1
|
Lee R, Park HJ, Lee WY, Choi Y, Song H. Nanoscale level gelatin-based scaffolds enhance colony formation of porcine testicular germ cells. Theriogenology 2023; 202:125-135. [PMID: 36958136 DOI: 10.1016/j.theriogenology.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/01/2023] [Accepted: 03/13/2023] [Indexed: 03/16/2023]
Abstract
The extracellular matrix is important in cell growth, proliferation, and differentiation. Gelatin, a support for adhering cells, is used for coating culture plate surfaces of several primary and stem cells. However, gelatin characteristics on culture plates and its cell interactions are not understood. Here, we aimed to identify the effect of gelatin topography on culture plates on the proliferation and colony formation of porcine spermatogonial germ cells (pSGC). To generate different surface topographies, gelatin powder was dissolved in H2O at varying melting temperatures (40, 60, 80, and 120 °C) and coated on the surface of the culture plates. At 40 °C, the pores of the gelatin scaffold were regular ellipses 5-6 μm in diameter and 10-30 nm in thickness. However, at 120 °C, irregular pores 20-30 μm in diameter and 10-20 nm in thickness were obtained. Additionally, the number of attached cells and pSGC colonies were significantly more at 40 °C than at 120 °C after a week of culture. Interestingly, the feeder cells did not settle properly at 120 °C but detached easily from the culture dishes. PSGC colonies were 100 μm in diameter at 40 °C, with small and detached colonies observed at 120 °C. Thus, optimal topography of gelatin was obtained at 40 °C, which was sufficient for the proliferation of feeder cells and the formation of pSGC colonies. Thus, gelatin scaffold conditions at 40 °C and 60 °C were optimal for the derivation and culture of pSGC, and gelatin surface morphology is important for the maintenance of supportive feeder cells for pSGC proliferation and colony formation.
Collapse
Affiliation(s)
- Ran Lee
- Department of Stem Cells & Regenerative Technology, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Hyun Jung Park
- Department of Animal Biotechnology, Sangji University, Wonju-si, 26339, Republic of Korea.
| | - Won Young Lee
- Department of Livestock, Korea National University of Agricultures and Fisheries, Jeonju-si, 54874, Republic of Korea.
| | - Youngsok Choi
- Department of Stem Cells & Regenerative Technology, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Hyuk Song
- Department of Stem Cells & Regenerative Technology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
2
|
Merlo B, Teti G, Lanci A, Burk J, Mazzotti E, Falconi M, Iacono E. Comparison between adult and foetal adnexa derived equine post-natal mesenchymal stem cells. BMC Vet Res 2019; 15:277. [PMID: 31375144 PMCID: PMC6679462 DOI: 10.1186/s12917-019-2023-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
Background Little is known about the differences among adult and foetal equine mesenchymal stem cells (MSCs), and no data exist about their comparative ultrastructural morphology. The aim of this study was to describe and compare characteristics, immune properties, and ultrastructural morphology of equine adult (bone marrow: BM, and adipose tissue: AT) and foetal adnexa derived (umbilical cord blood: UCB, and Wharton’s jelly: WJ) MSCs. Results No differences were observed in proliferation during the first 3 passages. While migration ability was similar among cells, foetal MSCs showed a higher adhesion ability, forming smaller spheroids after hanging drop culture (P < 0.05). All MSCs differentiated toward adipogenic, chondrogenic and osteogenic lineages, only tenogenic differentiation was less evident for WJ-MSCs. Data obtained by PCR confirmed MHC1 expression and lack of MHC2 expression in all four cell types. Foetal adnexa MSCs were positive for genes specific for anti-inflammatory and angiogenic factors (IL6, IL8, ILβ1) and WJ-MSCs were the only positive for OCT4 pluripotency gene. At immunofluorescence all cells expressed typical mesenchymal markers (α-SMA, N-cadherin), except for BM-MSCs, which did not express N-cadherin. By transmission electron microscopy, it was observed that WJ-MSCs had a higher (P < 0.05) number of microvesicles compared to adult MSCs, and UCB-MSCs showed more microvesicles than BM-MSCs (P < 0.05). AT-MSCs had a lower number of mitochondria than WJ-MSCs (P < 0.05), and mitochondrial area was higher for WJ-MSCs compared to UCB and AT-MSCs (P < 0.05). Conclusions Results demonstrate that MSCs from adult and foetal tissues have different characteristics, and foetal MSCs, particularly WJ derived ones, seem to have some charactestics that warrant further investigation into potential advantages for clinical application.
Collapse
Affiliation(s)
- B Merlo
- Department of Veterinary Medical Sciences, University of Bologna, via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy.,Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy
| | - G Teti
- Department for Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - A Lanci
- Department of Veterinary Medical Sciences, University of Bologna, via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy
| | - J Burk
- Saxon Incubator for Clinical Translation, University of Leipzig, Leipzig, Germany.,Equine Clinic (Surgery), Justus Liebig University Giessen, Giessen, Germany
| | - E Mazzotti
- Department of Comparative Biomedical Sciences, University of Teramo, Teramo, Italy
| | - M Falconi
- Department for Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - E Iacono
- Department of Veterinary Medical Sciences, University of Bologna, via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy. .,Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy.
| |
Collapse
|
3
|
Liu X, Yu T, Sun Y, Wang H. Characterization of novel alternative splicing variants of Oct4 gene expressed in mouse pluripotent stem cells. J Cell Physiol 2018; 233:5468-5477. [PMID: 29266259 DOI: 10.1002/jcp.26411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/18/2017] [Indexed: 01/18/2023]
Abstract
Oct4 is an important transcription factor for maintaining self-renewal and pluripotency of pluripotent stem cells (PSCs). Human OCT4 can be alternatively spliced and generate OCT4a, OCT4b, and OCT4b1. In this study, we discovered the novel Oct4 variants of Oct4b' and Oct4b1-3 in mouse PSCs for the first time. The expression of Oct4b variants, especially for Oct4b', was down regulated along with the downregulation of Oct4a when stem cells were differentiated. We also found four Oct4 translational products that were differentially expressed in mouse PSCs under the different culture conditions. The constructs of Oct4b2 and Oct4b3 could be alternatively spliced into Oct4b and Oct4b' when constructs were transiently transfected in NIH3T3 cells. Oct4b' encoded a 189 aa protein, and Oct4b could generate three distinct proteins including Oct4b-246aa, Oct4b-221aa, and Oct4b-189aa. The Oct4b variants could be alternatively translated in different type cells under the control of internal ribosome entry site (IRES) element that is within 5' upstream sequence of Oct4b. These findings provide new insights into reconsidering Oct4 variants expression and its additional role in maintaining the pluripotency of stem cells.
Collapse
Affiliation(s)
- Xiaopeng Liu
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Tong Yu
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuxin Sun
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Huayan Wang
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
4
|
Gao J, Wang X, Zhang Q. Evolutionary Conservation of pou5f3 Genomic Organization and Its Dynamic Distribution during Embryogenesis and in Adult Gonads in Japanese Flounder Paralichthys olivaceus. Int J Mol Sci 2017; 18:ijms18010231. [PMID: 28124980 PMCID: PMC5297860 DOI: 10.3390/ijms18010231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 01/09/2017] [Accepted: 01/17/2017] [Indexed: 01/06/2023] Open
Abstract
Octamer-binding transcription factor 4 (Oct4) is a member of POU (Pit-Oct-Unc) transcription factor family Class V that plays a crucial role in maintaining the pluripotency and self-renewal of stem cells. Though it has been deeply investigated in mammals, its lower vertebrate homologue, especially in the marine fish, is poorly studied. In this study, we isolated the full-length sequence of Paralichthys olivaceus pou5f3 (Popou5f3), and we found that it is homologous to mammalian Oct4. We identified two transcript variants with different lengths of 3′-untranslated regions (UTRs) generated by alternative polyadenylation (APA). Quantitative real-time RT-PCR (qRT-PCR), in situ hybridization (ISH) and immunohistochemistry (IHC) were implemented to characterize the spatial and temporal expression pattern of Popou5f3 during early development and in adult tissues. Our results show that Popou5f3 is maternally inherited, abundantly expressed at the blastula and early gastrula stages, then greatly diminishes at the end of gastrulation. It is hardly detectable from the heart-beating stage onward. We found that Popou5f3 expression is restricted to the adult gonads, and continuously expresses during oogenesis while its dynamics are downregulated during spermatogenesis. Additionally, numerous cis-regulatory elements (CRE) on both sides of the flanking regions show potential roles in regulating the expression of Popou5f3. Taken together, these findings could further our understanding of the functions and evolution of pou5f3 in lower vertebrates, and also provides fundamental information for stem cell tracing and genetic manipulation in Paralichthys olivaceus.
Collapse
Affiliation(s)
- Jinning Gao
- College of Marine Life Science, Ocean University of China, Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Qingdao 266003, China.
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Xubo Wang
- College of Marine Life Science, Ocean University of China, Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Qingdao 266003, China.
| | - Quanqi Zhang
- College of Marine Life Science, Ocean University of China, Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Qingdao 266003, China.
| |
Collapse
|
5
|
Hwang JY, Oh JN, Park CH, Lee DK, Lee CK. Dosage compensation of X-chromosome inactivation center-linked genes in porcine preimplantation embryos: Non-chromosome-wide initiation of X-chromosome inactivation in blastocysts. Mech Dev 2015; 138 Pt 3:246-55. [DOI: 10.1016/j.mod.2015.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 10/05/2015] [Accepted: 10/23/2015] [Indexed: 11/25/2022]
|
6
|
Hwang JY, Choi KH, Lee DK, Kim SH, Kim EB, Hyun SH, Lee CK. Overexpression of OCT4A ortholog elevates endogenous XIST in porcine parthenogenic blastocysts. J Reprod Dev 2015; 61:533-40. [PMID: 26255835 PMCID: PMC4685219 DOI: 10.1262/jrd.2015-017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
X-chromosome inactivation (XCI) is an epigenetic process that equalizes expression of X-borne genes between
male and female eutherians. This process is observed in early eutherian embryo development in a
species-specific manner. Until recently, various pluripotent factors have been suggested to regulate the
process of XCI by repressing XIST expression, which is the master inducer for XCI. Recent
insights into the process and its regulation have been restricted in mouse species despite the evolutionary
diversity of the process and molecular mechanism among the species. OCT4A is one of the
represented pluripotent factors, the gate-keeper for maintaining pluripotency, and an XIST
repressor. Therefore, in here, we examined the relation between OCT4A and X-linked genes in
porcine preimplantation embryos. Three X-linked genes, XIST,
LOC102165544, and RLIM, were selected in present study because their
orthologues have been known to regulate XCI in mice. Expression levels of OCT4A were
positively correlated with XIST and LOC102165544 in female blastocysts.
Furthermore, overexpression of exogenous human OCT4A in cleaved parthenotes generated
blastocysts with increased XIST expression levels. However, increased XIST
expression was not observed when exogenous OCT4A was obtained from early blastocysts. These
results suggest the possibility that OCT4A would be directly or indirectly involved in
XIST expression in earlier stage porcine embryos rather than blastocysts.
Collapse
Affiliation(s)
- Jae Yeon Hwang
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|