxygen species (ROS), which cause oxidative damage to various cellular components. Aging can be slowed by limiting the production of mitochondrial ROS and by increasing the production of antioxidants, both of which can be generated in the sperm cell itself or in the surrounding somatic tissues of the male and female reproductive tracts. However, few studies have compared the separate contributions of ROS production and ROS scavenging to sperm aging, or to cellular aging in general. We measured reproductive fitness in two lines of Drosophila melanogaster genetically engineered to (1) produce fewer ROS via expression of alternative oxidase (AOX), an alternative respiratory pathway; or (2) scavenge fewer ROS due to a loss-of-function mutation in the antioxidant gene dj-1β. Wild-type females mated to AOX males had increased fecundity and longer fertility durations, consistent with slower aging in AOX sperm. Contrary to expectations, fitness was not reduced in wild-type females mated to dj-1β males. Fecundity and fertility duration were increased in AOX and decreased in dj-1β females, indicating that female ROS levels may affect aging rates in stored sperm and/or eggs. Finally, we found evidence that accelerated aging in dj-1β sperm may have selected for more frequent mating. Our results help to clarify the relative roles of ROS production and ROS scavenging in the male and female reproductive systems.
Collapse
Affiliation(s)
- Biz R Turnell
- Applied Zoology, Faculty Biology, Technische Universität Dresden, 01069, Dresden, Germany.
| | - Luisa Kumpitsch
- Applied Zoology, Faculty Biology, Technische Universität Dresden, 01069, Dresden, Germany
| | - Klaus Reinhardt
- Applied Zoology, Faculty Biology, Technische Universität Dresden, 01069, Dresden, Germany
| |
Collapse
|
6
|
Boguenet M, Bouet PE, Spiers A, Reynier P, May-Panloup P. Mitochondria: their role in spermatozoa and in male infertility. Hum Reprod Update 2021; 27:697-719. [PMID: 33555313 DOI: 10.1093/humupd/dmab001] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/22/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The best-known role of spermatozoa is to fertilize the oocyte and to transmit the paternal genome to offspring. These highly specialized cells have a unique structure consisting of all the elements absolutely necessary to each stage of fertilization and to embryonic development. Mature spermatozoa are made up of a head with the nucleus, a neck, and a flagellum that allows motility and that contains a midpiece with a mitochondrial helix. Mitochondria are central to cellular energy production but they also have various other functions. Although mitochondria are recognized as essential to spermatozoa, their exact pathophysiological role and their functioning are complex. Available literature relative to mitochondria in spermatozoa is dense and contradictory in some cases. Furthermore, mitochondria are only indirectly involved in cytoplasmic heredity as their DNA, the paternal mitochondrial DNA, is not transmitted to descendants. OBJECTIVE AND RATIONAL This review aims to summarize available literature on mitochondria in spermatozoa, and, in particular, that with respect to humans, with the perspective of better understanding the anomalies that could be implicated in male infertility. SEARCH METHODS PubMed was used to search the MEDLINE database for peer-reviewed original articles and reviews pertaining to human spermatozoa and mitochondria. Searches were performed using keywords belonging to three groups: 'mitochondria' or 'mitochondrial DNA', 'spermatozoa' or 'sperm' and 'reactive oxygen species' or 'calcium' or 'apoptosis' or signaling pathways'. These keywords were combined with other relevant search phrases. References from these articles were used to obtain additional articles. OUTCOMES Mitochondria are central to the metabolism of spermatozoa and they are implicated in energy production, redox equilibrium and calcium regulation, as well as apoptotic pathways, all of which are necessary for flagellar motility, capacitation, acrosome reaction and gametic fusion. In numerous cases, alterations in one of the aforementioned functions could be linked to a decline in sperm quality and/or infertility. The link between the mitochondrial genome and the quality of spermatozoa appears to be more complex. Although the quantity of mtDNA, and the existence of large-scale deletions therein, are inversely correlated to sperm quality, the effects of mutations seem to be heterogeneous and particularly related to their pathogenicity. WIDER IMPLICATIONS The importance of the role of mitochondria in reproduction, and particularly in gamete quality, has recently emerged following numerous publications. Better understanding of male infertility is of great interest in the current context where a significant decline in sperm quality has been observed.
Collapse
Affiliation(s)
- Magalie Boguenet
- MITOVASC Institute, CNRS 6015, INSERM U1083, Angers University, Angers 49000, France
| | - Pierre-Emmanuel Bouet
- Department of Reproductive Medicine, Angers University Hospital, Angers 49000, France
| | - Andrew Spiers
- Department of Reproductive Medicine, Angers University Hospital, Angers 49000, France
| | - Pascal Reynier
- MITOVASC Institute, CNRS 6015, INSERM U1083, Angers University, Angers 49000, France.,Department of Biochemistry and Genetics, Angers University Hospital, Angers 49000, France
| | - Pascale May-Panloup
- MITOVASC Institute, CNRS 6015, INSERM U1083, Angers University, Angers 49000, France.,Reproductive Biology Unit, Angers University Hospital, Angers 49000, France
| |
Collapse
|
7
|
Elucidating the processes and pathways enriched in buffalo sperm proteome in regulating semen quality. Cell Tissue Res 2020; 383:881-903. [PMID: 33151454 DOI: 10.1007/s00441-020-03303-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
Abstract
Sperm carries a reservoir of proteins regulating the molecular functions to attain functional competence. Semen samples collected from buffalo bulls were assessed for sperm functional attributes (n = 11) and proteome profiling (n = 6). Sperm proteins were extracted and profiled by employing LC-MS/MS. Overall, the buffalo sperm contained 1365 proteins, of which 458 were common between the groups. The unique proteins were 477 and 430 in good and poor quality semen, respectively. In the whole proteome of buffalo sperm, sexual reproduction with phosphatidylethanolamine-binding protein1 (PEBP1), fetuin-B (FETUB) and acrosin (ACR) was the most enriched (p = 8.44E-19) biological process, also with thermogenesis (p = 0.003), oocyte meiosis (p = 0.007) and vascular smooth muscle contraction (p = 0.009) apart from metabolic pathways. In good quality semen, mesenchyme migration (p = 1.24E-07) and morphogenesis (p = 0.001) were abundant biological processes. In good quality semen, the fluid shear stress (p = 0.01) and, in poor quality semen, valine, leucine and isoleucine degradation (p = 3.8E-05) pathways were enriched. In good quality semen, 7 proteins were significantly (p < 0.05) upregulated and 33 proteins were significantly (p < 0.05) downregulated. On validating the abundantly expressed sperm proteins, serine protease inhibitor Kazal-type 2-like (SPINK2; 2.17-fold) and neddylin (NEDD8; 1.13-fold) were upregulated and YBX2 was downregulated (0.41-fold) in good quality semen as compared with poor quality semen (1-fold). The present findings revealed the importance of sperm proteins in oocyte maturation, fertilization process and early embryonic development. The variations in the proteomic composition can be used as potential markers for the selection of breeding bulls.
Collapse
|
8
|
Heidary Z, Zaki-Dizaji M, Saliminejad K, Edalatkhah H, Khorram Khorshid HR. MiR-4485-3p expression reduced in spermatozoa of men with idiopathic asthenozoospermia. Andrologia 2020; 52:e13539. [PMID: 32030798 DOI: 10.1111/and.13539] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 12/31/2019] [Indexed: 02/06/2023] Open
Abstract
Asthenozoospermia (AZS), which characterised by reduced forward sperm motility, is a common cause of male infertility. Recently, mitochondrial dysfunction reported in AZS men came to attention for finding the molecular aetiology of AZS. Mitochondria-related microRNAs (miRNAs) are the most important regulators of mitochondrial function through post-transcriptionally modulation of gene expression. Therefore, this study aims to evaluate the expression of four recently reported mitochondrial-related miRNAs (miR-4485-3p/4484/4461 and 4463) in the sperm sample of asthenozoospermic men. RNA was extracted from spermatozoa of 74 volunteers (39 patients with idiopathic AZS and 35 controls with normal fertility), and relative gene expression analysis was performed by quantitative PCR. We used SNORD48 as a normaliser gene, and quantification was calculated by 2-ΔΔCt method. The expression of miR-4484 and miR-4461 was not detected in the spermatozoa of cases and controls. However, miR-4485-3p (p = .006) was significantly downregulated in the AZS men compared with the controls, but the miR-4463 expression was not significantly different between the two groups (p = .5). Bioinformatic analysis identified three target genes for miR-4485-3p (DNAH1, KIT and PARK7) that are related to male infertility. In conclusion, the downregulation of miR-4485-3p was associated with idiopathic AZS, which could be a molecular link between mitochondrial dysfunction and AZS.
Collapse
Affiliation(s)
- Zohreh Heidary
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Majid Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Kioomars Saliminejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Haleh Edalatkhah
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Hamid Reza Khorram Khorshid
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.,Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
9
|
Guo Y, Jiang W, Yu W, Niu X, Liu F, Zhou T, Zhang H, Li Y, Zhu H, Zhou Z, Sha J, Guo X, Chen D. Proteomics analysis of asthenozoospermia and identification of glucose-6-phosphate isomerase as an important enzyme for sperm motility. J Proteomics 2019; 208:103478. [PMID: 31394311 DOI: 10.1016/j.jprot.2019.103478] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/19/2019] [Accepted: 08/01/2019] [Indexed: 12/30/2022]
Abstract
Asthenozoospermia, in which sperm motility is affected, is one of the primary causes of male infertility. However, the exact mechanism responsible for the defective motility remains unknown. It is important to identify the precise proteins or pathways involved in sperm motility. The present study analyzed five asthenozoospermic sperm samples and five healthy controls using TMT-based quantitative method and identified 152 differentially expressed proteins, with 84 upregulated and 68 downregulated in asthenozoospermia. Four proteins (GPI, MDH1, PGAM1 and PGAM2) were found in several over-represented energy metabolism pathways using bioinformatics analysis. Glucose-6-phosphate isomerase (GPI), a rate-limiting enzyme converting glucose-6-phosphate to fructose-6-phosphate, was found to be significantly decreased in asthenozoospermia by Western blotting and ELISA on an extended sample size. Furthermore, substitution of glucose with fructose-6-phosphate significantly promoted asthenozoospermic sperm motility in vitro. Taken together, our results suggest that the poor motility of sperm in asthenozoospermia may partly result from defects in GPI-associated energy metabolism. SIGNIFICANCE: To identify the key proteins or pathways involved in sperm motility, the accurate TMT-based quantitative method was applied to characterize protein profiles of asthenozoospermic sperm. GPI, an enzyme involved in energy metabolism, was found to be differentially abundant, and validated by extended sample analysis. The supplement of the product of GPI, fructose-6-phosphate, could significantly improve sperm motility. Our study could provide new insights into the molecular basis of sperm motility and the improvement of motility in asthenozoospermia.
Collapse
Affiliation(s)
- Yueshuai Guo
- Central Laboratory, The affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China; State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Wen Jiang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Weiling Yu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Xin Niu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Fangjuan Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Tao Zhou
- Central Laboratory, The affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Hao Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Yan Li
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Hui Zhu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Zuomin Zhou
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China.
| | - Daozhen Chen
- Central Laboratory, The affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China.
| |
Collapse
|
10
|
M Tulantched DS, Min Z, Feng WX. Comparison of plasma PARK7 and NDKA diagnostic value in acute stroke. Future Sci OA 2019; 5:FSO375. [PMID: 31245039 PMCID: PMC6554690 DOI: 10.2144/fsoa-2018-0080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 08/28/2018] [Indexed: 02/03/2023] Open
Abstract
AIM In this prospective case-control study we aimed to compare diagnostic value of plasma PARK7 and NDKA in early diagnosis of acute stroke and evaluate the validated diagnostic values of PARK7 and NDKA in an independent patient cohort. We then assessed the quantitative relationship between the release of these markers: stroke severity and time. Blood samples were drawn upon hospital admission and 14 days later. PARK7 and NDKA concentrations were measured using an ELISA. RESULTS The expression of PARK7 (area under the curve [AUC] = 0.897) in acute stroke patients was more significant than in controls, relative to the NDKA expression (AUC = 0.462); p < 0.05. Their expressions were not related to the clinical characteristics of both groups; p > 0.05. CONCLUSION Even though both markers cannot differentiate stroke etiologies (ischemic or hemorrhagic), plasma PARK7 has better diagnostic value than NDKA for early diagnosis of stroke. 72 plasma samples obtained from acute stroke patients and 78 plasma samples collected from non-stroke patients were analyzed in this study.
Collapse
Affiliation(s)
| | - Zhao Min
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Wang-Xiao Feng
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| |
Collapse
|
11
|
Vitamin K2-Dependent GGCX and MGP Are Required for Homeostatic Calcium Regulation of Sperm Maturation. iScience 2019; 14:210-225. [PMID: 30981116 PMCID: PMC6461585 DOI: 10.1016/j.isci.2019.03.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/12/2019] [Accepted: 03/26/2019] [Indexed: 01/05/2023] Open
Abstract
A low-calcium microenvironment is essential for spermatozoa to mature in the epididymis; however, it remains unclear how dysregulation of epididymal luminal calcium is associated with male infertility. Using a warfarin-induced vitamin K2 deficiency rat model, we found that vitamin-K-dependent γ-glutamyl carboxylase (GGCX) and matrix Gla protein (MGP) were essential in extracellular calcium signaling of the intercellular communication required for epididymal sperm maturation. We found that GGCX and MGP co-localized in the vesicular structures of epididymal cells and spermatozoa. Calcium-regulated MGP binds to proteins in a biphasic manner; sub-millimolar calcium enhances, whereas excessive calcium inhibits, the binding. Bioinformatic analysis of the calcium-dependent MGP-bound proteome revealed that vesicle-mediated transport and membrane trafficking underlie the intercellular communication networks. We also identified an SNP mutation, rs699664, in the GGCX gene of infertile men with asthenozoospermia. Overall, we revealed that the GGCX-MGP system is integrated with the intercellular calcium signaling to promote sperm maturation. Epididymal sperm maturation requires VK2-dependent GGCX-mediated MGP carboxylation A GGCX SNP mutation is found in infertile men suffering from asthenozoospermia Carboxylated-MGP regulates intercellular calcium signaling in the epididymal lumen Calcium-regulated MGP binds to proteins in a biphasic-manner and favors low levels
Collapse
|
12
|
Comparison of plasma PARK7 and NDKA diagnostic value in acute stroke. Future Sci OA 2019. [DOI: 10.4155/fsoa-2018-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
13
|
Downregulation of DJ-1 Fails to Protect Mitochondrial Complex I Subunit NDUFS3 in the Testes and Contributes to the Asthenozoospermia. Mediators Inflamm 2018; 2018:6136075. [PMID: 29849492 PMCID: PMC5903298 DOI: 10.1155/2018/6136075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/29/2017] [Accepted: 01/14/2018] [Indexed: 12/14/2022] Open
Abstract
Asthenozoospermia (AS), an important cause of male infertility, is characterized by reduced sperm motility. Among the aetiologies of AS, inflammation seems to be the main cause. DJ-1, a conserved protein product of the PARK7 gene, is associated with male infertility and plays a role in oxidative stress and inflammation. Although our previous studies showed that a reduction in DJ-1 was accompanied by mitochondrial dysfunction in the sperm of patients with AS, the specific mechanism underlying this association remained unclear. In this study, we found that compared to the patients without AS, the expression of mitochondrial protein nicotinamide adenine dinucleotide dehydrogenase (ubiquinone) Fe-S protein 3 (NDUFS3) was also significantly decreased in the sperm of patients with AS. Similarly, decreased expression of DJ-1 and NDUFS3 and reduced mitochondria complex I activity were evident in a rat model of AS. Moreover, we showed that the interaction between DJ-1 and NDUFS3 in rat testes was weakened by ORN treatment. These results suggest that the impaired mitochondrial activity could be due to the broken interaction between DJ-1 and NDUFS3 and that downregulation of DJ-1 in sperm and testes contributes to AS pathogenesis.
Collapse
|
14
|
Genetic polymorphisms and haplotypes of the DJ-1 gene promoter associated with the susceptibility to male infertility. J Assist Reprod Genet 2017; 34:1673-1682. [PMID: 28932933 DOI: 10.1007/s10815-017-1033-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 08/23/2017] [Indexed: 02/07/2023] Open
Abstract
PURPOSE In this study, we evaluate the relationship between genetic polymorphisms of the DJ-1 gene, g.-6_+10del, and g.168_185del with male infertility susceptibility. METHODS Four hundred and twenty-two male infertile patients and 285 fertile male controls were recruited. Genotyping was performed by polymerase chain reaction. In silico analysis was performed by EPD, ElemeNT, SNPnexus, and PROMO to predict the potential functions of rs901561484 and rs373653682 polymorphisms. RESULTS The Del (D) allele carriers of DJ-1 g.-6_+10del polymorphism were significantly associated with the risk of male infertility in total infertile, asthenozoospermia, and oligoasthenozoospermia patients. Moreover, the Del (D) allele of DJ-1 g.-6_+10del polymorphism significantly increased in total male infertile, asthenozoospermia, and oligoasthenozoospermia groups. In addition, the frequencies of different genotypes and the Del allele and Dup allele carriers of DJ-1 g.168_185del gene polymorphisms were associated with male infertility in total infertile and four different sub-group patients. Furthermore, haplotype analysis of DJ-1 g.-6_+10del and g.168_185del polymorphisms revealed that the D-Dup and I-Del haplotype frequencies significantly increased the risk of male infertility, while I-Ins haplotypes were associated with a decreased risk of male infertility in total and sub-group patients. The in silico analysis showed that the presence of Ins and/or Dup alleles of the DJ-1 g.-6_+10del and g.168_185del polymorphisms could provide additional binding sites of more nuclear factors and probably affect transcriptional activity. CONCLUSION(S) Our study presents evidence of a strong association between functional polymorphisms of the DJ-1 promoter, g.-6_+10del, and g.168_185del with the risk of male infertility.
Collapse
|
15
|
Expression of NDUFA13 in asthenozoospermia and possible pathogenesis. Reprod Biomed Online 2016; 34:66-74. [PMID: 27789183 DOI: 10.1016/j.rbmo.2016.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 10/09/2016] [Accepted: 10/10/2016] [Indexed: 01/02/2023]
Abstract
Asthenozoospermia is a common cause of male infertility, which is characterized by reduced forward motility of spermatozoa. The cause and pathogenesis of asthenozoospermia are not fully understood. The purpose of this study was to investigate the expression of nicotinamide adenine dinucleotide (NADH) dehydrogenase (ubiquinone) 1 alpha subcomplex, 13 (NDUFA13) in the spermatozoa of men with asthenozoospermia and its possible pathogenesis. Protein content of NDUFA13 in spermatozoa was measured by Western blot analysis. The results showed that NDUFA13 expression in spermatozoa was significantly lower in men with asthenozoospermic than in men with normozoospermia (P < 0.01). Immunofluorescence experiments showed that NDUFA13 was expressed predominantly in the sperm mid-piece. A lower mitochondrial membrane potential, a higher intracellular reactive oxygen species (ROS) level and more apoptotic cells were also detected in men with asthenozoospermia. NDUFA13-specific small interfering RNA was used in the mouse spermatocyte GC2-spd cell line to down-regulate the expression of NDUFA13. The knockdown of NDUFA13 in the GC2-spd cells caused a collapse of mitochondrial membrane potential, an increase in ROS level and more apoptotic cells. Our study showed that NDUFA13 deficiency may be associated with asthenozoospermia through the disturbance of spermatozoa mitochondrial membrane potential and by increasing apoptosis and intracellular ROS.
Collapse
|
16
|
Roy U, Atluri VSR, Agudelo M, Yndart A, Huang Z, Nair M. DJ1 expression downregulates in neuroblastoma cells (SK-N-MC) chronically exposed to HIV-1 and cocaine. Front Microbiol 2015; 6:749. [PMID: 26284039 PMCID: PMC4517050 DOI: 10.3389/fmicb.2015.00749] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/08/2015] [Indexed: 01/24/2023] Open
Abstract
Background: HIV-associated neurological disorder (HAND) has long been recognized as a consequence of human immunodeficiency virus (HIV) infection in the brain. The pathology of HAND gets more complicated with the recreational drug use such as cocaine. Recent studies have suggested multiple genetic influences involved in the pathology of addiction and HAND but only a fraction of the entire genetic risk has been investigated so far. In this regard, role of DJ1 protein (a gene linked to autosomal recessive early-onset Parkinson’s disease) in regulating dopamine (DA) transmission and reactive oxygen species (ROS) production in neuronal cells will be worth investigating in HIV-1 and cocaine exposed microenvironment. Being a very abundant protein in the brain, DJ1 could serve as a potential marker for early detection of HIV-1 and/or cocaine related neurological disorder. Methods:In vitro analysis was done to observe the effect of HIV-1 and/or cocaine on DJ1 protein expression in neuroblastoma cells (SK-N-MC). Gene and protein expression analysis of DJ1 was done on the HIV infected and/or cocaine treated SK-N-MC and compared to untreated cells using real time PCR, Western Blot and flow cytometry. Effect of DJ1 dysregulation on oxidative stress was analyzed by measuring ROS production in these cells. Results: Gene expression and protein analysis indicated that there was a significant decrease in DJ1 expression in SK-N-MC chronically exposed to HIV-1 and/or cocaine which is inversely proportional to ROS production. Conclusion: This is the first study to establish that DJ1 expression level in the neuronal cells significantly decreased in presence of HIV-1 and/or cocaine indicating oxidative stress level of DA neurons.
Collapse
Affiliation(s)
- Upal Roy
- Department of Immunology, Institute of NeuroImmune Pharmacology, Centre for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University , Miami, FL, USA
| | - Venkata S R Atluri
- Department of Immunology, Institute of NeuroImmune Pharmacology, Centre for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University , Miami, FL, USA
| | - Marisela Agudelo
- Department of Immunology, Institute of NeuroImmune Pharmacology, Centre for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University , Miami, FL, USA
| | - Adriana Yndart
- Department of Immunology, Institute of NeuroImmune Pharmacology, Centre for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University , Miami, FL, USA
| | - Zaohua Huang
- Department of Immunology, Institute of NeuroImmune Pharmacology, Centre for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University , Miami, FL, USA
| | - Madhavan Nair
- Department of Immunology, Institute of NeuroImmune Pharmacology, Centre for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University , Miami, FL, USA
| |
Collapse
|