1
|
Samanta A, Biswas S, Ghosh S, Banerjee S, Dam B, Maitra S. Maternal exposure to chronic, low-dose nonylphenol in zebrafish: Disruption of ovarian health, reproductive function, and embryogenesis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124169. [PMID: 39842349 DOI: 10.1016/j.jenvman.2025.124169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
Nonylphenol (NP), a non-ionic surfactant and potent endocrine disruptor, is known for its environmental persistence, biotic accumulation potential and toxicity. Nonetheless, mechanisms underlying NP modulation of female fertility with potential impact on embryogenesis in the unexposed offspring remain elusive. This study investigates the effects and toxic mechanisms of maternal exposure to NP at varying concentrations (50 and 100 μg/L) on zebrafish (Danio rerio), specifically focusing on ovarian health, reproductive parameters, and early developmental potential in the F1 generation. Our findings indicate a higher accumulation of NP in the ovaries compared to muscle tissue. Further, chronic (28 days) NP exposure promotes ovarian reactive oxygen species (ROS) accumulation, activates the MAPK (JNK, p38 MAPK, ERK1/2) pathways, AP-1 induction, and elevated expression of pro-inflammatory cytokines (Tnf-α, Il-1β, Il-6) triggering inflammation. Besides, heightened follicular atresia in NP-treated ovaries relates to increased Bax/Bcl2 ratio, cleaved caspase 3 and Parp1 activation prompting apoptosis. While it showed higher affinity to zebrafish ERα (in silico analysis), NP exposure in vivo promotes a robust increase in ovarian ERα but abrogated ERβ expression and a significant alteration in fshr and lhcgr transcripts. While attenuated StAR and P450 aromatase expression at both mRNA and protein levels and reduced igf3 expression reveal impaired ovarian microenvironment, NP-induced dysregulated NO/NOS/cyclooxygenase signaling and attenuation of hCG-induced p34cdc2 activation and oocyte maturation correspond well with decreased fecundity and fertilization efficiency. Intriguingly, maternal exposure to NP resulted in delayed embryogenesis, developmental aberrations, and reduced hatching rates in the unexposed offspring, risking F1 generation. Collectively, this study provides mechanistic insights into the detrimental influence of maternal exposure to NP on ovarian dysfunction, reproductive insufficiency and embryotoxicity.
Collapse
Affiliation(s)
- Anwesha Samanta
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Subhasri Biswas
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sandip Ghosh
- Microbiology Laboratory, Department of Botany, Visva-Bharati University, Santiniketan, 731235, India
| | - Sambuddha Banerjee
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Bomba Dam
- Microbiology Laboratory, Department of Botany, Visva-Bharati University, Santiniketan, 731235, India
| | - Sudipta Maitra
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India.
| |
Collapse
|
2
|
Pan Y, Pan C, Zhang C. Unraveling the complexity of follicular fluid: insights into its composition, function, and clinical implications. J Ovarian Res 2024; 17:237. [PMID: 39593094 PMCID: PMC11590415 DOI: 10.1186/s13048-024-01551-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Follicular fluid (FF) plays a vital role in the bidirectional communication between oocytes and granulosa cells (GCs), regulating and promoting oocyte growth and development. This fluid constitutes a complex microenvironment, rich in various molecules including hormones, growth factors, cytokines, lipids, proteins, and extracellular vesicles. Understanding the composition and metabolic profile of follicular fluid is important for investigating ovarian pathologies such as polycystic ovary syndrome (PCOS) and endometriosis. Additionally, analyzing follicular fluid can offer valuable insights into oocyte quality, aiding in optimal oocyte selection for in vitro fertilization (IVF). This review provides an overview of follicular fluid composition, classification of its components and discusses the influential components of oocyte development. It also highlights the role of follicular fluid in the pathogenesis and diagnosis of ovarian diseases, along with potential follicular fluid biomarkers for assessing oocyte quality. By understanding the intricate relationship between follicular fluid and oocyte development, we can advance fertility research and improve clinical outcomes for infertility patients.
Collapse
Affiliation(s)
- Yurong Pan
- Nanchang University Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Chenyu Pan
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chunping Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330019, China.
| |
Collapse
|
3
|
Zhang X, Yin Y, Fan H, Zhou Q, Jiao L. Arginine Promoted Ovarian Development in Pacific White Shrimp Litopenaeus vannamei via the NO-sGC-cGMP and TORC1 Signaling Pathways. Animals (Basel) 2024; 14:1986. [PMID: 38998098 PMCID: PMC11240395 DOI: 10.3390/ani14131986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/26/2024] [Accepted: 06/13/2024] [Indexed: 07/14/2024] Open
Abstract
This study aimed to evaluate the effects of arginine (0.5%, 1%, 1.5%, 2%, and 2.5% arginine supplementation levels were selected) on the ovarian development of Pacific white shrimp (Litopenaeus vannamei). The analyzed arginine supplementation levels in each diet were 2.90%, 3.58%, 4.08%, 4.53%, 5.04%, and 5.55%, respectively. A total of 540 shrimp (an initial weight of approximately 14 g) with good vitality were randomly distributed into six treatments, each of which had three tanks (300 L in volume filled with 200 L of water), with 30 shrimp per duplicate. Shrimp were fed three times a day (6:00 a.m., 11:00 a.m., and 6:00 p.m.). The results showed that after the 12-week raring cycle, shrimp fed with 4.08% and 4.53% Arg achieved better ovary development, which was identified by ovarian stage statistics, ovarian morphology observation, serum hormone levels (methylfarneside (MF); 5-hydroxytryptamine (5-HT); estradiol (E2); and gonadotropin-releasing hormone (GnRH)), gene expression (DNA meiotic recombinase 1 (dmc1), proliferating cell nuclear antigen (pcna), drosophila steroid hormone 1 (cyp18a), retinoid X receptor (rxra), and ecdysone receptor (ecr)). Further in-depth analysis showed that 4.08% and 4.53% Arg supplementation increased the concentration of vitellogenin in hepatopancreas and serum (p < 0.05) and upregulated the expression level of hepatopancreatic vg and vgr (p < 0.05), which promoted the synthesis of hepatopancreas exogenous vitellogenin and then transported it into the ovary through the vitellogenin receptor and further promoted ovarian maturation in L. vannamei. Meanwhile, compared with the control group, the expression level of vg in the ovary of the 4.53% Arg group was significantly upregulated (p < 0.05), which indicated endogenous vitellogenin synthesis in ovarian maturation in L. vannamei. Moreover, the expression of genes related to the mechanistic target of the rapamycin complex 1 (mTORC1) pathway and protein levels was regulated by dietary arginine supplementation levels. Arginine metabolism-related products, including nitric oxide synthase (NOS), nitric oxide (NO), and cyclic guanosine monophosphate (cGMP), were also affected. RNA interference was applied here to study the molecular regulation mechanism of arginine on ovarian development in L. vannamei. A green fluorescent protein (GFP)-derived double-stranded RNA (dsGFP) is currently commonly used as a control, while TOR-derived dsRNA (dsTOR) and NOS-derived dsRNA (dsNOS) were designed to build the TOR and NOS in vivo knockdown model. The results showed that the mTORC1 and NO-sGC-cGMP pathways were inhibited, while the vitellogenin receptor and vitellogenin gene expression levels were downregulated significantly in the hepatopancreas and ovary. Overall, dietary arginine supplementation could enhance endogenous and exogenous vitellogenin synthesis to promote ovary development in L. vannamei, and the appropriate dosages were 4.08% and 4.53%. The NO-sGC-cGMP and mTORC1 signaling pathways mediated arginine in the regulation of ovary development in L. vannamei.
Collapse
Affiliation(s)
- Xin Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yanan Yin
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Haitao Fan
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Qicun Zhou
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Lefei Jiao
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
4
|
Jiang M, Zhang GH, Yu Y, Zhao YH, Liu J, Zeng Q, Feng MY, Ye F, Xiong DS, Wang L, Zhang YN, Yu L, Wei JJ, He LB, Zhi W, Du XR, Li NJ, Han CL, Yan HQ, Zhou ZT, Miao YB, Wang W, Liu WX. De novo design of a nanoregulator for the dynamic restoration of ovarian tissue in cryopreservation and transplantation. J Nanobiotechnology 2024; 22:330. [PMID: 38862987 PMCID: PMC11167790 DOI: 10.1186/s12951-024-02602-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
The cryopreservation and transplantation of ovarian tissue underscore its paramount importance in safeguarding reproductive capacity and ameliorating reproductive disorders. However, challenges persist in ovarian tissue cryopreservation and transplantation (OTC-T), including the risk of tissue damage and dysfunction. Consequently, there has been a compelling exploration into the realm of nanoregulators to refine and enhance these procedures. This review embarks on a meticulous examination of the intricate anatomical structure of the ovary and its microenvironment, thereby establishing a robust groundwork for the development of nanomodulators. It systematically categorizes nanoregulators and delves deeply into their functions and mechanisms, meticulously tailored for optimizing ovarian tissue cryopreservation and transplantation. Furthermore, the review imparts valuable insights into the practical applications and obstacles encountered in clinical settings associated with OTC-T. Moreover, the review advocates for the utilization of microbially derived nanomodulators as a potent therapeutic intervention in ovarian tissue cryopreservation. The progression of these approaches holds the promise of seamlessly integrating nanoregulators into OTC-T practices, thereby heralding a new era of expansive applications and auspicious prospects in this pivotal domain.
Collapse
Affiliation(s)
- Min Jiang
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Guo-Hui Zhang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Yuan Yu
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yu-Hong Zhao
- School of Clinical Laboratory Medicine, Chengdu Medical College, Chengdu, 610083, China
| | - Jun Liu
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Qin Zeng
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Meng-Yue Feng
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Fei Ye
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Dong-Sheng Xiong
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Li Wang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Ya-Nan Zhang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Ling Yu
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Jia-Jing Wei
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Li-Bing He
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Weiwei Zhi
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Xin-Rong Du
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ning-Jing Li
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Chang-Li Han
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - He-Qiu Yan
- School of Clinical Laboratory Medicine, Chengdu Medical College, Chengdu, 610083, China
| | - Zhuo-Ting Zhou
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, China.
| | - Wen Wang
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, China.
| | - Wei-Xin Liu
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China.
| |
Collapse
|
5
|
Basini G, Bussolati S, Grolli S, Berni P, Grasselli F. Are the new phthalates safe? Evaluation of Diisononilphtalate (DINP) effects in porcine ovarian cell cultures. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104384. [PMID: 38331371 DOI: 10.1016/j.etap.2024.104384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
Phthalates are plasticizing chemicals, widely used in packaging materials and consumer products for several decades. These molecules have raised concerns because of their toxicity and their use have been restricted in several countries. Therefore, novel phthalates have been introduced. Among these, diisononilphtalate (DINP) is widely employed. However, its safety has not been properly addressed. Therefore, using a well validated granulosa cell model, collected from swine ovaries with a translational value, we studied potential DINP effects on important cellular functional parameters. In particular, we studied cell growth, steroidogenesis and redox status. Collected data showed that DINP stimulates (p < 0.05) cell growth, increases estrogen and inhibits progesterone production (p < 0.05), disrupts redox balance stimulating free radicals (p < 0.05) while reducing scavenger activities (p< 0.05). Taken together, DINP's impact on cultured swine granulosa cells provides cause for concern regarding its potential adverse effects on reproductive and endocrine functions.
Collapse
Affiliation(s)
- G Basini
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, Parma 43126, Italy.
| | - S Bussolati
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, Parma 43126, Italy
| | - S Grolli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, Parma 43126, Italy
| | - P Berni
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, Parma 43126, Italy
| | - F Grasselli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, Parma 43126, Italy
| |
Collapse
|
6
|
Basini G, Grasselli F. Role of Melatonin in Ovarian Function. Animals (Basel) 2024; 14:644. [PMID: 38396612 PMCID: PMC10885985 DOI: 10.3390/ani14040644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Melatonin is a hormone mainly produced by the pineal gland in the absence of light stimuli. The light, in fact, hits the retina, which sends a signal to the suprachiasmatic nucleus, which inhibits the synthesis of the hormone by the epiphysis. Mostly by interacting with MT1/MT2 membrane receptors, melatonin performs various physiological actions, among which are its regulation of the sleep-wake cycle and its control of the immune system. One of its best known functions is its non-enzymatic antioxidant action, which is independent from binding with receptors and occurs by electron donation. The hormone is also an indicator of the photoperiod in seasonally reproducing mammals, which are divided into long-day and short-day breeders according to the time of year in which they are sexually active and fertile. It is known that melatonin acts at the hypothalamic-pituitary-gonadal axis level in many species. In particular, it inhibits the hypothalamic release of GnRH, with a consequent alteration of FSH and LH levels. The present paper mainly aims to review the ovarian effect of melatonin.
Collapse
Affiliation(s)
- Giuseppina Basini
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, 43126 Parma, Italy;
| | | |
Collapse
|
7
|
Awonuga AO, Camp OG, Abu-Soud HM. A review of nitric oxide and oxidative stress in typical ovulatory women and in the pathogenesis of ovulatory dysfunction in PCOS. Reprod Biol Endocrinol 2023; 21:111. [PMID: 37996893 PMCID: PMC10666387 DOI: 10.1186/s12958-023-01159-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous functional endocrine disorder associated with a low-grade, chronic inflammatory state. Patients with PCOS present an increased risk of metabolic comorbidities and often menstrual dysregulation and infertility due to anovulation and/or poor oocyte quality. Multiple mechanisms including oxidative stress and low-grade inflammation are believed to be responsible for oocyte deterioration; however, the influence of nitric oxide (NO) insufficiency in oocyte quality and ovulatory dysfunction in PCOS is still a matter for debate. Higher production of superoxide (O2•-) mediated DNA damage and impaired antioxidant defense have been implicated as contributory factors for the development of PCOS, with reported alteration in superoxide dismutase (SOD) function, an imbalanced zinc/copper ratio, and increased catalase activity. These events may result in decreased hydrogen peroxide (H2O2) accumulation with increased lipid peroxidation events. A decrease in NO, potentially due to increased activity of NO synthase (NOS) inhibitors such as asymmetric dimethylarginine (ADMA), and imbalance in the distribution of reactive oxygen species (ROS), such as decreased H2O2 and increased O2•-, may offset the physiological processes surrounding follicular development, oocyte maturation, and ovulation contributing to the reproductive dysfunction in patients with PCOS. Thus, this proposal aims to evaluate the specific roles of NO, oxidative stress, ROS, and enzymatic and nonenzymatic elements in the pathogenesis of PCOS ovarian dysfunction, including oligo- anovulation and oocyte quality, with the intent to inspire better application of therapeutic options. The authors believe more consideration into the specific roles of oxidative stress, ROS, and enzymatic and nonenzymatic elements may allow for a more thorough understanding of PCOS. Future efforts elaborating on the role of NO in the preoptic nucleus to determine its influence on GnRH firing and follicle-stimulating hormone/Luteinizing hormone (FSH/LH) production with ovulation would be of benefit in PCOS. Consequently, treatment with an ADMA inhibitor or NO donor may prove beneficial to PCOS patients experiencing reproductive dysfunction and infertility.
Collapse
Affiliation(s)
- Awoniyi O Awonuga
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock Detroit, Detroit, MI, 48201, USA.
| | - Olivia G Camp
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock Detroit, Detroit, MI, 48201, USA
| | - Husam M Abu-Soud
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock Detroit, Detroit, MI, 48201, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
8
|
Zhang W, Chen SJ, Guo LY, Zhang Z, Zhang JB, Wang XM, Meng XB, Zhang MY, Zhang KK, Chen LL, Li YW, Wen Y, Wang L, Hu JH, Bai YY, Zhang XJ. Nitric oxide synthase and its function in animal reproduction: an update. Front Physiol 2023; 14:1288669. [PMID: 38028794 PMCID: PMC10662090 DOI: 10.3389/fphys.2023.1288669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Nitric oxide (NO), a free radical labile gas, is involved in the regulation of various biological functions and physiological processes during animal reproduction. Recently, increasing evidence suggests that the biological role and chemical fate of NO is dependent on dynamic regulation of its biosynthetic enzyme, three distinct nitric oxide synthase (NOS) according to their structure, location and function. The impact of NOS isoforms on reproductive functions need to be timely elucidated. Here, we focus on and the basic background and latest studies on the development, structure, importance inhibitor, location pattern, complex functions. Moreover, we summarize the exactly mechanisms which involved some cell signal pathways in the regulation of NOS with cellular and molecular level in the animal reproduction. Therefore, this growing research area provides the new insight into the important role of NOS male and female reproduction system. It also provides the treatment evidence on targeting NOS of reproductive regulation and diseases.
Collapse
Affiliation(s)
- Wei Zhang
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Su juan Chen
- Department of Life Science and Technology, Xinxiang Medical College, Xinxiang, Henan, China
| | - Li ya Guo
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Zijing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Jia bin Zhang
- College of Veterinary Medicine, Jilin Agriculture University, Changchun, China
| | - Xiao meng Wang
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Xiang bo Meng
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Min ying Zhang
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Ke ke Zhang
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Lin lin Chen
- College of Veterinary Medicine, Jilin Agriculture University, Changchun, China
| | - Yi wei Li
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Yuliang Wen
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Lei Wang
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Jian he Hu
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Yue yu Bai
- Animal Health Supervision in Henan Province, Zhengzhou, Henan, China
| | - Xiao jian Zhang
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| |
Collapse
|
9
|
Andrabi SM, Sharma NS, Karan A, Shahriar SMS, Cordon B, Ma B, Xie J. Nitric Oxide: Physiological Functions, Delivery, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303259. [PMID: 37632708 PMCID: PMC10602574 DOI: 10.1002/advs.202303259] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 08/28/2023]
Abstract
Nitric oxide (NO) is a gaseous molecule that has a central role in signaling pathways involved in numerous physiological processes (e.g., vasodilation, neurotransmission, inflammation, apoptosis, and tumor growth). Due to its gaseous form, NO has a short half-life, and its physiology role is concentration dependent, often restricting its function to a target site. Providing NO from an external source is beneficial in promoting cellular functions and treatment of different pathological conditions. Hence, the multifaceted role of NO in physiology and pathology has garnered massive interest in developing strategies to deliver exogenous NO for the treatment of various regenerative and biomedical complexities. NO-releasing platforms or donors capable of delivering NO in a controlled and sustained manner to target tissues or organs have advanced in the past few decades. This review article discusses in detail the generation of NO via the enzymatic functions of NO synthase as well as from NO donors and the multiple biological and pathological processes that NO modulates. The methods for incorporating of NO donors into diverse biomaterials including physical, chemical, or supramolecular techniques are summarized. Then, these NO-releasing platforms are highlighted in terms of advancing treatment strategies for various medical problems.
Collapse
Affiliation(s)
- Syed Muntazir Andrabi
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Navatha Shree Sharma
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Anik Karan
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - S. M. Shatil Shahriar
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Brent Cordon
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Bing Ma
- Cell Therapy Manufacturing FacilityMedStar Georgetown University HospitalWashington, DC2007USA
| | - Jingwei Xie
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of Mechanical and Materials EngineeringCollege of EngineeringUniversity of Nebraska LincolnLincolnNE68588USA
| |
Collapse
|
10
|
Sharawy HA, Hegab AO, Mostagir A, Adlan F, Bazer FW, Elmetwally MA. Expression of genes for transport of water and angiogenesis, as well as biochemical biomarkers in Holstein dairy cows during the ovsynch program. Theriogenology 2023; 208:52-59. [PMID: 37315443 DOI: 10.1016/j.theriogenology.2023.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/16/2023]
Abstract
Changes in expression of genes associated with angiogenesis and transport of water by cells, as well as biomarkers of oxidative stress were determined at specific times during the ovsynch protocol to synchronize estrus and breed Holstein dairy cows. Blood samples were taken from 82 lactating Holstein cows at the time of the 1st GnRH injection (G1), 7 days later at the time of the PGF2a (PG) injection, and 48 h after the PGF2a treatment when the second injection of GnRH was administered (G2). The serum was analyzed for malondialdehyde (MDA), reduced glutathione (GSH), glutathione peroxidase (GPX), nitric oxide (NO), catalase (CAT), and total antioxidant capacity (TAC). The expression of vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor 2 (VEGFR2), endothelial nitric oxide synthase (eNOS3), aquaporin 3 (AQP3), and AQP4 mRNAs in peripheral blood mononuclear cells (PBMCs) was analyzed. The number of copies of each of the mRNAs was quantified using qPCR. Pregnancy status was determining at 32 ± 3 days after insemination using an ultrasound "Sonoscape-5V″ model. Receiver operating curves (ROC) were used to assess the sensitivity and specificity of the biochemical parameters in serum to predict establishment of p The expression of MDA, GPX, and Catalase changed (P < 0·05) between G1, PG and G2 phases of the ovsynch protocol with higher levels at PG than at G1 and G2. The highest levels of NO were detected at G2. The ROC analyses identified NO, TAC and CAT as the most sensitive and specific biomarker for pregnancy with areas under the curve being 0.875 (P < 0.0001), 0.843 (P < 0.03), 0.833 (P < 0.017), sensitivity being 75.3, 42.86, and 26.27%, and specificity being 90, 90 and 85% respectively. The expression for VEGF, VEGFR2, eNOS3, AQP3, and AQP4 mRNAs was upregulated at PG compared to G1 and G2 phases of the ovsynch protocol. The results suggest that following the first injection of GnRH, there is an increase in expression of VEGF, VEGFR2, eNOS3, AQP3, and AQP4 mRNAs by the time of the PGF2a injection and then expression decreased. Further, ROC analyses identified increases in NO, TAC and CAT as the most sensitive and specific biomarkers with the greatest potential to predict establishment of pregnancy in Holstein cows.
Collapse
Affiliation(s)
- Heba A Sharawy
- Departments of Theriogenology, 35516, Mansoura, Egypt; Center for Reproductive Biotechnology, 35516, Mansoura, Egypt
| | - AbdelRaouf O Hegab
- Departments of Theriogenology, 35516, Mansoura, Egypt; Center for Reproductive Biotechnology, 35516, Mansoura, Egypt
| | - Amira Mostagir
- Departments of Theriogenology, 35516, Mansoura, Egypt; Center for Reproductive Biotechnology, 35516, Mansoura, Egypt; Clinical Teaching Hospital, Faculty of Veterinary Medicine, Mansoura University, 35516, Mansoura, Egypt
| | - Fatma Adlan
- Departments of Theriogenology, 35516, Mansoura, Egypt; Center for Reproductive Biotechnology, 35516, Mansoura, Egypt; Clinical Teaching Hospital, Faculty of Veterinary Medicine, Mansoura University, 35516, Mansoura, Egypt
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Mohammed A Elmetwally
- Departments of Theriogenology, 35516, Mansoura, Egypt; Center for Reproductive Biotechnology, 35516, Mansoura, Egypt; Clinical Teaching Hospital, Faculty of Veterinary Medicine, Mansoura University, 35516, Mansoura, Egypt.
| |
Collapse
|
11
|
Wu Z, Yang T, Ma H. Molecular mechanism of modified Huanglian Wendan decoction in the treatment of polycystic ovary syndrome. Medicine (Baltimore) 2023; 102:e33212. [PMID: 37058016 PMCID: PMC10101291 DOI: 10.1097/md.0000000000033212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/15/2023] [Indexed: 04/15/2023] Open
Abstract
To investigate the mechanism of modified Huanglian Wendan decoction in the intervention of polycystic ovary syndrome (PCOS) by network pharmacology and molecular docking. The ingredients and targets of modified Huanglian Wendan decoction were retrieved from the traditional Chinese medicine Systems Pharmacology database. Related targets of PCOS were screened by Comparative Toxicogenomics Database database. Cytoscape 3.7.2 (https://cytoscape.org/) was used to draw the target network diagram of "traditional Chinese medicine - ingredient - PCOS," STRING database was used to construct the target protein interaction network. NCA tool of Cystoscape 3.7.2 was used to carried out topology analysis on PPI network, core components and key targets were obtained. Gene ontology and Kyoto encyclopedia of genes and genomes enrichment analysis were carried out for the intersection targets by David database. AutoDockTools 1.5.6 software (https://autodock.scripps.edu/) was used to conduct molecular docking verification of key components and key targets. Ninety-one ingredients of the modified Huanglian Wendan decoction and 23,075 diseases targets were obtained, 155 Intersection targets of the drug and disease were obtained by R language, Veen plot was drawn. Gene ontology enrichment analysis obtained 432 biological processes, 67 cell components, 106 molecular functions. Fifty-four Kyoto encyclopedia of genes and genomes enrichment pathways (P < .05) including tumor necrosis factor, hypoxia-induced factors-1, calcium, and drug metabolism-cytochrome P450 signaling pathway. Molecular docking showed quercetin, luteolin, kaempferol, and baicalein were stable in docking with core targets. Network pharmacology and molecular docking were used to preliminarily study the mechanism of action of modified Huanglian Wendan decoction in the treatment of PCOS, which laid foundation for future experimental research and clinical application.
Collapse
Affiliation(s)
- Zhaojing Wu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- First College of Clinical Medicine, Shandong University of Traditional Chinese, Medicine, Jinan, Shandong, China
| | - Tiantian Yang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hongbo Ma
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
12
|
Radakovic-Cosic J, Miković Z, Rajcevic SM, Sudar-Milovanovic E, Stojisavljevic A, Nikolic G, Radojicic O, Perovic M. Does controlled ovarian stimulation during in vitro fertilization affect the level of nitric oxide a potential indicator of oocyte quality? Med Hypotheses 2023. [DOI: 10.1016/j.mehy.2023.111061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
13
|
Redox Status, Estrogen and Progesterone Production by Swine Granulosa Cells Are Impaired by Triclosan. Animals (Basel) 2022; 12:ani12243559. [PMID: 36552479 PMCID: PMC9774123 DOI: 10.3390/ani12243559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Triclosan is a chlorinated biphenolic with a broad spectrum of antiseptic activities used in cosmetics and hygiene products. Continuous exposure can lead to absorption and bioaccumulation of this substance with harmful health effects. In fact, previous studies have shown that Triclosan acts as an endocrine-disrupting chemical on reproductive organs, with consequent negative effects on reproductive physiology. Therefore, to assess potential adverse impacts on fertility, we tested Triclosan on swine granulosa cells, a model of endocrine reproductive cells. We examined its effects on the main features of granulosa cell functions such as cell growth (BrdU incorporation and ATP production) and steroidogenesis (17-β estradiol and progesterone secretion). Moreover, since oxidant−antioxidant balance plays a pivotal role in follicular function, redox status markers (superoxide, hydrogen peroxide and nitric oxide production, enzymatic and non-enzymatic scavenging activity) were studied. Our results show that Triclosan significantly inhibits cell growth (p < 0.001), steroidogenesis (p < 0.001), superoxide and nitric oxide production (p < 0.001), while it increases (p < 0.05) enzymatic defense systems. Collectively, these data suggest a disruption of the main granulosa cell functions, i.e., proliferation and hormone production, as well as an imbalance in redox status. On these bases, we can speculate that Triclosan would impair granulosa cell functions, thus exerting negative effects on reproductive function. Further studies are needed to explore lower Triclosan concentrations and to unravel its mechanisms of action at gene level.
Collapse
|
14
|
Sharif Z, Akhtar MF, Sharif H, Saleem A, Khan MI, Riaz A. Endocrine disruption: Reproductive toxicity of glyceryl trinitrate and isosorbide mononitrate in male Wistar rats. Andrologia 2022; 54:e14482. [PMID: 35648594 DOI: 10.1111/and.14482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/16/2022] [Accepted: 05/06/2022] [Indexed: 11/01/2022] Open
Abstract
Glyceryl trinitrate (GTN) and isosorbide mononitrate (IM) are organic nitrates which release nitric oxide upon metabolism with potential to adversely affect male reproductive function. Therefore, this study was designed to evaluate the sub-chronic effect of these organic nitrates on reproductive system in male rats. Wistar rats were separately treated with GTN and IM at 2.5, 5 and 7.5 mg/kg/day by oral gavage for 45 days. At the end of treatment, serum blood samples were taken from anaesthetized rats for assessment of hormonal profile. Epididymis was removed to analyse sperm parameters. Rat testes were dissected to perform histopathological evaluation and oxidative stress biomarkers. The GTN and IM treated groups showed a significant decrease in sperm parameters (count, motility and viability) and serum testosterone in comparison to normal control group. The GTN and IM treatment also altered sperm morphology such as bent tail and head deformities as compared to control. A significant decrease in catalase activity and, increase in nitric oxide and malondialdehyde were observed in high dose drug treated groups. Moreover, a significant increase in follicle stimulating hormone and decrease in testosterone levels were evident in all drug treated groups. The level of luteinizing hormone was raised in rats treated with medium doses of drugs while it decreased at the highest dose of both drugs. Histological study showed vacuolization and degeneration of seminiferous tubules. It is concluded that GTN and IM treatment adversely affected the male reproductive function by altering sperm parameters and disrupting the reproductive hormone profile which may be attributed to the increased level of nitric oxide and oxidative stress.
Collapse
Affiliation(s)
- Zumna Sharif
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Hamna Sharif
- Department of Obstetrics and Gynaecology, Shaikh Zayed Hospital, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Imran Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Amjad Riaz
- Department of Thriogenology, University of Veterinary and Animal Science, Lahore, Pakistan
| |
Collapse
|
15
|
Deng Y, Wang L, Wei T, Chen Y, Wu X, Guo Y, Lin H, Tang H, Liu X. Inhibition of oocyte maturation by nitric oxide synthase 1 (NOS1) in zebrafish. Gen Comp Endocrinol 2022; 321-322:114012. [PMID: 35231489 DOI: 10.1016/j.ygcen.2022.114012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 11/11/2021] [Accepted: 02/24/2022] [Indexed: 11/30/2022]
Abstract
It is well-documented that nitric oxide (NO) is an important regulator of oocyte maturation in mammals. Conversely, the function of NO during oocyte maturation has received little attention in nonmammalian vertebrates. NO is produced from L-arginine through the action of the enzyme NO synthase (NOS). Herein, we examined the expression, hormonal regulation, and involvement of NOS in meiotic signaling in zebrafish oocyte maturation. Three types of nos genes, nos1, nos2a, and nos2b, have been identified in zebrafish. We found that the expression of nos1 was highest in the ovary among the three nos genes, with maximal expression in full-grown (FG)-stage follicles during folliculogenesis. In addition, the concentration of NO was reduced during oocyte maturation and this corresponded with the decreased expression of nos1 in the follicular cell layers, suggesting that NOS1-derived NO may be one of the inhibitors of oocyte maturation in zebrafish. This is the first description of nos1 involvement in oocyte maturation in vertebrates. Moreover, the NO donor SNAP (S-nitroso-l-acetyl penicillamine) partially attenuates human chorionic gonadotropin (hCG)- and 17,20β-P-induced GVBD (germinal vesicle breakdown), perhaps by increasing cGMP levels during oocyte maturation. Finally, our results showed that SNAP and the cGMP analog 8-Br-cGMP inhibited hCG-induced mitogen-activated protein kinase (MAPK) activation, further indicating that NO and cGMP block oocyte maturation in zebrafish.
Collapse
Affiliation(s)
- Yanhong Deng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Le Wang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Tengyu Wei
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xi Wu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yin Guo
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Haipei Tang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Center for Precision Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510030, China.
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, China.
| |
Collapse
|
16
|
Molecular determinants regulating the release of the egg during ovulation: Perspectives in piscine models. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
17
|
Yang C, Chung N, Song C, Youm HW, Lee K, Lee JR. Promotion of angiogenesis toward transplanted ovaries using nitric oxide releasing nanoparticles in fibrin hydrogel. Biofabrication 2021; 14. [PMID: 34852328 DOI: 10.1088/1758-5090/ac3f28] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022]
Abstract
Transplantation of ovary is one method of facilitating fertility preservation to increase the quality of life of cancer survivors. Immediately after transplantation, ovaries are under ischemic conditions owing to a lack of vascular anastomosis between the graft and host tissues. The transplanted ovaries can suffer damage because of lack of oxygen and nutrients, resulting in necrosis and dysfunction. In the technique proposed in this paper, the ovary is encapsulated with nitric oxide-releasing nanoparticles (NO-NPs) in fibrin hydrogels, which form a carrying matrix to prevent ischemic damage and accelerate angiogenesis. The low concentration of NO released from mPEG-PLGA nanoparticles elicits blood vessel formation, which allows transplanted ovaries in the subcutis to recover from the ischemic period. In experiments with mice, the NO-NPs/fibrin hydrogel improved the total number and quality of ovarian follicles after transplantation. The intra-ovarian vascular density was 4.78 folds higher for the NO-NPs/fibrin hydrogel groups compared to that for the nontreated groups. Finally,in vitrofertilization revealed a successful blastocyst formation rate for NO-NPs/fibrin hydrogel coated ovaries. Thus, NO-NPs/fibrin hydrogels can provide an appropriate milieu to promote angiogenesis and be considered as adjuvant surgery materials for fertility preservation.
Collapse
Affiliation(s)
- Chungmo Yang
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea.,Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nanum Chung
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea.,Department of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Chaeyoung Song
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea.,Department of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hye Won Youm
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Ryeol Lee
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea.,Department of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
18
|
Luo Y, Zhu Y, Basang W, Wang X, Li C, Zhou X. Roles of Nitric Oxide in the Regulation of Reproduction: A Review. Front Endocrinol (Lausanne) 2021; 12:752410. [PMID: 34867795 PMCID: PMC8640491 DOI: 10.3389/fendo.2021.752410] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022] Open
Abstract
Nitric oxide (NO) has attracted significant attention as a stellar molecule. Presently, the study of NO has penetrated every field of life science, and NO is widely distributed in various tissues and organs. This review demonstrates the importance of NO in both male and female reproductive processes in numerous ways, such as in neuromodulation, follicular and oocyte maturation, ovulation, corpus luteum degeneration, fertilization, implantation, pregnancy maintenance, labor and menstrual cycle regulation, spermatogenesis, sperm maturation, and reproduction. However, the mechanism of action of some NO is still unknown, and understanding its mechanism may contribute to the clinical treatment of some reproductive diseases.
Collapse
Affiliation(s)
- Yuxin Luo
- College of Animal Science, Jilin University, Changchun, China
| | - Yanbin Zhu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
| | - Wangdui Basang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
| | - Xin Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Chunjin Li
- College of Animal Science, Jilin University, Changchun, China
| | - Xu Zhou
- College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
19
|
Bernabò N, Di Berardino C, Capacchietti G, Peserico A, Buoncuore G, Tosi U, Crociati M, Monaci M, Barboni B. In Vitro Folliculogenesis in Mammalian Models: A Computational Biology Study. Front Mol Biosci 2021; 8:737912. [PMID: 34859047 PMCID: PMC8630647 DOI: 10.3389/fmolb.2021.737912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/04/2021] [Indexed: 11/27/2022] Open
Abstract
In vitro folliculogenesis (ivF) has been proposed as an emerging technology to support follicle growth and oocyte development. It holds a great deal of attraction from preserving human fertility to improving animal reproductive biotechnology. Despite the mice model, where live offspring have been achieved,in medium-sized mammals, ivF has not been validated yet. Thus, the employment of a network theory approach has been proposed for interpreting the large amount of ivF information collected to date in different mammalian models in order to identify the controllers of the in vitro system. The WoS-derived data generated a scale-free network, easily navigable including 641 nodes and 2089 links. A limited number of controllers (7.2%) are responsible for network robustness by preserving it against random damage. The network nodes were stratified in a coherent biological manner on three layers: the input was composed of systemic hormones and somatic-oocyte paracrine factors; the intermediate one recognized mainly key signaling molecules such as PI3K, KL, JAK-STAT, SMAD4, and cAMP; and the output layer molecules were related to functional ivF endpoints such as the FSH receptor and steroidogenesis. Notably, the phenotypes of knock-out mice previously developed for hub.BN indirectly corroborate their biological relevance in early folliculogenesis. Finally, taking advantage of the STRING analysis approach, further controllers belonging to the metabolic axis backbone were identified, such as mTOR/FOXO, FOXO3/SIRT1, and VEGF, which have been poorly considered in ivF to date. Overall, this in silico study identifies new metabolic sensor molecules controlling ivF serving as a basis for designing innovative diagnostic and treatment methods to preserve female fertility.
Collapse
Affiliation(s)
- Nicola Bernabò
- Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
- National Research Council, Institute of Biochemistry and Cell Biology, Rome, Italy
| | | | | | - Alessia Peserico
- Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Giorgia Buoncuore
- Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Umberto Tosi
- Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Martina Crociati
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
- Centre for Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy
| | - Maurizio Monaci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
- Centre for Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| |
Collapse
|
20
|
Basini G, Bussolati S, Andriani L, Grolli S, Ramoni R, Bertini S, Iemmi T, Menozzi A, Berni P, Grasselli F. Nanoplastics impair in vitro swine granulosa cell functions. Domest Anim Endocrinol 2021; 76:106611. [PMID: 33662764 DOI: 10.1016/j.domaniend.2021.106611] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 01/09/2023]
Abstract
Soil, water, and air pollution by plastic represents an issue of great concern since the particles produced by degradation of plastic materials can be ingested by animals and humans, with still uncertain health consequences. As a contribution on this crucial subject, the present work reports an investigation on the in vitro effects of different concentrations of polystyrene nanoplastics (5, 25, and 75 µg/mL) on swine granulosa cells, a model of endocrine reproductive cells. In particular, cell growth (BrDU incorporation and ATP production), steroidogenesis (17-β estradiol and progesterone secretion) and redox status (superoxide and nitric oxide production, enzymatic and non-enzymatic scavenging activity) were studied. Nanoplastics, at the highest concentration, stimulated cell proliferation (P < 0.05), while cell viability resulted unaffected. Steroidogenesis was disrupted (P < 0.05). Both enzymatic and non-enzymatic scavenging activity were increased after exposure at the highest nanoplastic dose (P < 0.05, P < 0.001). Nitric oxide secretion was increased by 25 and 75 µg/mL (P < 0.05) while superoxide generation was stimulated (P < 0.001) only by the highest concentration tested. Taken together, main features of cultured swine granulosa cells resulted affected by exposure to nanoplastics. These results raise concerns since environment nanoplastic contamination can represents a serious threat to animal and human health.
Collapse
Affiliation(s)
- G Basini
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy.
| | - S Bussolati
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - L Andriani
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - S Grolli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - R Ramoni
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - S Bertini
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - T Iemmi
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - A Menozzi
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - P Berni
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - F Grasselli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| |
Collapse
|
21
|
Grasselli F, Bussolati S, Grolli S, Di Lecce R, Dall’Aglio C, Basini G. Effects of Orexin B on Swine Granulosa and Endothelial Cells. Animals (Basel) 2021; 11:ani11061812. [PMID: 34204547 PMCID: PMC8235033 DOI: 10.3390/ani11061812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/03/2021] [Accepted: 06/15/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary The follicle is the ovarian functional unit. It is mainly composed of granulosa cells and angiogenesis is crucial to guarantee its development till ovulation. Carrying on our previous studies on the orexin system in the ovary, we presently demonstrate a potential role of orexin B in the control of granulosa cells’ oxidative stress and of the angiogenesis event. Abstract In addition to the well-known central modulatory role of orexins, we recently demonstrated a peripheral involvement in swine granulosa cells for orexin A and in adipose tissue for orexin B (OXB). The aim of present research was to verify immunolocalization of OXB and its potential role in modulating the main features of swine granulosa cells. In particular, we explored the effects on granulosa cell proliferation (through the incorporation of bromodeoxyuridine), cell metabolic activity (as indirect evaluation by the assessment of ATP), steroidogenic activity (by immunoenzymatic examination) and redox status (evaluating the production of superoxide anion by means of the WST test, production of nitric oxide through the use of the Griess test and the non-enzymatic reducing power by FRAP test). Our data point out that OXB does not modify granulosa cell growth, steroidogenesis and superoxide anion generation. On the contrary, the peptide stimulates (p < 0.05) nitric oxide output and non-enzymatic reducing power. Since new vessel growth is crucial for ovarian follicle development, a further aim of this study was to explore the expression of prepro-orexin and the effects of OXB on swine aortic endothelial cells. We found that the peptide is ineffective in modulating cell growth, while it inhibits redox status parameters. In addition, we demonstrated a stimulatory effect on angiogenesis evaluated in fibrin gel angiogenesis assay. Taken together, OXB appears to be potentially involved in the modulation of redox status in granulosa and endothelial cells and we could argue an involvement of the peptide in the follicular angiogenic events.
Collapse
Affiliation(s)
- Francesca Grasselli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy; (F.G.); (S.B.); (S.G.); (R.D.L.)
| | - Simona Bussolati
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy; (F.G.); (S.B.); (S.G.); (R.D.L.)
| | - Stefano Grolli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy; (F.G.); (S.B.); (S.G.); (R.D.L.)
| | - Rosanna Di Lecce
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy; (F.G.); (S.B.); (S.G.); (R.D.L.)
| | - Cecilia Dall’Aglio
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo 4, 06126 Perugia, Italy;
| | - Giuseppina Basini
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy; (F.G.); (S.B.); (S.G.); (R.D.L.)
- Correspondence: ; Tel.: +39-521-032-775
| |
Collapse
|
22
|
Borges MA, Sousa FSS, Paschoal JD, Lopes IAR, da S Feijó AL, Seixas Neto ACP, da Silva Pinto L, Seixas FK, Collares T. Effect of supplementation of medium with Bauhinia forficata recombinant lectins on expression of oxidative stress genes during in vitro maturation of bovine oocytes. Reprod Toxicol 2021; 103:64-70. [PMID: 34098044 DOI: 10.1016/j.reprotox.2021.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 10/21/2022]
Abstract
The lectin of Bauhinia forficata (nBfL) is a protein able to bind reversibly to N-acetylgalactosamine, performing several functions and one of them is the antiproliferative activity in tumor cells, but its effects have not yet been evaluated in female gametes. The objective of the present study was to determine the additional effect of B. forficata recombinants lectins in the medium of maturation in vitro of bovine oocytes in expression of genes related to oxidative stress pathways. To get the proteins, the gene for this recombinant lectin (rBfL) and its truncated isoform (rtBfL) were cloned and expressed in Escherichia coli (E.coli). The oocytes obtained through follicular puncture were incubated in IVM medium for 24 h containing concentrations of 10 μg/mL, 50 μg/mL and 100 μg/mL of nBfL, rBfL and rtBfL, and a no treated group as a control. In the groups treated with the concentration of 100 μg / mL, the gene expression of genes involved in oxidative stress SOD2, CAT, GPX-1, GSR, NOS2 and apoptosis BAX, CASP3 were evaluated. The rtBfL increased the expression of the SOD2, GSR and NOS2 genes and all the tested lectins increased the expression of the CASP3 gene compared to the control group. These findings indicate that the tested concentrations of the B. forficata recombinants lectins probably influence the expression of oxidative stress genes and increase the expression of the apoptotic gene CASP3 during in vitro maturation of bovine oocytes.
Collapse
Affiliation(s)
- Morgana Alves Borges
- Programa de Pós-Graduação em Biotecnologia (PPGB), Grupo de Pesquisa em Oncologia Celular e Molecular, Laboratório de Biotecnologia do Câncer, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, 96010-610, RS, Brazil
| | - Fernanda S S Sousa
- Programa de Pós-Graduação em Biotecnologia (PPGB), Grupo de Pesquisa em Oncologia Celular e Molecular, Laboratório de Biotecnologia do Câncer, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, 96010-610, RS, Brazil
| | - Júlia Damé Paschoal
- Programa de Pós-Graduação em Biotecnologia (PPGB), Grupo de Pesquisa em Oncologia Celular e Molecular, Laboratório de Biotecnologia do Câncer, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, 96010-610, RS, Brazil
| | - Isadora A R Lopes
- Programa de Pós-Graduação em Biotecnologia (PPGB), Grupo de Pesquisa em Oncologia Celular e Molecular, Laboratório de Biotecnologia do Câncer, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, 96010-610, RS, Brazil
| | - Ana Laura da S Feijó
- Programa de Pós-Graduação em Biotecnologia (PPGB), Grupo de Pesquisa em Oncologia Celular e Molecular, Laboratório de Biotecnologia do Câncer, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, 96010-610, RS, Brazil
| | - Amilton Clair Pinto Seixas Neto
- Programa de Pós-Graduação em Biotecnologia (PPGB), Laboratório de Bioinformática e Proteômica Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Luciano da Silva Pinto
- Programa de Pós-Graduação em Biotecnologia (PPGB), Laboratório de Bioinformática e Proteômica Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Fabiana Kommling Seixas
- Programa de Pós-Graduação em Biotecnologia (PPGB), Grupo de Pesquisa em Oncologia Celular e Molecular, Laboratório de Biotecnologia do Câncer, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, 96010-610, RS, Brazil
| | - Tiago Collares
- Programa de Pós-Graduação em Biotecnologia (PPGB), Grupo de Pesquisa em Oncologia Celular e Molecular, Laboratório de Biotecnologia do Câncer, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, 96010-610, RS, Brazil.
| |
Collapse
|
23
|
Khazaei F, Ghanbari E, Khazaei M. Improved hormonal and oxidative changes by Royal Jelly in the rat model of PCOS: An experimental study. Int J Reprod Biomed 2021; 19:515-524. [PMID: 34401646 PMCID: PMC8350846 DOI: 10.18502/ijrm.v19i6.9373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/13/2020] [Accepted: 11/21/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Polycystic ovarian syndrome (PCOS) is an endocrine and complex metabolic disorder, associated with anovulation, changes in sex hormone, biochemical factors, and ovarian tissue. Royal Jelly (RJ) has antioxidant and anti-inflammatory properties. OBJECTIVE To examine the therapeutic effect of RJ on PCOS-related hormonal and biochemical changes in a rat model of PCOS. MATERIALS AND METHODS In this experimental study, 42 female Wistar rats (weighing 180-200 gr, aged 10-12 wk) were divided into six groups (n = 7/each): control; PCOS; RJ 100 mg/kg; RJ 200 mg/kg; PCOS + RJ 100 mg/kg; and PCOS + RJ 200 mg/kg. After 21 days, the animals were weighed and dissected. The serums were used for nitric oxide (NO) and ferric-reducing antioxidant power (FRAP) assay and estradiol and progesterone measurements. The ovaries were assessed for histological changes. RESULTS PCOS increased estradiol and NO levels, and decreased progesterone and FRAP levels. In PCOS + RJ groups, the progesterone (p = 0.01) and FRAP levels (p ≤ 0.001) increased and the estradiol and NO (p ≤ 0.001) levels decreased significantly. Moreover, the number of mature follicles (p = 0.01) and corpus luteum increased (p ≤ 0.001), and ovarian and uterus weight deceased significantly (p ≤ 0.001). CONCLUSION RJ improved estradiol, progesterone, FRAP, and NO levels, and ovarian structure in the rat model of PCOS.
Collapse
Affiliation(s)
- Fatemeh Khazaei
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Ghanbari
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
24
|
Ezzati M, Velaei K, Kheirjou R. Melatonin and its mechanism of action in the female reproductive system and related malignancies. Mol Cell Biochem 2021; 476:3177-3190. [PMID: 33864572 DOI: 10.1007/s11010-021-04151-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/01/2021] [Indexed: 12/14/2022]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), the main product of pineal gland in vertebrates, is well known for its multifunctional role which has great influences on the reproductive system. Recent studies documented that melatonin is a powerful free radical scavenger that affects the reproductive system function and female infertility by MT1 and MT2 receptors. Furthermore, cancer researches indicate the influence of melatonin on the modulation of tumor cell signaling pathways resulting in growth inhibitor of the both in vivo/in vitro models. Cancer adjuvant therapy can also benefit from melatonin through therapeutic impact and decreasing the side effects of radiation and chemotherapy. This article reviews the scientific evidence about the influence of melatonin and its mechanism of action on the fertility potential, physiological alteration, and anticancer efficacy, during experimental and clinical studies.
Collapse
Affiliation(s)
- Maryam Ezzati
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Immunology Research Center, Tabriz University of Medical Sciences, PO. Box: 51376563833, Tabriz, Iran.
| | - Kobra Velaei
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raziyeh Kheirjou
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Jiang J, Liu S, Qi L, Wei Q, Shi F. Activation of Ovarian Taste Receptors Inhibits Progesterone Production Potentially via NO/cGMP and Apoptotic Signaling. Endocrinology 2021; 162:6052298. [PMID: 33367902 DOI: 10.1210/endocr/bqaa240] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Indexed: 12/25/2022]
Abstract
Taste receptors are not only expressed in the taste buds, but also in other nongustatory tissues, including the reproductive system. Taste receptors can be activated by various tastants, thereby exerting relatively physiologic functions. The aim of this study was to investigate the effects and potential mechanisms underlying ovarian taste receptor activation on progesterone production using saccharin sodium as the receptor agonist in a pseudopregnant rat model. Taste 1 receptor member 2 (TAS1R2) and taste 2 receptor member 31 (TAS2R31) were demonstrated to be abundantly expressed in the corpora lutea of rats, and intraperitoneal injection of saccharin sodium can activate both of them and initiate their downstream signaling cascades. The activation of these ovarian taste receptors promoted nitric oxide (NO) production via endothelial nitric oxide synthase (eNOS). NO production then increased ovarian cyclic guanosine 3',5'-monophosphate (cGMP) levels, which, in turn, decreased ovarian cyclic adenosine 3',5'-monophosphate levels. In addition, the activation of ovarian taste receptors induced apoptosis, possibly through NO and mitogen-activated protein kinase signaling. As a result, the activation of ovarian taste receptors reduced the protein expression of steroidogenesis-related factors, causing the inhibition of ovarian progesterone production. In summary, our data suggest that the activation of ovarian taste receptors inhibits progesterone production in pseudopregnant rats, potentially via NO/cGMP and apoptotic signaling.
Collapse
Affiliation(s)
- Jingle Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Siyi Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lina Qi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
26
|
Basini G, Bussolati S, Bertini S, Quintavalla F, Grasselli F. Evaluation of Triclosan Effects on Cultured Swine Luteal Cells. Animals (Basel) 2021; 11:ani11030606. [PMID: 33668891 PMCID: PMC7996528 DOI: 10.3390/ani11030606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary A great concern has been raised against many chemicals, both natural and man-made, that can mimic or interfere with the hormones. Among these, using swine ovarian cells, we were aimed to explore the potential effect of triclosan, an antimicrobial agent widely used in cosmetics and home products. Our results demonstrate that triclosan disrupts cellular function, in particular interfering with hormone production and proliferation, thus suggesting a critical evaluation of its effects. Abstract Triclosan is a chlorinated phenolic, used in many personal and home care products for its powerful antimicrobial effect. Several studies have shown triclosan toxicity and the American Food and Drug Administration (FDA) in 2016 has limited its use. It has been recently included in endocrine-disrupting chemicals (EDCs), a list of chemicals known for their ability to interfere with hormonal signaling with particular critical effects on reproduction both in animals and humans. In order to deepen the knowledge in this specific field, the present study was undertaken to explore the effect of different concentrations of triclosan (1, 10, and 50 µM) on cultured luteal cells, isolated from swine ovaries, evaluating effects on growth Bromodeoxyuridine (BrDU) incorporation and Adenosine TriPhosphate (ATP) production, steroidogenesis (progesterone secretion) and redox status (superoxide and nitric oxide production, enzymatic and non-enzymatic scavenging activity). A biphasic effect was exerted by triclosan on P4 production. In fact, the highest concentration inhibited, while the others stimulated P4 production (p < 0.05). Triclosan significantly inhibited cell proliferation, metabolic activity, and enzymatic scavenger activity (p < 0.05). On the contrary, nitric oxide production was significantly increased by triclosan (p < 0.01), while superoxide anion generation and non-enzymatic scavenging activity were unaffected.
Collapse
|
27
|
Novel Insights on the Role of Nitric Oxide in the Ovary: A Review of the Literature. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18030980. [PMID: 33499404 PMCID: PMC7908174 DOI: 10.3390/ijerph18030980] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 01/06/2023]
Abstract
Nitric oxide (NO) is formed during the oxidation of L-arginine to L-citrulline by the action of multiple isoenzymes of NO synthase (NOS): neuronal NOS (nNOS), endotelial NOS (eNOS), and inducible NOS (iNOS). NO plays a relevant role in the vascular endothelium, in central and peripheral neurons, and in immunity and inflammatory systems. In addition, several authors showed a consistent contribution of NO to different aspects of the reproductive physiology. The aim of the present review is to analyse the published data on the role of NO within the ovary. It has been demonstrated that the multiple isoenzymes of NOS are expressed and localized in the ovary of different species. More to the point, a consistent role was ascribed to NO in the processes of steroidogenesis, folliculogenesis, and oocyte meiotic maturation in in vitro and in vivo studies using animal models. Unfortunately, there are few nitric oxide data for humans; there are preliminary data on the implication of nitric oxide for oocyte/embryo quality and in-vitro fertilization/embryo transfer (IVF/ET) parameters. NO plays a remarkable role in the ovary, but more investigation is needed, in particular in the context of human ovarian physiology.
Collapse
|
28
|
Basini G, Bussolati S, Iannarelli M, Ragionieri L, Grolli S, Ramoni R, Dodi A, Gazza F, Grasselli F. The myokine irisin: localization and effects in swine late medium and large antral ovarian follicle. Domest Anim Endocrinol 2021; 74:106576. [PMID: 33120167 DOI: 10.1016/j.domaniend.2020.106576] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 01/10/2023]
Abstract
Irisin is mainly synthesized by skeletal muscle tissue, where it is believed to be responsible for the benefits of exercise on metabolism and cardiovascular system. In adipose tissue, its best-known effect is the browning of white adipocytes, resulting in the increase of thermogenesis and energy expenditure. As it has been largely documented that metabolic dysfunctions can frequently be associated with reductions in fertility, the possible involvement of this molecule in the regulation of reproductive processes represents an issue to be addressed. On this basis, the first aim of this work was the evaluation of the presence of irisin in the swine ovary; then, we investigated the expression of the associated molecules FNDC5, PGC-1α, and PPAR-γ. To verify a potential modulatory role both on ovarian function and on redox status, cell growth, steroidogenesis, production of superoxide anion and nitric oxide, the nonenzymatic antioxidant scavengers, were assessed in vitro on granulosa cells treated with increasing concentrations of irisin (50, 100, and 150 ng/mL). The data collected demonstrate the presence of irisin in swine ovarian follicle. Moreover, the highest concentrations tested stimulated metabolic activity and inhibited cell proliferation (P < 0.05); the peptide exerted a biphasic effect on progesterone (P < 0.01) production and, at the highest concentrations, inhibited nitric oxide while stimulated the nonenzymatic antioxidant power (P < 0.05). Superoxide anion and estradiol 17β were unaffected. The demonstration of the local presence of irisin at the ovarian level and the highlighted effects allow us to qualify this molecule as a potential physiological regulator of follicular function.
Collapse
Affiliation(s)
- G Basini
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy.
| | - S Bussolati
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - M Iannarelli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - L Ragionieri
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - S Grolli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - R Ramoni
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - A Dodi
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - F Gazza
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - F Grasselli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy
| |
Collapse
|
29
|
Sibgatullin I, Gilmutdinov R, Zakirov T. The Effect of the Drug Estrofan on the Content of Nitric Oxide (II), Sex Hormones, Biochemical Parameters and Their Relationship in Cows. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213700170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The physiological functions of nitric oxide (II) are diverse, and its therapeutic uses continue to expand. Many methods have been found to regulate the production of this compound, both physiological, regulated by the body itself, and as a result of various, drug and non-drug, external influences, correcting the ability of cells, organs and tissues to produce nitric oxide (II). The drug estrophan (synthetic prostaglandin PGF2α) has an activating effect on the nitric oxide (II) system and on sex hormones that regulate the reproductive functions of cows. The introduction of estrophan to cows is accompanied by an increase in the synthesis of nitric oxide (II), estrogen in the body of cows, and a decrease in progesterone. A high level of interrelation of estrogen with nitric oxide (II) was shown, the value of the correlation coefficient is (r = 0.552; p < 0.05). Correlation of the level of nitric oxide (II) with estrogen allows making an assumption of its bioregulatory functions, including the sexual cycle. The introduction of estrophan had no effect on the biochemical parameters in the blood serum of cows.
Collapse
|
30
|
Biswas S, Ghosh S, Samanta A, Das S, Mukherjee U, Maitra S. Bisphenol A impairs reproductive fitness in zebrafish ovary: Potential involvement of oxidative/nitrosative stress, inflammatory and apoptotic mediators. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115692. [PMID: 33254711 DOI: 10.1016/j.envpol.2020.115692] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is a highly pervasive chemical in consumer products with its ascribed endocrine-disrupting properties. Several studies have shown the cytotoxic, genotoxic, and carcinogenic property of BPA over a multitude of tissues. Although BPA exposure has earlier been implicated in female infertility, the underlying molecular mechanisms explaining the toxicity of BPA in the ovary remains less understood. In the present study, a plausible correlation between redox balance or inflammatory signaling and reproductive fitness upon BPA exposure has been examined in zebrafish (Danio rerio) ovary. Congruent with significant alteration of major antioxidant enzymes (SOD1, SOD2, catalase, GPx1α, GSTα1) at the transcript level, 30 d BPA exposure at environmentally relevant concentrations (1, 10 and 100 μg L-1) promotes ovarian ROS/RNS synthesis, lipid peroxidation but attenuates catalase activity indicating elevated stress response. BPA promotes a sharp increase in ovarian p38 MAPK, NF-κB phosphorylation (activation), inducible nitric oxide synthase (Nos2a), and pro-inflammatory cytokines (TNF-α and IL-1β) expression, the reliable markers for inflammatory response. Congruent to an increased number of atretic follicles, BPA-exposed zebrafish ovary reveals elevated Bax/Bcl2 ratio, activation of caspase-8, -3 and DNA breakdown suggesting heightened cell death. Importantly, significant alteration in nuclear estrogen receptor (ER) transcripts (esr1, esr2a, and esr2b) and proteins (ERα, ERβ), gonadotropin receptors, and markers associated with steroidogenesis and growth factor gene expression in BPA-exposed ovary correlates well with impaired ovarian functions and maturational response. Collectively, elevated oxidative/nitrosative stress-mediated inflammatory response and altered ER expression can influence ovarian health and reproductive fitness in organisms exposed to BPA environment.
Collapse
Affiliation(s)
- Subhasri Biswas
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Soumyajyoti Ghosh
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Anwesha Samanta
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sriparna Das
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Urmi Mukherjee
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sudipta Maitra
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India.
| |
Collapse
|
31
|
Gao YQ, Ge L, Han Z, Hao X, Zhang ML, Zhang XJ, Zhou CJ, Zhang DJ, Liang CG. Oral administration of olaquindox negatively affects oocytes quality and reproductive ability in female mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110826. [PMID: 32521368 DOI: 10.1016/j.ecoenv.2020.110826] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
As an effective feed additive in the livestock industry, olaquindox (OLA) has been widely used in domestic animal production. However, it is unclear whether OLA has negative effects on mammalian oocyte quality and fetal development. In this study, toxic effects of OLA were tested by intragastric gavage ICR mice with water, low-dose OLA (5 mg/kg/day), or high-dose OLA (60 mg/kg/day) for continuous 45 days. Results showed that high-dose OLA gavage severely affected the offspring birth and growth. Significantly, high-dose OLA impaired oocyte maturation and early embryo development, indicated by the decreased percentage of germinal vesicle breakdown, first polar body extrusion and blastocyst formation. Meanwhile, oxidative stress levels were increased in oocytes or ovaries, indexed by the increased levels of ROS, MDA, H2O2, NO, and decreased levels of GSH, SOD, CAT, GSH-Px and GSH-Rd. Furthermore, aberrant mitochondria distribution, defective spindle assembly, abnormal H3K4me2/H3K9me3 levels, increased DNA double-strand breaks and early apoptosis rate, were observed after high-dose OLA gavage. Taken together, our results for the first time illustrated that high-dose OLA gavage led to sub-fertility of females, which means that restricted utilization of OLA as feed additive should be considered.
Collapse
Affiliation(s)
- Yu-Qing Gao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Lei Ge
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Zhe Han
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Xin Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Mei-Ling Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Xiao-Jie Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Cheng-Jie Zhou
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - De-Jian Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
| | - Cheng-Guang Liang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China.
| |
Collapse
|
32
|
Zhang GM, Guo YX, Cheng CY, El-Samahy MA, Tong R, Gao XX, Deng KP, Wang F, Lei ZH. Arginine infusion rescues ovarian follicular development in feed-restricted Hu sheep during the luteal phase. Theriogenology 2020; 158:75-83. [PMID: 32932187 DOI: 10.1016/j.theriogenology.2020.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/27/2020] [Accepted: 09/01/2020] [Indexed: 11/16/2022]
Abstract
The aim of this study was to investigate the molecular mechanisms of arginine (Arg) on follicular development of acute feed-restricted ewes during the luteal phase. From day 6 of the estrous cycle, 24 multiparous Hu sheep were randomly assigned into three groups: control group (a maintenance diet; n = 6), feed restriction group (0.5 maintenance diet, saline infusion; n = 9) and Arg treatment group (0.5 maintenance diet, infusion with 155 μmol of Arg-HCl/kg body weight; n = 9). The intravenous administrations were performed three times per day from day 6 to day 15 of the estrous cycle. At the end of treatment, the hypothalamus and pituitary were collected, as well as the follicular fluid (FF) and granulose cells (GCs) in the ≥2.5 mm follicles. The transcription level of NPVF was significantly increased, and the expression level of GNRH was significantly decreased in the hypothalamus with feed restriction. In addition, feed restriction significantly decreased the number of ≥2.5 mm follicles in the ovaries. In the ≥2.5 mm follicles, feed restriction significantly increased estradiol (E2) level in FF and the expression levels of steroidogenesis related genes (STAR, 3BHSD and CYP19A1) in GCs, while significantly decreased the expressions of FSHR and cell proliferation related genes (YAP1, CCND1 and PCNA) in GCs. Moreover, the activities of glucose metabolism enzymes (PFKP and G6PDH) were significantly decreased in GCs of the ≥2.5 mm follicles with feed restriction. Interestingly, as a precursor of nitric oxide, Arg supplementation can rescue the effects of feed restriction on follicular development by enhancing glucose metabolism and cell proliferation of GCs, and alleviating the abnormal E2 secretion in the ≥2.5 mm follicles, accompanied with recovering the expressions of NPVF and GNRH in the hypothalamus. These findings will be helpful for understanding the role of nutrition and Arg in sheep follicular development.
Collapse
Affiliation(s)
- Guo-Min Zhang
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yi-Xuan Guo
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China; College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chun-Yu Cheng
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - M A El-Samahy
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ran Tong
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao-Xiao Gao
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kai-Ping Deng
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhi-Hai Lei
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
33
|
Basini G, Ragionieri L, Bussolati S, Di Lecce R, Cacchioli A, Dettin M, Cantoni AM, Grolli S, La Bella O, Zamuner A, Grasselli F. Expression and function of the stromal cell-derived factor-1 (SDF-1) and CXC chemokine receptor 4 (CXCR4) in the swine ovarian follicle. Domest Anim Endocrinol 2020; 71:106404. [PMID: 31955063 DOI: 10.1016/j.domaniend.2019.106404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 09/18/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022]
Abstract
The most characterized stromal cell-derived factor-1 (SDF-1) variants are the isoform α, which is the predominant one but undergoes rapid proteolysis, and the β isoform, which is more resistant. Through the interaction with a specific chemokine receptor called CXCR4, SDF-1 is able to regulate different physiological processes. The aim of this study was to verify the expression and potential functional role of SDF-1 and CXCR4 in the porcine ovary. Firstly, the expression of SDF-1 and its receptor in different ovarian districts was verified for the first time. Thereafter, the effect of SDF-1 β isoform (51-72) fragment on functional parameters, such as proliferation, metabolic activity, redox status, nitric oxide production, and steroidogenic activity, was assessed on granulosa cells collected from follicles. In addition, the potential effect of this protein in vascular events was verified through investigations on porcine aortic (AOC) endothelial cells, such as the production of nitric oxide and viability tests. The proliferation and metabolic activity were not affected by treatment with the cytokine. As regard to steroidogenesis, the peptide stimulated both estrogen (P = 0.049) and progesterone production (P = 0.039). Redox status was affected by the examined substance since superoxide anion was inhibited (P = 0.001), while antioxidant power (P = 0.034), as well as nitric oxide generation, were stimulated (P = 0.034). Tests performed on AOCs showed significant stimulation of nitric oxide production (P = 0.004) by the examined peptide, while cell viability was unaffected. Therefore, the potential role of cytokine in the mechanisms involved in the regulation of follicular function can be hypothesized.
Collapse
Affiliation(s)
- G Basini
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy.
| | - L Ragionieri
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - S Bussolati
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - R Di Lecce
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - A Cacchioli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - M Dettin
- Dipartimento di Ingegneria Industriale, Università di Padova, Via Marzolo, 9, 35131 Padova, Italy
| | - A M Cantoni
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - S Grolli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - O La Bella
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - A Zamuner
- Dipartimento di Ingegneria Industriale, Università di Padova, Via Marzolo, 9, 35131 Padova, Italy
| | - F Grasselli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy
| |
Collapse
|
34
|
Pacentra A, Grasselli F, Bussolati S, Grolli S, Di Lecce R, Cantoni AM, Basini G. The effect of pathogen-associated molecular patterns on the swine granulosa cells. Theriogenology 2020; 145:207-216. [DOI: 10.1016/j.theriogenology.2019.10.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/17/2019] [Accepted: 10/28/2019] [Indexed: 02/02/2023]
|
35
|
Li J, Zhang W, Zhu S, Shi F. Nitric Oxide Synthase Is Involved in Follicular Development via the PI3K/AKT/FoxO3a Pathway in Neonatal and Immature Rats. Animals (Basel) 2020; 10:ani10020248. [PMID: 32033275 PMCID: PMC7070647 DOI: 10.3390/ani10020248] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023] Open
Abstract
It is assumed that nitric oxide synthase and nitric oxide are involved in the regulation of female reproduction. This study aimed to assess the roles of nitric oxide synthase (NOS) in follicular development. The endothelial NOS (eNOS) inhibitor L-NAME, inducible NOS (iNOS) inhibitor S-Methylisothiourea (SMT) and NOS substrate L-arginine (L-Arg) were used in the NOS inhibition models in vivo. Neonatal female rats were treated with phosphate buffer saline (PBS, control), L-NAME (L-NG-Nitroarginine Methyl Ester, 40 mg/kg), SMT (S-Methylisothiourea, 10 mg/kg), L-NAME + SMT, or L-Arg (L-arginine, 50 mg/kg) via subcutaneous (SC) injection on a daily basis for 19 consecutive days, with the samples being collected on specific postnatal days (PD5, PD10, and PD19). The results indicated that the number of antral follicles, the activity of total-NOS, iNOS, neuronal NOS (nNOS), and eNOS, and the content of NO in the ovary were significantly (p < 0.05) increased in the L-Arg group at PD19, while those in L + S group were significantly (p < 0.05) decreased. Meanwhile, the ovarian expression in the L-Arg group in terms of p-AKT, p-FoxO3a, and LC3-II on PD19 were significantly (p < 0.05) upregulated, while the expressions of PTEN and cleaved Caspase-3 were (p < 0.05) downregulated as a result of NOS/NO generation, respectively. Therefore, the results suggest that NOS is possibly involved in the maturation of follicular development to puberty via the PI3K/ AKT/FoxO3a pathway, through follicular autophagia and apoptosis mechanisms.
Collapse
Affiliation(s)
- Junrong Li
- College of Agriculture and Bio-Engineering, Jinhua Polytechnic, Jinhua 321017, China;
- Correspondence: ; Tel.: +86-135-8860-6686
| | - Wei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (W.Z.); (F.S.)
| | - Shanli Zhu
- College of Agriculture and Bio-Engineering, Jinhua Polytechnic, Jinhua 321017, China;
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (W.Z.); (F.S.)
| |
Collapse
|
36
|
Ciccimarra R, Bussolati S, Grasselli F, Grolli S, Paolucci M, Basini G. Potential physiological involvement of nesfatin-1 in regulating swine granulosa cell functions. Reprod Fertil Dev 2020; 32:274-283. [DOI: 10.1071/rd19134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022] Open
Abstract
Nesfatin-1 has recently been indicated as a pleiotropic molecule that is primarily involved in the metabolic regulation of reproductive functions acting at hypothalamic level. The aim of this study was to explore the local action of nesfatin-1 in swine ovarian follicles. Nucleobindin 2 (NUCB2) was verified using real-time quantitative polymerase chain reaction in swine granulosa cells from different sized follicles and nesfatin-1 was localised by immunohistochemistry in sections of the whole porcine ovary. The effects of different concentrations of nesfatin-1 on cell growth, steroidogenesis and the redox status of granulosa cells were determined invitro. In addition, the effects of nesfatin-1 were evaluated in an angiogenesis bioassay because vessel growth is essential for ovarian follicle function. Immunohistochemistry revealed intense positivity for nesfatin-1 in swine granulosa cells in follicles at all developmental stages. Expression of the gene encoding the precursor protein NUCB2 was higher in granulosa cells from large rather than from medium and small follicles. Further, nesfatin-1 stimulated cell proliferation and progesterone production and interfered with redox status by modifying nitric oxide production and non-enzyme scavenging activity in granulosa cells from large follicles. Moreover, nesfatin-1 exhibited a stimulatory effect on angiogenesis. This study demonstrates, for the first time, that nesfatin-1 is physiologically present in the swine ovarian follicle, where it may impair granulosa cell functions.
Collapse
|
37
|
Ayres LS, Berger M, Durli ICLDO, Kuhl CP, Terraciano PB, Garcez TNA, Dos Santos BG, Guimarães JA, Passos EP, Cirne-Lima EO. Kallikrein-kinin system and oxidative stress in cisplatin-induced ovarian toxicity. Reprod Toxicol 2019; 93:1-9. [PMID: 31874189 DOI: 10.1016/j.reprotox.2019.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/09/2019] [Accepted: 12/06/2019] [Indexed: 01/05/2023]
Abstract
Kallikrein-kinin system (KKS) is involved in vascular reactivity and inflammatory response to cytotoxic drugs. Since cisplatin is a widely used chemotherapy and its cytotoxic mechanism can trigger inflammation and oxidative damage, in this work we evaluated the role of KKS in an animal model of cisplatin-induced ovarian toxicity. Biomarkers of ovarian stem cells, activity of KKS, inflammation and oxidative damage were measured in ovarian tissue of C57BL/6 female mice treated with vehicle or cisplatin (2.5 mg/kg). Cisplatin group presented greater number of atretic follicles, and lower numbers of antral and total viable follicles. Ki67, DDX4 and OCT-4 markers were similar between groups. Cisplatin triggered plasma and ovarian tissue kallikrein generation; and increased expression of bradykinin receptors B1 and B2. Neutrophil and macrophage infiltration markers increased. Superoxide anion generation also increased, while reduced glutathione levels decreased. These results suggest that KKS is activated and contributes to ovarian injury during cisplatin treatment.
Collapse
Affiliation(s)
- Laura Silveira Ayres
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Santa Cecília, 90035-903, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2400, 90035003, Porto Alegre, RS, Brazil.
| | - Markus Berger
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Santa Cecília, 90035-903, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2400, 90035003, Porto Alegre, RS, Brazil.
| | - Isabel Cirne Lima de Oliveira Durli
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Santa Cecília, 90035-903, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2400, 90035003, Porto Alegre, RS, Brazil.
| | - Cristiana Palma Kuhl
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Santa Cecília, 90035-903, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2400, 90035003, Porto Alegre, RS, Brazil.
| | - Paula Barros Terraciano
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Santa Cecília, 90035-903, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2400, 90035003, Porto Alegre, RS, Brazil.
| | - Tuane Nerissa Alves Garcez
- Unidade de Experimentação Animal, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Santa Cecília, 90035-903, Porto Alegre, RS, Brazil.
| | - Bruna Gomes Dos Santos
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Santa Cecília, 90035-903, Porto Alegre, RS, Brazil.
| | - Jorge Almeida Guimarães
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Santa Cecília, 90035-903, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Campus do Vale - Building 43421, 91501-970, Porto Alegre, RS, Brazil.
| | - Eduardo Pandolfi Passos
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Santa Cecília, 90035-903, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2400, 90035003, Porto Alegre, RS, Brazil.
| | - Elizabeth Obino Cirne-Lima
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Santa Cecília, 90035-903, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2400, 90035003, Porto Alegre, RS, Brazil.
| |
Collapse
|
38
|
Pérez-Ruiz I, Meijide S, Ferrando M, Larreategui Z, Ruiz-Larrea MB, Ruiz-Sanz JI. Ovarian stimulated cycles reduce protection of follicular fluid against free radicals. Free Radic Biol Med 2019; 145:330-335. [PMID: 31604116 DOI: 10.1016/j.freeradbiomed.2019.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/27/2019] [Accepted: 10/07/2019] [Indexed: 12/18/2022]
Abstract
Controlled ovarian hyperstimulation cycle with exogenous gonadotropins (COH) is associated with clinical complications. The aim of this work was to determine whether COH alters the physiological antioxidant status of follicular fluid in women with no reproductive dysfunction, compared to the natural cycle (NC). In this longitudinal study, forty-one women (oocyte donors) consecutively underwent NC and COH. Follicular fluid was collected at oocyte retrieval and different redox biomarkers were determined: total antioxidant activity (TAA), oxygen radical absorbance capacity (ORAC), nitric oxide, α- and γ-tocopherol, the fatty acid composition, activities of superoxide dismutase, catalase, total and Se-dependent glutathione peroxidases, and the antioxidant paraoxonase (PON) family. Results showed that TAA (1.70 ± 0.03 mM versus 1.86 ± 0.03 mM, p < 0.05), α-tocopherol (4.37 ± 0.26 μM versus 5.74 ± 0.30 μM, p < 0.05), PON1 paraoxonase (245 ± 24 nmol/min/ml versus 272 ± 27 nmol/min/ml, p < 0.05), PON1 arylesterase (87.2 ± 4.6 μmol/min/ml versus 99.3 ± 4.8 μmol/min/ml, p < 0.05), and PON3 simvastatinase (13.48 ± 0.52 nmol/min/ml versus 16.29 ± 0.72 nmol/min/ml, p < 0.001) were significantly lower in COH versus NC. Fatty acids from COH were more saturated, increasing palmitate and decreasing the n-6 and total polyunsaturated fatty acids (PUFAs). Docosahexaenoic acid also increased (p < 0.05). Results suggest that COH could lead to premature ovarian aging and provide new insights into the possible prevention of the adverse effects of ovarian hyperstimulation by directing therapeutic applications to the maintenance of the redox balance and fatty acid status, with special attention to paraoxonase proteins and docosahexaenoic acid.
Collapse
Affiliation(s)
- Irantzu Pérez-Ruiz
- Free Radicals and Oxidative Stress (FROS) Research Group of the Department of Physiology, Medicine and Nursing School, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain; Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903, Barakaldo, Bizkaia, Spain
| | - Susana Meijide
- Free Radicals and Oxidative Stress (FROS) Research Group of the Department of Physiology, Medicine and Nursing School, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain
| | - Marcos Ferrando
- Valencian Institute of Infertility (IVI-RMA)-Bilbao, 48940, Leioa, Bizkaia, Spain
| | - Zaloa Larreategui
- Valencian Institute of Infertility (IVI-RMA)-Bilbao, 48940, Leioa, Bizkaia, Spain
| | - María-Begoña Ruiz-Larrea
- Free Radicals and Oxidative Stress (FROS) Research Group of the Department of Physiology, Medicine and Nursing School, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain; Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903, Barakaldo, Bizkaia, Spain.
| | - José-Ignacio Ruiz-Sanz
- Free Radicals and Oxidative Stress (FROS) Research Group of the Department of Physiology, Medicine and Nursing School, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain; Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903, Barakaldo, Bizkaia, Spain
| |
Collapse
|
39
|
Nath P, Mukherjee U, Biswas S, Pal S, Das S, Ghosh S, Samanta A, Maitra S. Expression of nitric oxide synthase (NOS) in Anabas testudineus ovary and participation of nitric oxide-cyclic GMP cascade in maintenance of meiotic arrest. Mol Cell Endocrinol 2019; 496:110544. [PMID: 31419465 DOI: 10.1016/j.mce.2019.110544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
Participation of cyclic nucleotide-mediated signaling in nitric oxide/soluble guanylate cyclase (NO/sGC) regulation of oocyte maturation (OM) in perch (Anabas testudineus) follicle-enclosed oocytes has been investigated. Congruent with sharp decline in follicular cyclic GMP (cGMP) level, nitric oxide synthase (NOS)-inhibitor (L-NAME) attenuates protein kinase A (PKA) phosphorylation but promotes p-ERK1/2 and p-p34Cdc2 (Thr-161) in maturing oocytes. Conversely, NO donor (SNP) prevents OM, potentially through elevated cGMP synthesis. Expression and localization of Nos2 and Nos3 immunoreactivity in perch ovary varied considerably at progressively higher stages of folliculogenesis. While sGC inhibitor (ODQ) alone could induce OM, 8-bromo-cGMP attenuates 17,20β-P-induced OM indicating functional significance of NO/sGC/cGMP in perch ovary. Interestingly, high NO/cGMP inhibition of OM shows positive relation with elevated cAMP level. MIS induced OM is more susceptible to the oocyte-specific phosphodiesterase (PDE) 3 than PDE4 inhibition. Collectively, high NO/cGMP attenuation of OM potentially involves PDE3 inhibition, cAMP accumulation and PKA activation.
Collapse
Affiliation(s)
- Poulomi Nath
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Urmi Mukherjee
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Subhasri Biswas
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Soumojit Pal
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sriparna Das
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Soumyajyoti Ghosh
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Anwesha Samanta
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sudipta Maitra
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India.
| |
Collapse
|
40
|
The influence of zero-valent iron nanoparticles on oocytes and surrounding follicular cells in mice. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-00978-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
Nath P, Maitra S. Physiological relevance of nitric oxide in ovarian functions: An overview. Gen Comp Endocrinol 2019; 279:35-44. [PMID: 30244056 DOI: 10.1016/j.ygcen.2018.09.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/30/2018] [Accepted: 09/18/2018] [Indexed: 11/25/2022]
Abstract
Nitric oxide (NO, nitrogen monoxide), a short-lived, free radical carrying an unpaired electron, is one of the smallest molecules synthesized in the biological system. In addition to its role in angiogenesis, neuronal function and inflammatory response, NO has wide-spread significance in regulation of ovarian function in vertebrates. Based on tissue-specific expression, three different nitric oxide synthase (NOS) isoforms, neuronal (nNOS) or NOS1, inducible (iNOS) or NOS2 and endothelial (eNOS) or NOS3 have been identified. While expression of both inducible (iNOS) and constitutive NOS (eNOS) isoforms varies considerably in the ovary at various stages of follicular growth and development, selective binding of NO with proteins containing heme moieties have significant influence on ovarian steroidogenesis. Besides, NO modulation of ovulatory response suggests physiological significance of NO/NOS system in mammalian ovary. Compared to the duality of NO action on follicular development, steroidogenesis and meiotic maturation in mammalian models, participation of NO/NOS system in teleost ovary is less investigated. Genes encoding nos1 and nos2 have been identified in fish; however, presence of nos3 is still ambiguous. Interestingly, two distinct nos2 genes, nos2a and nos2b in zebrafish, possibly arose through whole genome duplication. Differential expression of major NOS isoforms in catfish ovary, NO inhibition of meiosis resumption in Anabas testudineus follicle-enclosed oocytes and NO/sGC/cGMP modulation of oocyte maturation in zebrafish are some of the recent advancements. The present overview is an update on the advancements made and shortfalls still remaining in NO/NOS modulation of intercellular communication in teleost vis-à-vis mammalian ovary.
Collapse
Affiliation(s)
- Poulomi Nath
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | - Sudipta Maitra
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India.
| |
Collapse
|
42
|
Berni M, Gigante P, Bussolati S, Grasselli F, Grolli S, Ramoni R, Basini G. Bisphenol S, a Bisphenol A alternative, impairs swine ovarian and adipose cell functions. Domest Anim Endocrinol 2019; 66:48-56. [PMID: 30439591 DOI: 10.1016/j.domaniend.2018.08.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 08/01/2018] [Accepted: 08/16/2018] [Indexed: 01/10/2023]
Abstract
The high-volume-produced plastic monomer Bisphenol A (BPA) has been in the spotlight in the last years because of its endocrine disruptor (ED) behavior, leading to disclosure of the association between the widespread human and wildlife exposure to BPA and reproductive, metabolic, and developmental disorders and hormone-dependent cancer onset. These evidences caused restrictions and prohibitions of BPA industrial uses and prompted investigation of harmless alternative compounds. Above all, several countries have substituted the parental analogue with Bisphenol S (BPS) in baby care product manufacturing, even if its structural homology to BPA suggests similar ED properties not yet completely ruled out. In light of this consideration, the aim of this in vitro study was to investigate the effect of BPS exposure (0.1, 1, and 10 μM for 48 h) on granulosa cells that are considered the prime ovarian targets of BPA as a "reproductive toxicant". Our data document that BPS inhibited E2 production, cell proliferation, and scavenging nonenzymatic activity (P < 0.05) while it significantly (P < 0.05) stimulated cell viability, superoxide (O2-) and nitric oxide (NO) production in cultured swine granulosa cells, a previously validated endocrine cell model for BPA. Evidence also exists that BPA and its analogues, as environmental lipophilic pollutants, are involved in the disruption of adipose tissue (AT) endocrine function, resulting in metabolic effects and thus in potential reproductive disorders. On this basis, our second purpose was the assessment of BPS effects on mesenchymal stromal cells (MSCs) isolated from porcine AT, taking into account MSCs viability and adipogenic differentiation, a process actually demonstrated to be largely affected by EDs. Our results show that BPS decreased (P < 0.001) cell viability of proliferating adipose stromal cells. Taken as a whole, our data demonstrate an effective BPS ED activity at μM concentrations, suggesting that further studies are needed before considering its use in industrial application as an alternative to BPA.
Collapse
Affiliation(s)
- M Berni
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - P Gigante
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - S Bussolati
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - F Grasselli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - S Grolli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - R Ramoni
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - G Basini
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy.
| |
Collapse
|
43
|
Presence and function of kisspeptin/KISS1R system in swine ovarian follicles. Theriogenology 2018; 115:1-8. [DOI: 10.1016/j.theriogenology.2018.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 04/01/2018] [Accepted: 04/04/2018] [Indexed: 12/19/2022]
|
44
|
Poulsen R, Cedergreen N, Hayes T, Hansen M. Nitrate: An Environmental Endocrine Disruptor? A Review of Evidence and Research Needs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3869-3887. [PMID: 29494771 DOI: 10.1021/acs.est.7b06419] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nitrate is heavily used as an agricultural fertilizer and is today a ubiquitous environmental pollutant. Environmental endocrine effects caused by nitrate have received increasing attention over the last 15 years. Nitrate is hypothesized to interfere with thyroid and steroid hormone homeostasis and developmental and reproductive end points. The current review focuses on aquatic ecotoxicology with emphasis on field and laboratory controlled in vitro and in vivo studies. Furthermore, nitrate is just one of several forms of nitrogen that is present in the environment and many of these are quickly interconvertible. Therefore, the focus is additionally confined to the oxidized nitrogen species (nitrate, nitrite and nitric oxide). We reviewed 26 environmental toxicology studies and our main findings are (1) nitrate has endocrine disrupting properties and hypotheses for mechanisms exist, which warrants for further investigations; (2) there are issues determining actual nitrate-speciation and abundance is not quantified in a number of studies, making links to speciation-specific effects difficult; and (3) more advanced analytical chemistry methodologies are needed both for exposure assessment and in the determination of endocrine biomarkers.
Collapse
Affiliation(s)
- Rikke Poulsen
- Department of Plant and Environmental Sciences , University of Copenhagen , Thorvaldsensvej 40 , 1871 Frederiksberg , Denmark
| | - Nina Cedergreen
- Department of Plant and Environmental Sciences , University of Copenhagen , Thorvaldsensvej 40 , 1871 Frederiksberg , Denmark
| | - Tyrone Hayes
- Laboratory for Integrative Studies in Amphibian Biology, Molecular Toxicology, Group in Endocrinology, Energy and Resources Group, Museum of Vertebrate Zoology, and Department of Integrative Biology , University of California , Berkeley , California 94720 , United States
| | - Martin Hansen
- Department of Plant and Environmental Sciences , University of Copenhagen , Thorvaldsensvej 40 , 1871 Frederiksberg , Denmark
- Laboratory for Integrative Studies in Amphibian Biology, Molecular Toxicology, Group in Endocrinology, Energy and Resources Group, Museum of Vertebrate Zoology, and Department of Integrative Biology , University of California , Berkeley , California 94720 , United States
- Department of Environmental and Civil Engineering , University of California , Berkeley , California 94720 , United States
- Department of Environmental Science , Aarhus University , 4000 Roskilde , Denmark
| |
Collapse
|
45
|
Guo ZH, He XM, Liu D, Ma H, Zhang DF, Wu HD, Wu SH, Li ZQ, Fu B, Wang JB, Wang L, Liu ZG, Zhang DJ. Bovine oocyte competence shows better tolerance to seasonal cold stress in cold areas of Northern China. ACTA AGR SCAND A-AN 2018. [DOI: 10.1080/09064702.2017.1330359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Z. H. Guo
- Postdoctoral Research Workstation, Heilongjiang Academy of Agricultural Sciences, Harbin, People’s Republic of China
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - X. M. He
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - D. Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - H. Ma
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - D. F. Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - H. D. Wu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - S. H. Wu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Z. Q. Li
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - B. Fu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - J. B. Wang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - L. Wang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Z. G. Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - D. J. Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, People’s Republic of China
| |
Collapse
|
46
|
Tian Y, Heng D, Xu K, Liu W, Weng X, Hu X, Zhang C. cGMP/PKG-I Pathway-Mediated GLUT1/4 Regulation by NO in Female Rat Granulosa Cells. Endocrinology 2018; 159:1147-1158. [PMID: 29300939 DOI: 10.1210/en.2017-00863] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/21/2017] [Indexed: 12/16/2022]
Abstract
Nitric oxide (NO) is a multifunctional gaseous molecule that plays important roles in mammalian reproductive functions, including follicular growth and development. Although our previous study showed that NO mediated 3,5,3'-triiodothyronine and follicle-stimulating hormone-induced granulosa cell development via upregulation of glucose transporter protein (GLUT)1 and GLUT4 in granulosa cells, little is known about the precise mechanisms regulating ovarian development via glucose. The objective of the present study was to determine the cellular and molecular mechanism by which NO regulates GLUT expression and glucose uptake in granulosa cells. Our results indicated that NO increased GLUT1/GLUT4 expression and translocation in cells, as well as glucose uptake. These changes were accompanied by upregulation of cyclic guanosine monophosphate (cGMP) level and cGMP-dependent protein kinase (PKG)-I protein content. The results of small interfering RNA (siRNA) analysis showed that knockdown of PKG-I significantly attenuated gene expression, translocation, and glucose uptake. Moreover, the PKG-I inhibitor also blocked the above processes. Furthermore, NO induced cyclic adenosine monophosphate response element binding factor (CREB) phosphorylation, and CREB siRNA attenuated NO-induced GLUT expression, translocation, and glucose uptake in granulosa cells. These findings suggest that NO increases cellular glucose uptake via GLUT upregulation and translocation, which are mediated through the activation of the cGMP/PKG pathway. Meanwhile, the activated CREB is also involved in the regulation. These findings indicate that NO has an important influence on the glucose uptake of granulosa cells.
Collapse
Affiliation(s)
- Ye Tian
- College of Life Science, Capital Normal University, Beijing, People's Republic of China
| | - Dai Heng
- College of Life Science, Capital Normal University, Beijing, People's Republic of China
| | - Kaili Xu
- College of Life Science, Capital Normal University, Beijing, People's Republic of China
| | - Wenbo Liu
- College of Life Science, Capital Normal University, Beijing, People's Republic of China
| | - Xuechun Weng
- College of Life Science, Capital Normal University, Beijing, People's Republic of China
| | - Xusong Hu
- College of Life Science, Capital Normal University, Beijing, People's Republic of China
| | - Cheng Zhang
- College of Life Science, Capital Normal University, Beijing, People's Republic of China
| |
Collapse
|
47
|
Nath P, Das D, Pal S, Maitra S. Nitric oxide (NO) inhibition of meiotic G2-M1 transition in Anabas testudineus oocytes: Participation of cAMP-dependent protein kinase (PKA) in regulation of intra-oocyte signaling events. Mol Cell Endocrinol 2018; 460:162-169. [PMID: 28743518 DOI: 10.1016/j.mce.2017.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
Nitric oxide (NO) regulation of ovarian function in mammals has been studied extensively. However, relatively less information is available on NO action on meiotic G2-M1 transition in teleost oocytes. In the present study using follicle-enclosed oocytes of Anabas testudineus, NO regulation of intra-oocyte signaling events during meiotic G2-M1 transition were examined. Priming with NO donor, sodium nitroprusside (SNP) prevented 17α,20β-dihydroxy-4-pregenen-3-one (17,20β-P)-induced germinal vesicle break down (GVBD) in dose- and duration-dependent manner. Impaired GVBD response in SNP-treated groups corroborated well with reduced p34Cdc2 (Thr161) phosphorylation. Immunoblot analysis revealed that congruent with elevated cAMP-dependent protein kinase (PKA) phosphorylation (activation), NO inhibition of meiotic maturation involves down regulation of Cdc25 activation, Mos synthesis and MAPK3/1 (ERK1/2) phosphorylation. However, priming with PKA inhibitor (H89) could reverse SNP attenuation of oocyte GVBD significantly. Collectively our results indicate that negative influence of NO on meiotic G2-M1 transition in perch oocytes might involve PKA activation.
Collapse
Affiliation(s)
- Poulomi Nath
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Debabrata Das
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Soumojit Pal
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sudipta Maitra
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India.
| |
Collapse
|
48
|
Basini G, Bussolati S, Grolli S, Ramoni R, Conti V, Quintavalla F, Grasselli F. Platelets are involved in in vitro swine granulosa cell luteinization and angiogenesis. Anim Reprod Sci 2017; 188:51-56. [PMID: 29174088 DOI: 10.1016/j.anireprosci.2017.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 10/05/2017] [Accepted: 11/08/2017] [Indexed: 10/18/2022]
Abstract
During corpus luteum formation, impressive biological events take place to guarantee the transition from original follicular to luteal cells and to support required massive angiogenesis. It has been demonstrated that these phenomena resemble those essential for wound healing. After ovulation, blood vessels release their content in the antral cavity and coagulation takes place. Involvement of platelets in corpus luteum growth has been hypothesized both in human and in rat. On this basis, using platelet lysate (PL), a blood derivative with a higher platelet concentration, we aimed to assess a potential involvement of platelets in swine granulosa cell luteinization and on new blood vessel growth. Our results demonstrate, for the first time in the swine, that platelets could be directly involved in granulosa cell physiological luteinization, since the treatment with PL shifted steroid production from estradiol 17β to progesterone. Moreover, PL stimulated angiogenesis. Nitric oxide could be involved in these effects. These results are important to clarify complex intrafollicular molecular machinery. A better understanding of these mechanisms can be useful to develop more focused therapeutic strategies to contrast sow infertility. In addition, since the pig represents a model for translational studies, collected data could be of interest for human medicine because reproductive pathologies such as Polycystic Ovary Syndrome (PCOS) and endometriosis are often accompanied by platelet dysfunctions.
Collapse
Affiliation(s)
- Giuseppina Basini
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy.
| | - Simona Bussolati
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - Stefano Grolli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - Roberto Ramoni
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - Virna Conti
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - Fausto Quintavalla
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - Francesca Grasselli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| |
Collapse
|
49
|
Tiwari M, Chaube SK. Human Chorionic Gonadotropin Mediated Generation of Reactive Oxygen Species Is Sufficient to Induce Meiotic Exit but Not Apoptosis in Rat Oocytes. Biores Open Access 2017; 6:110-122. [PMID: 29098117 PMCID: PMC5655844 DOI: 10.1089/biores.2017.0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Generation of reactive oxygen species (ROS) is associated with final stages of follicular development and ovulation in mammals. The human chorionic gonadotropin (hCG) mimics the action of luteinizing hormone and triggers follicular development and ovulation. However, it remains unclear whether hCG induces generation of ROS, if yes, whether hCG-mediated increased level of ROS could induce meiotic exit and/or apoptosis in rat oocytes. For this purpose, cumulus–oocyte complexes (COCs) were collected from ovary of experimental rats injected with 20 IU pregnant mare's serum gonadotropin for 48 h followed by 20 IU hCG for 0, 7, 14, and 21 h. The morphological changes in COCs, meiotic status of oocyte, total ROS, hydrogen peroxide (H2O2), inducible nitric oxide synthase (iNOS), nitric oxide (NO), Bax, Bcl-2, cytochrome c, telomerase reverse transcriptase (TERT) expression levels, and DNA fragmentation were analyzed in COCs. Our data suggest that hCG surge increased total ROS as well as H2O2 levels but decreased iNOS expression and total NO level in oocytes. The hCG-mediated increased level of ROS was sufficient to induce meiotic cell cycle resumption in majority of oocytes as evidenced by meiotic exit from diplotene as well as metaphase-II (M-II) arrest and their meiotic status. However, increase of ROS level due to hCG surge was not sufficient to trigger Bax and cytochrome c expression levels and DNA fragmentation in COCs. In addition, increased TERT activity was observed in oocytes collected 21 h post-hCG surge showing onset of oocyte aging. Taken together, these results suggest that hCG induces generation of ROS sufficient to trigger meiotic exit from diplotene, as well as M-II arrest, but not good enough to induce apoptosis in rat oocytes.
Collapse
Affiliation(s)
- Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
50
|
Tiwari M, Chaube SK. Reduction of nitric oxide level results in maturation promoting factor destabilization during spontaneous meiotic exit from diplotene arrest in rat cumulus oocytes complexes cultured in vitro. Dev Growth Differ 2017; 59:615-625. [PMID: 28836261 DOI: 10.1111/dgd.12390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 01/01/2023]
Abstract
Nitric oxides (NO) act as one of the major signal molecules and modulate various cell functions including oocyte meiosis in mammals. The present study was designed to investigate the mechanism of NO action during spontaneous meiotic exit from diplotene arrest (EDA) in rat cumulus oocytes complexes (COCs) cultured in vitro. Diplotene-arrested COCs collected from ovary of immature female rats after 20 IU pregnant mare's serum gonadotropins (PMSG) for 48 h were exposed to various concentrations of NO donor, S-nitroso-N-acetyl penicillamine (SNAP) and inducible nitric oxide synthase (iNOS) inhibitor, aminoguanidine (AG) for 3 h in vitro and downstream factors were analyzed. Our results suggest that SNAP inhibited, while AG induced EDA in a concentration-dependent manner. The iNOS-mediated total NO, cyclic nucleotides and cell division cycle 25B (Cdc25B) levels were reduced significantly. The decreased Cdc25B was associated with the increased Thr14/Tyr15 phosphorylated cyclin-dependent kinase 1 (Cdk1) level and decreased Thr161 phosphorylated Cdk1 as well as cyclin B1 levels leading to maturation promoting factor (MPF) destabilization. The destabilized MPF finally induced spontaneous EDA. Taken together, these results suggest that reduction of iNOS-mediated NO level destabilizes MPF during spontaneous EDA in rat COCs cultured in vitro.
Collapse
Affiliation(s)
- Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| |
Collapse
|