1
|
De Bem THC, Bridi A, Tinning H, Sampaio RV, Malo-Estepa I, Wang D, Vasconcelos EJR, Nociti RP, de Ávila ACFCM, Rodrigues Sangalli J, Motta IG, Arantes Ataíde G, da Silva JCB, Fumie Watanabe Y, Gonella-Diaza A, da Silveira JC, Pugliesi G, Vieira Meirelles F, Forde N. Biosensor capability of the endometrium is mediated in part, by altered miRNA cargo from conceptus-derived extracellular vesicles. FASEB J 2024; 38:e23639. [PMID: 38742798 DOI: 10.1096/fj.202302423rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
We tested the hypothesis that the biosensor capability of the endometrium is mediated in part, by the effect of different cargo contained in the extracellular vesicles secreted by the conceptus during the peri-implantation period of pregnancy. We transferred Bos taurus taurus embryos of different origin, in vivo (high developmental potential (IV)), in vitro (intermediate developmental potential (IVF)), or cloned (low developmental potential (NT)), into Bos taurus indicus recipients. Extracellular vesicles (EVs) recovered from Day 16 conceptus-conditioned medium were characterized and their microRNA (miRNA) cargo sequenced alongside RNA sequencing of their respective endometria. There were substantial differences in the endometrial response to in vivo versus in vitro and in vivo versus cloned conceptuses (1153 and 334DEGs respectively) with limited differences between in vitro Vs cloned conceptuses (36 DEGs). The miRNA cargo contained in conceptus-derived EVs was similar between all three groups (426 miRNA in common). Only 8 miRNAs were different between in vivo and cloned conceptuses, while only 6 miRNAs were different between in vivo and in vitro-derived conceptuses. Treatment of endometrial epithelial cells with mimic or inhibitors for miR-128 and miR-1298 changed the proteomic content of target cells (96 and 85, respectively) of which mRNAs are altered in the endometrium in vivo (PLXDC2, COPG1, HSPA12A, MCM5, TBL1XR1, and TTF). In conclusion, we have determined that the biosensor capability of the endometrium is mediated in part, by its response to different EVs miRNA cargo produced by the conceptus during the peri-implantation period of pregnancy.
Collapse
Affiliation(s)
- Tiago H C De Bem
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Alessandra Bridi
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Haidee Tinning
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Rafael Vilar Sampaio
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Irene Malo-Estepa
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Dapeng Wang
- LeedsOmics, University of Leeds, Leeds, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Ricardo Perecin Nociti
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Ana C F C M de Ávila
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Juliano Rodrigues Sangalli
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Igor Garcia Motta
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | - Gilmar Arantes Ataíde
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | - Júlio C B da Silva
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | | | - Angela Gonella-Diaza
- North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Juliano C da Silveira
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Guilherme Pugliesi
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | - Flávio Vieira Meirelles
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Niamh Forde
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
- LeedsOmics, University of Leeds, Leeds, UK
| |
Collapse
|
2
|
Stoecklein KS, Garcia-Guerra A, Duran BJ, Prather RS, Ortega MS. Actions of FGF2, LIF, and IGF1 on bovine embryo survival and conceptus elongation following slow-rate freezing. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.1040064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Culture environment during in vitro embryo production can affect embryo phenotype and pregnancy outcomes, making culture modifications a logical approach for improving embryo competence. Previously, the addition of the growth factors FGF2, LIF, and IGF1, termed FLI, to the culture medium improved bovine embryo development, and re-expansion following cryopreservation. The objective of this study was to investigate the survival of cryopreserved FLI treated embryos at day 15 of pregnancy and evaluate conceptus transcriptomes. Embryos were produced using in vitro fertilization of abattoir-derived oocytes, cultured to the blastocyst stage in the presence or absence of FLI (+/- FLI), and cryopreserved by slow-rate freezing. Thawed embryos were transferred into non-lactating recipient beef cows and eight days later conceptuses were recovered and analyzed. For a subset of conceptuses whole transcriptome analysis was performed by using the NovaSeq 6000. There was no detectable difference in conceptus recovery or average conceptus length between the two groups. There were 32 differentially expressed transcripts, 23 up-regulated and nine down-regulated in the +FLI group compared to -FLI. Genes were involved in interferon signaling, prostaglandin synthesis, and placental development. This study reveals that embryos cultured with or without FLI and cryopreserved by slow-rate freezing have similar developmental competence up to day 15 of development. Nevertheless, differences in gene expression exhibit an effect of FLI on conceptus signaling during elongation.
Collapse
|
3
|
Kose M, Hitit M, Kaya MS, Kırbas M, Dursun S, Alak I, Atli MO. Expression pattern of microRNAs in ovine endometrium during the peri-implantation. Theriogenology 2022; 191:35-46. [DOI: 10.1016/j.theriogenology.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022]
|
4
|
Atli MO, Hitit M, Özbek M, Köse M, Bozkaya F. Cell-Specific Expression Pattern of Toll-Like Receptors and Their Roles in Animal Reproduction. Handb Exp Pharmacol 2022; 276:65-93. [PMID: 35434748 DOI: 10.1007/164_2022_584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Toll-like receptors (TLRs), a part of the innate immune system, have critical roles in protection against infections and involve in basic pathology and physiology. Secreted molecules from the body or pathogens could be a ligand for induction of the TLR system. There are many immune and non-immune types of cells that express at a least single TLR on their surface or cytoplasm. Those cells may be a player in a defense system or in the physiological regulation mechanisms. Reproductive tract and organs contain different types of cells that have essential functions such as hormone production, providing an environment for embryo/fetus, germ cell production, etc. Although lower parts of reproductive organs are in a relationship with outsider contaminants (bacteria, viruses, etc.), upper parts should be sterile to provide a healthy pregnancy and germ cell production. In those areas, TLRs bear controller or regulator roles. In this chapter, we will provide current information about physiological functions of TLR in the cells of the reproductive organs and tract, and especially about their roles in follicle selection, maturation, follicular atresia, ovulation, corpus luteum (CL) formation and regression, establishment and maintenance of pregnancy, sperm production, maturation, capacitation as well as the relationship between TLR polymorphism and reproduction in domestic animals. We will also discuss pathogen-associated molecular patterns (PAMPs)-induced TLRs that involve in reproductive inflammation/pathology.
Collapse
Affiliation(s)
- Mehmet Osman Atli
- Department of Reproduction, Faculty of Veterinary Medicine, Harran University, Şanlıurfa, Turkey.
| | - Mustafa Hitit
- Department of Genetics, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - Mehmet Özbek
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Mehmet Köse
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Dicle University, Diyarbakır, Turkey
| | - Faruk Bozkaya
- Department of Genetics, Faculty of Veterinary Medicine, Harran University, Sanlıurfa, Turkey
| |
Collapse
|
5
|
Wu J, Zhang Q, Zhang L, Feng P, Gao M, Zhao Z, Yang L. Toll-like receptor signaling is changed in ovine lymph node during early pregnancy. Anim Sci J 2021; 92:e13541. [PMID: 33728713 DOI: 10.1111/asj.13541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 01/24/2023]
Abstract
Toll-like receptors (TLRs) participate in regulation of adaptive immune responses, and lymph nodes play key roles in the initiation of immune responses. There is a tolerance to the allogenic fetus during pregnancy, but it is unclear that expression of TLR signaling is in ovine lymph node during early pregnancy. In this study, lymph nodes were sampled from day 16 of nonpregnant ewes and days 13, 16, and 25 of pregnant ewes, and the expressions of TLR family (TLR2, TLR3, TLR4, TLR5 and TLR9), adaptor proteins, including myeloid differentiation primary-response protein 88 (MyD88), tumor necrosis factor receptor associated factor 6 (TRAF6), and interleukin-1-receptor-associated kinase 1 (IRAK1), were analyzed through real-time quantitative polymerase chain reaction, Western blot, and immunohistochemistry analysis. The results showed that mRNA and protein levels of TLR2, TLR3, TLR4, TRAF6, and MyD88 were upregulated in the maternal lymph node, but TLR5, TLR9, and IRAK1 were downregulated during early pregnancy. In addition, MyD88 protein was located in the subcapsular sinus and lymph sinuses. Therefore, it is suggested that early pregnancy induces changes in TLR signaling in maternal lymph node, which may be involved in regulation of maternal immune responses in sheep.
Collapse
Affiliation(s)
- Jiaxuan Wu
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Qiongao Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Leying Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Pengfei Feng
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Meihong Gao
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Zhenyang Zhao
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Ling Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
6
|
Zhang L, Yang G, Zhang Q, Feng P, Gao M, Yang L. Early pregnancy affects expression of Toll-like receptor signaling members in ovine spleen. Anim Reprod 2021; 18:e20210009. [PMID: 34394755 PMCID: PMC8356075 DOI: 10.1590/1984-3143-ar2021-0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/30/2021] [Indexed: 11/23/2022] Open
Abstract
Toll-like receptors (TLRs) are involved to the maternal immune tolerance. The spleen is essential for adaptive immune reactions. However, it is unclear that early pregnancy regulates TLR-mediated signalings in the maternal spleen. The purpose of this study was to investigate the effects of early pregnancy on expression of TLR signaling members in the ovine spleen. Ovine spleens were collected at day 16 of the estrous cycle, and at days 13, 16 and 25 of pregnancy (n = 6 for each group). Real-time quantitative PCR, western blot and immunohistochemistry analysis were used to detect TLR signaling members, including TLR2, TLR3, TLR4, TLR5, TLR7, TLR9, myeloid differentiation primary-response protein 88 (MyD88), tumor necrosis factor receptor associated factor 6 (TRAF6) and interleukin-1-receptor-associated kinase 1 (IRAK1). The results showed that expression levels of TLR2, TLR4 and IRAK1 were downregulated, but expression levels of TLR3, TLR5, TLR7, TLR9, TRAF6 and MyD88 were increased during early pregnancy. In addition, MyD88 protein was located in the capsule, trabeculae and splenic cords of the maternal spleen. This paper reports for the first time that early pregnancy has effects on TLR signaling pathways in the ovine spleen, which is beneficial for understanding the maternal immune tolerance during early pregnancy.
Collapse
Affiliation(s)
- Leying Zhang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Gengxin Yang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Qiongao Zhang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Pengfei Feng
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Meihong Gao
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Ling Yang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
7
|
Li N, Wang L, Cao N, Zhang L, Han X, Yang L. Early pregnancy affects the expression of toll-like receptor pathway in ovine thymus. Reprod Biol 2020; 20:547-554. [DOI: 10.1016/j.repbio.2020.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/19/2020] [Accepted: 10/12/2020] [Indexed: 11/17/2022]
|
8
|
Kharayat NS, Sharma G C, Kumar GR, Bisht D, Chaudhary G, Singh SK, Das GK, Garg AK, Kumar H, Krishnaswamy N. Differential expression of endometrial toll-like receptors (TLRs) and antimicrobial peptides (AMPs) in the buffalo (Bubalus bubalis) with endometritis. Vet Res Commun 2019; 43:261-269. [PMID: 31407222 DOI: 10.1007/s11259-019-09761-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/05/2019] [Indexed: 01/28/2023]
Abstract
Toll like receptors (TLRs) and β-defensins expressed in the endometrium are part of the innate uterine defense mechanism (UDM). In the present study, transcriptional profile of TLRs (1-3, 6-8, 10, and) and β-defensins such as lingual antimicrobial peptide (LAP), tracheal antimicrobial peptide (TAP) and bovine neutrophil beta-defensin 4 (BNBD4) were studied. Bubaline genitalia were collected from abattoir and the endometrium was categorized into one of the following seven groups (n = 7/group) based on cyclicity and endometritis: follicular non-endometritis (FNE), luteal non-endometritis (LNE), follicular cytological endometritis (FCE), luteal cytological endometritis (LCE), follicular purulent endometritis (FPE), luteal purulent endometritis (LPE) and acyclic non-endometritis (ANE). Cytological endometritis (CE) was diagnosed by uterine cytology while purulent endometritis (PE) was diagnosed by the presence of purulent or mucopurulent exudate in the uterine lumen. Real time PCR was performed and the relative fold change was analysed. TLR1 and BNBD4 transcripts were not found in the buffalo endometrium. Of all the innate immune genes studied, upregulation of TLR and β-defensins was mostly contributed by the inflammatory status of endometrium. Further, there was a prominent upregulation of TAP in buffaloes with endometritis. However, no association could be found between the inflammatory status of the endometrium and phase of estrous cycle with respect to the expression of TLRs and β-defensins.
Collapse
Affiliation(s)
- Nitish Singh Kharayat
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Chethan Sharma G
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Gandham Ravi Kumar
- Division of Animal Biotechnology, ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Deepika Bisht
- Division of Animal Biotechnology, ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Gangaram Chaudhary
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Sanjay Kumar Singh
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Gautum Kumar Das
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Anil Kumar Garg
- Division of Animal Nutrition, ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Harendra Kumar
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Narayanan Krishnaswamy
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India.
| |
Collapse
|
9
|
Chen H, Cheng S, Liu C, Fu J, Huang W. Bioinformatics Analysis of Differentially Expressed Genes, Methylated Genes, and miRNAs in Unexplained Recurrent Spontaneous Abortion. J Comput Biol 2019; 26:1418-1426. [PMID: 31305134 DOI: 10.1089/cmb.2019.0158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Approximately half of the unexplained recurrent spontaneous abortions remain unexplained (URSAs). We aimed to provide novel insights into the biological characteristics and related pathways of differentially expressed genes (DE-genes), DE-methylated genes, and DE-miRNAs in URSA, and construct a molecular miRNAs-mRNAs network. Four data sets (GSE22490, GSE121950, GSE73025, and GSE43256) were gained from GEO data sets. We identified the DE-genes, DE-methylated genes, and DE-miRNAs using the LIMMA package in R software. Function and enrichment analyses were conducted using DAVID. A protein-protein network was performed by STRING. We predicted the target genes of DE-miRNA using DIANA-microT-CDS. Then, we constructed miRNAs-mRNAs network. There were 137 genes that overlapped in two expression profile data sets (GSE121950 and GSE22490). We found 10 overlapping DE-methylated genes and DE-genes with opposite expression alteration trends. All those 10 genes were hypermethylated lowly expressed genes. Pathway analysis illustrated that DE-genes were enriched in osteoclast differentiation, leishmaniasis, NF-kappa B signaling pathway, Toll-like receptor signaling pathway, and tuberculosis. Based on protein-protein interaction analysis, TLR8, TLR2, CD86, TLR4, IL10, CD163, FCGR1A, CXCL8, FCGR3A, HCK, PLEK, and MNDA were identified as hub genes for DE-genes. We screened out 47 DE-miRNAs and 42 overlapping DE-genes between predicted target genes of DE-miRNAs and the 137 DE-genes. We then constructed miRNAs-mRNAs network. This study identified several genes and miRNAs involved in the development and progression of URSA, including FCGR1A, FCGR3A, CXCL8, HCK, PLEK, IL10, hsa-miR-498, and hsa-miR-4530. Although further in vivo and in vitro validations are required, our results may provide a theoretical basis for future studies.
Collapse
Affiliation(s)
- Hengxi Chen
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Shuting Cheng
- NHC Key Laboratory of Chronobiology (Sichuan University), West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Chang Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Jing Fu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Wei Huang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
10
|
Christou-Kent M, Kherraf ZE, Amiri-Yekta A, Le Blévec E, Karaouzène T, Conne B, Escoffier J, Assou S, Guttin A, Lambert E, Martinez G, Boguenet M, Fourati Ben Mustapha S, Cedrin Durnerin I, Halouani L, Marrakchi O, Makni M, Latrous H, Kharouf M, Coutton C, Thierry-Mieg N, Nef S, Bottari SP, Zouari R, Issartel JP, Ray PF, Arnoult C. PATL2 is a key actor of oocyte maturation whose invalidation causes infertility in women and mice. EMBO Mol Med 2019; 10:emmm.201708515. [PMID: 29661911 PMCID: PMC5938616 DOI: 10.15252/emmm.201708515] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The genetic causes of oocyte meiotic deficiency (OMD), a form of primary infertility characterised by the production of immature oocytes, remain largely unexplored. Using whole exome sequencing, we found that 26% of a cohort of 23 subjects with OMD harboured the same homozygous nonsense pathogenic mutation in PATL2, a gene encoding a putative RNA‐binding protein. Using Patl2 knockout mice, we confirmed that PATL2 deficiency disturbs oocyte maturation, since oocytes and zygotes exhibit morphological and developmental defects, respectively. PATL2's amphibian orthologue is involved in the regulation of oocyte mRNA as a partner of CPEB. However, Patl2's expression profile throughout oocyte development in mice, alongside colocalisation experiments with Cpeb1, Msy2 and Ddx6 (three oocyte RNA regulators) suggest an original role for Patl2 in mammals. Accordingly, transcriptomic analysis of oocytes from WT and Patl2−/− animals demonstrated that in the absence of Patl2, expression levels of a select number of highly relevant genes involved in oocyte maturation and early embryonic development are deregulated. In conclusion, PATL2 is a novel actor of mammalian oocyte maturation whose invalidation causes OMD in humans.
Collapse
Affiliation(s)
- Marie Christou-Kent
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Zine-Eddine Kherraf
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Amir Amiri-Yekta
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,UM GI-DPI, CHU de Grenoble, Grenoble, France.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Emilie Le Blévec
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Thomas Karaouzène
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Béatrice Conne
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Jessica Escoffier
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Said Assou
- IRMB, INSERM U1183, CHRU Montpellier, Université Montpellier, Montpellier, France
| | - Audrey Guttin
- Grenoble Neuroscience Institute, INSERM 1216, Université Grenoble Alpes, Grenoble, France
| | - Emeline Lambert
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Guillaume Martinez
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,UM GI-DPI, CHU de Grenoble, Grenoble, France.,UM de Génétique Chromosomique, CHU de Grenoble, Grenoble, France
| | - Magalie Boguenet
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | | | - Isabelle Cedrin Durnerin
- Service de Médecine de la Reproduction, Centre Hospitalier Universitaire Jean Verdier, Assistance Publique - Hôpitaux de Paris, Bondy, France
| | - Lazhar Halouani
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis, Tunisia
| | - Ouafi Marrakchi
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis, Tunisia
| | - Mounir Makni
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis, Tunisia
| | - Habib Latrous
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis, Tunisia
| | - Mahmoud Kharouf
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis, Tunisia
| | - Charles Coutton
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,UM GI-DPI, CHU de Grenoble, Grenoble, France.,UM de Génétique Chromosomique, CHU de Grenoble, Grenoble, France
| | | | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Serge P Bottari
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Raoudha Zouari
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis, Tunisia
| | - Jean Paul Issartel
- Grenoble Neuroscience Institute, INSERM 1216, Université Grenoble Alpes, Grenoble, France
| | - Pierre F Ray
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,UM GI-DPI, CHU de Grenoble, Grenoble, France
| | - Christophe Arnoult
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
11
|
Zhang X, Xu Y, Fu L, Li D, Dai X, Liu L, Zhang J, Zheng L, Cui M. Identification of mRNAs related to endometrium function regulated by lncRNA CD36-005 in rat endometrial stromal cells. Reprod Biol Endocrinol 2018; 16:96. [PMID: 30322386 PMCID: PMC6190555 DOI: 10.1186/s12958-018-0412-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/25/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine disorder in women of reproductive age and is commonly complicated by adverse endometrial outcomes. Long non-coding RNAs (lncRNAs) are a class of non-protein-coding transcripts that are more than 200 nucleotides in length. Accumulating evidence indicates that lncRNAs are involved in the development of various human diseases. Among these lncRNAs, lncRNA CD36-005 (CD36-005) is indicated to be associated with the pathogenesis of PCOS. However, the mechanisms of action of CD36-005 have not yet been elucidated. METHODS This study determined the CD36-005 expression level in the uteri of PCOS rat model and its effect on the proliferation activity of rat primary endometrial stromal cells. RNA sequencing (RNA-seq) and bioinformatics analysis were performed to detect the mRNA expression profiles and the biological pathways in which these differentially expressed mRNAs involved, after CD36-005 overexpression in the primary endometrial stromal cells. The differential expression of Hmgn5, Nr5a2, Dll4, Entpd1, Fam50a, and Brms1 were further validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). RESULTS CD36-005 is highly expressed in the uteri of PCOS rat model and promotes the proliferation of rat primary endometrial stromal cells. A total of fifty-five mRNAs differentially expressed were identified in CD36-005 overexpressed stromal cells. Further analyses identified that these differentially expressed mRNAs participate in many biological processes and are associated with various human diseases. The results of qRT-PCR validation were consistent with the RNA-seq data. CONCLUSIONS These data provide a list of potential target mRNA genes of CD36-005 in endometrial stromal cells and laid a foundation for further studies on the molecular function and mechanism of CD36-005 in the endometrium.
Collapse
Affiliation(s)
- Xueying Zhang
- grid.452829.0Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041 Jilin China
| | - Ying Xu
- grid.452829.0Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041 Jilin China
| | - Lulu Fu
- grid.452829.0Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041 Jilin China
| | - Dandan Li
- grid.452829.0Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041 Jilin China
| | - Xiaowei Dai
- grid.452829.0Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041 Jilin China
| | - Lianlian Liu
- grid.452829.0Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041 Jilin China
| | - Jingshun Zhang
- grid.452829.0Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041 Jilin China
| | - Lianwen Zheng
- grid.452829.0Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041 Jilin China
| | - Manhua Cui
- grid.452829.0Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041 Jilin China
| |
Collapse
|
12
|
Delivery of Morpholino Antisense Oligonucleotides to a Developing Ovine Conceptus via Luminal Injection into a Ligated Uterine Horn. Methods Mol Biol 2018; 1565:241-250. [PMID: 28364248 DOI: 10.1007/978-1-4939-6817-6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In vivo delivery of morpholino antisense oligonucleotides (MAO) directly into the uterine lumen of a peri-implantation period pregnant sheep is an effective technique for evaluation of gene products for conceptus development. The highly phagocytic conceptus is undergoing rapid morphological change, thereby the available MAO are readily consumed and delivered to developing cells. Here, we describe the method for preparation and surgical delivery of MAO-Endo-Porter complex to developing ovine conceptus on day 8 postmating. Also outlined are methods for posttreatment sample recovery on day 16 postmating.
Collapse
|
13
|
Lenis YY, Johnson GA, Wang X, Tang WW, Dunlap KA, Satterfield MC, Wu G, Hansen TR, Bazer FW. Functional roles of ornithine decarboxylase and arginine decarboxylase during the peri-implantation period of pregnancy in sheep. J Anim Sci Biotechnol 2018; 9:10. [PMID: 29410783 PMCID: PMC5781304 DOI: 10.1186/s40104-017-0225-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 12/19/2017] [Indexed: 01/03/2023] Open
Abstract
Background Polyamines stimulate DNA transcription and mRNA translation for protein synthesis in trophectoderm cells, as well as proliferation and migration of cells; therefore, they are essential for development and survival of conceptuses (embryo/fetus and placenta). The ovine conceptus produces polyamines via classical and non-classical pathways. In the classical pathway, arginine (Arg) is transformed into ornithine, which is then decarboxylated by ornithine decarboxylase (ODC1) to produce putrescine which is the substrate for the production of spermidine and spermine. In the non-classical pathway, Arg is converted to agmatine (Agm) by arginine decarboxylase (ADC), and Agm is converted to putrescine by agmatinase (AGMAT). Methods Morpholino antisense oligonucleotides (MAOs) were designed and synthesized to inhibit translational initiation of the mRNAs for ODC1 and ADC, in ovine conceptuses. Results The morphologies of MAO control, MAO-ODC1, and MAO-ADC conceptuses were normal. Double knockdown of ODC1 and ADC (MAO-ODC1:ADC) resulted in two phenotypes of conceptuses; 33% of conceptuses appeared to be morphologically and functionally normal (phenotype a) and 67% of the conceptuses presented an abnormal morphology and functionality (phenotype b). Furthermore, MAO-ODC1:ADC (a) conceptuses had greater tissue concentrations of Agm, putrescine, and spermidine than MAO control conceptuses, while MAO-ODC1:ADC (b) conceptuses only had greater tissue concentrations of Agm . Uterine flushes from ewes with MAO-ODC1:ADC (a) had greater amounts of arginine, aspartate, tyrosine, citrulline, lysine, phenylalanine, isoleucine, leucine, and glutamine, while uterine flushes of ewes with MAO-ODC1:ADC (b) conceptuses had lower amount of putrescine, spermidine, spermine, alanine, aspartate, glutamine, tyrosine, phenylalanine, isoleucine, leucine, and lysine. Conclusions The double-knockdown of translation of ODC1 and ADC mRNAs was most detrimental to conceptus development and their production of interferon tau (IFNT). Agm, polyamines, amino acids, and adequate secretion of IFNT are critical for establishment and maintenance of pregnancy during the peri-implantation period of gestation in sheep. Electronic supplementary material The online version of this article (10.1186/s40104-017-0225-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yasser Y Lenis
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA.,3Centauro Research Group, School of Veterinary Medicine, Faculty of Agrarian Science, Universidad de Antioquia, Calle 70 No, 52-21 Medellín, Colombia.,Faculty of Agricultural Sciences, Calle 222 No. 55-37, UDCA, Bogota, Colombia
| | - Gregory A Johnson
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA
| | - Xiaoqiu Wang
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA.,5Present address: National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 USA
| | - Wendy W Tang
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA
| | - Kathrin A Dunlap
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA
| | - M Carey Satterfield
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA
| | - Guoyao Wu
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA
| | - Thomas R Hansen
- 6Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Fuller W Bazer
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
14
|
Kaya MS, Kose M, Guzeloglu A, Kıyma Z, Atli MO. Early pregnancy-related changes in toll-like receptors expression in ovine trophoblasts and peripheral blood leukocytes. Theriogenology 2017; 93:40-45. [PMID: 28257865 DOI: 10.1016/j.theriogenology.2017.01.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 01/16/2017] [Accepted: 01/16/2017] [Indexed: 12/20/2022]
Abstract
In the present study, we aimed to 1) demonstrate the presence of all 10 toll-like receptors (TLRs) in ovine trophoblasts, and 2) investigate the expression profiles of TLR1-10 mRNAs in peripheral blood leukocytes (PBLs) in ewes during early pregnancy. For those purposes, ovine trophoblasts (n = 6) were collected from pregnant ewes on day 13. PBLs were collected from non-pregnant (n = 6) and pregnant ewes (n = 17) on days of mating (d) 0 and 18. TLR mRNAs in ovine trophoblasts were visualized by free-floating in situ hybridization (ISH). To assess the expression profiles of TLR1-10 in PBLs, total RNA was isolated and transcribed to cDNA. TLR1-10 mRNA levels were determined by real-time PCR in triplicate. The Relative Expression Software Tool (REST 2009) was used for statistical analysis. We detected mRNAs for TLR2, TLR4, TLR5, TLR6, TLR7, TLR8, and TLR10 but not for TLR1, TLR3, and TLR9 in trophoblasts. TLR2, TLR5, TLR6, TLR7, TLR8, and TLR10 mRNAs were expressed by all trophoblasts, whereas TLR4 mRNA and protein in trophoblasts were more limited. In PBLs, TLR expression did not differ between day 0 and day 18 in non-pregnant ewes; however, ewes in early pregnancy exhibited significantly upregulated expression of TLR2 (2.3-fold), TLR4 (3.1-fold), TLR6 (1.7-fold), and TLR8 (2.2-fold) on day 18 compared with day 0. In contrast, TLR10 was downregulated (2-fold) on day 18 by pregnancy. Similar results were also obtained for TLR2, TLR4, TLR6, TLR8 and TLR10 from the comparison between day 18 non -pregnant and day 18 pregnant groups. According to these results, the presence of TLRs in early ovine trophoblasts suggests that these cells play an immunological role at the maternal-fetal interface. The results also suggest that tight regulation of some components of TLRs in PBLs due to embryo- and/or pregnancy-related factors is necessary for successful establishment of early pregnancy in ewes.
Collapse
Affiliation(s)
- Mehmet Salih Kaya
- University of Dicle, Faculty of Veterinary Medicine, Department of Physiology, 21280, Diyarbakir, Turkey
| | - Mehmet Kose
- University of Dicle, Faculty of Veterinary Medicine, Department of Gyneacology and Obstetrics, 21280, Diyarbakir, Turkey
| | - Aydin Guzeloglu
- Selcuk University, Faculty of Veterinary Medicine, Department of Genetics, Konya, Turkey
| | - Zekeriya Kıyma
- Eskisehir Osmangazi University, Faculty of Agriculture, Department of Animal Science, 26480, Eskisehir, Turkey
| | - Mehmet Osman Atli
- University of Dicle, Faculty of Veterinary Medicine, Department of Gyneacology and Obstetrics, 21280, Diyarbakir, Turkey.
| |
Collapse
|
15
|
Sheldon IM, Owens SE, Turner ML. Innate immunity and the sensing of infection, damage and danger in the female genital tract. J Reprod Immunol 2016; 119:67-73. [PMID: 27498991 DOI: 10.1016/j.jri.2016.07.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022]
Abstract
Tissue homeostasis in the female genital tract is challenged by infection, damage, and even physiological events during reproductive cycles. We propose that the evolutionarily ancient system of innate immunity is sufficient to sense and respond to danger in the non-pregnant female genital tract. Innate immunity produces a rapidly inducible, non-specific response when cells sense danger. Here we provide a primer on innate immunity and discuss what is known about how danger signals are sensed in the endometrium and ovary, the impact of inflammatory responses on reproduction, and how endocrinology and innate immunity are integrated. Endometrial epithelial and stromal cells, and ovarian granulosa cells express pattern recognition receptors, similar to cells of the innate immune system. These pattern recognition receptors, such as the Toll-like receptors, bind pathogen-associated or damage-associated molecular patterns. Activation of pattern recognition receptors leads to inflammation, recruitment of immune cells from the peripheral circulation, and phagocytosis. Although the inflammatory response helps maintain or restore endometrial health, there may also be negative consequences for fertility, including perturbation of oocyte competence. The intensity of the inflammatory response reflects the balance between the level of danger and the systems that regulate innate immunity, including the endocrine environment. Understanding innate immunity is important because disease and inappropriate inflammatory responses in the endometrium or ovary cause infertility.
Collapse
Affiliation(s)
- Iain Martin Sheldon
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK.
| | - Siân-Eleri Owens
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Matthew Lloyd Turner
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| |
Collapse
|
16
|
Hue I. Determinant molecular markers for peri-gastrulating bovine embryo development. Reprod Fertil Dev 2016; 28:51-65. [DOI: 10.1071/rd15355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Peri-gastrulation defines the time frame between blastocyst formation and implantation that also corresponds in cattle to elongation, pregnancy recognition and uterine secretion. Optimally, this developmental window prepares the conceptus for implantation, placenta formation and fetal development. However, this is a highly sensitive period, as evidenced by the incidence of embryo loss or early post-implantation mortality after AI, embryo transfer or somatic cell nuclear transfer. Elongation markers have often been used within this time frame to assess developmental defects or delays, originating either from the embryo, the uterus or the dam. Comparatively, gastrulation markers have not received great attention, although elongation and gastrulation are linked by reciprocal interactions at the molecular and cellular levels. To make this clearer, this peri-gastrulating period is described herein with a focus on its main developmental landmarks, and the resilience of the landmarks in the face of biotechnologies is questioned.
Collapse
|