1
|
Jahangiri AR, Ziarati N, Dadkhah E, Bucak MN, Rahimizadeh P, Shahverdi A, Sadighi Gilani MA, Topraggaleh TR. Microfluidics: The future of sperm selection in assisted reproduction. Andrology 2024; 12:1236-1252. [PMID: 38148634 DOI: 10.1111/andr.13578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/03/2023] [Accepted: 12/10/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Obtaining functional sperm cells is the first step to treat infertility. With the ever-increasing trend in male infertility, clinicians require access to effective solutions that are able to single out the most viable spermatozoa, which would max out the chance for a successful pregnancy. The new generation techniques for sperm selection involve microfluidics, which offers laminar flow and low Reynolds number within the platforms can provide unprecedented opportunities for sperm selection. Previous studies showed that microfluidic platforms can provide a novel approach to this challenge and since then researchers across the globe have attacked this problem from multiple angles. OBJECTIVE In this review, we seek to provide a much-needed bridge between the technical and medical aspects of microfluidic sperm selection. Here, we provide an up-to-date list on microfluidic sperm selection procedures and its application in assisted reproductive technology laboratories. SEARCH METHOD A literature search was performed in Web of Science, PubMed, and Scopus to select papers reporting microfluidic sperm selection using the keywords: microfluidic sperm selection, self-motility, non-motile sperm selection, boundary following, rheotaxis, chemotaxis, and thermotaxis. Papers published before March 31, 2023 were selected. OUTCOMES Our results show that most studies have used motility-based properties for sperm selection. However, microfluidic platforms are ripe for making use of other properties such as chemotaxis and especially rheotaxis. We have identified that low throughput is one of the major hurdles to current microfluidic sperm selection chips, which can be solved via parallelization. CONCLUSION Future work needs to be performed on numerical simulation of the microfluidics chip prior to fabrication as well as relevant clinical assessment after the selection procedure. This would require a close collaboration and understanding among engineers, biologists, and medical professionals. It is interesting that in spite of two decades of microfluidics sperm selection, numerical simulation and clinical studies are lagging behind. It is expected that microfluidic sperm selection platforms will play a major role in the development of fully integrated start-to-finish assisted reproductive technology systems.
Collapse
Affiliation(s)
- Ali Reza Jahangiri
- NanoLund, Lund University, Lund, Sweden
- Materials Science and Applied Mathematics, Malmö University, Malmö, Sweden
| | - Niloofar Ziarati
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Ehsan Dadkhah
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Mustafa Numan Bucak
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Pegah Rahimizadeh
- Division of Experimental Surgery, McGill University, Montreal, Quebec, Canada
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohammad Ali Sadighi Gilani
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Tohid Rezaei Topraggaleh
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Anatomical Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
2
|
Zigo M, Netherton J, Zelenková N, Kerns K, Kraus V, Postlerová P, Baker M, Sutovsky P. Bottom-up approach to deciphering the targets of the ubiquitin-proteasome system in porcine sperm capacitation. Sci Rep 2024; 14:20159. [PMID: 39215164 PMCID: PMC11364869 DOI: 10.1038/s41598-024-71056-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Capacitation is an essential post-testicular maturation event endowing spermatozoa with fertilizing capacity within the female reproductive tract, significant for fertility, reproductive health, and contraception. By using a human-relevant large animal model, the domestic boar, this study focuses on furthering our understanding of the involvement of the ubiquitin-proteasome system (UPS) in sperm capacitation. The UPS is a universal, evolutionarily conserved, cellular proteome-wide degradation and recycling machinery, that has been shown to play a significant role in reproduction during the past two decades. Herein, we have used a bottom-up proteomic approach to (i) monitor the capacitation-related changes in the sperm protein levels, and (ii) identify the targets of UPS regulation during sperm capacitation. Spermatozoa were capacitated under proteasomal activity-permissive and inhibiting conditions and extracted sperm proteins were subjected to high-resolution mass spectrometry. We report that 401 individual proteins differed at least two-fold in abundance (P < 0.05) after in vitro capacitation (IVC) and 13 proteins were found significantly different (P < 0.05) between capacitated spermatozoa with proteasomal inhibition compared to the vehicle control. These proteins were associated with biological processes including sperm capacitation, sperm motility, metabolism, binding to zona pellucida, and proteasome-mediated catabolism. Changes in RAB2A, CFAP161, and TTR during IVC were phenotyped by immunocytochemistry, image-based flow cytometry, and Western blotting. We conclude that (i) the sperm proteome is subjected to extensive remodeling during sperm capacitation, and (ii) the UPS has a narrow range of distinct protein substrates during capacitation. This knowledge highlights the importance of the UPS in sperm capacitation and offers opportunities to identify novel pharmacological targets to modulate sperm fertilizing ability for the benefit of human reproductive health, assisted reproductive therapy, and contraception, as well as reproductive management in food animal agriculture.
Collapse
Affiliation(s)
- Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211-5300, USA.
| | - Jacob Netherton
- HMRI Infertility and Reproduction Research Program, University of Newcastle, Callaghan, NSW, Australia
| | - Natálie Zelenková
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211-5300, USA
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, University of Life Sciences Prague, 16500, Prague, Czech Republic
| | - Karl Kerns
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211-5300, USA
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Veronika Kraus
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, 25250, Vestec, Czech Republic
| | - Pavla Postlerová
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, University of Life Sciences Prague, 16500, Prague, Czech Republic
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, 25250, Vestec, Czech Republic
| | - Mark Baker
- HMRI Infertility and Reproduction Research Program, University of Newcastle, Callaghan, NSW, Australia
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211-5300, USA
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
3
|
Abdul Halim MS, Dyson JM, Gong MM, O'Bryan MK, Nosrati R. Fallopian tube rheology regulates epithelial cell differentiation and function to enhance cilia formation and coordination. Nat Commun 2024; 15:7411. [PMID: 39198453 PMCID: PMC11358425 DOI: 10.1038/s41467-024-51481-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
The rheological properties of the extracellular fluid in the female reproductive tract vary spatiotemporally, however, the effect on the behaviour of epithelial cells that line the tract is unexplored. Here, we reveal that epithelial cells respond to the elevated viscosity of culture media by modulating their development and functionality to enhance cilia formation and coordination. Specifically, ciliation increases by 4-fold and cilia beating frequency decreases by 30% when cells are cultured at 100 mPa·s. Further, cilia manifest a coordinated beating pattern that can facilitate the formation of metachronal waves. At the cellular level, viscous loading activates the TRPV4 channel in the epithelial cells to increase intracellular Ca2+, subsequently decreasing the mitochondrial membrane potential level for ATP production to maintain cell viability and function. Our findings provide additional insights into the role of elevated tubal fluid viscosity in promoting ciliation and coordinating their beating-a potential mechanism to facilitate the transport of egg and embryo, suggesting possible therapeutic opportunities for infertility treatment.
Collapse
Affiliation(s)
- Melati S Abdul Halim
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia
| | - Jennifer M Dyson
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Max M Gong
- Department of Biomedical Engineering, Trine University, Angola, IN, USA
| | - Moira K O'Bryan
- School of BioSciences and Bio21 Molecular Science and Biotechnology Institute, Faculty of Science, University of Melbourne, Parkville, Victoria, Australia
| | - Reza Nosrati
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
4
|
Sanchez-Rodriguez A, Sansegundo E, Tourmente M, Roldan ERS. Effect of High Viscosity on Energy Metabolism and Kinematics of Spermatozoa from Three Mouse Species Incubated under Capacitating Conditions. Int J Mol Sci 2022; 23:ijms232315247. [PMID: 36499575 PMCID: PMC9737050 DOI: 10.3390/ijms232315247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/07/2022] Open
Abstract
In order to sustain motility and prepare for fertilization, sperm require energy. The characterization of sperm ATP production and usage in mouse species revealed substantial differences in metabolic pathways that can be differentially affected by capacitation. Moreover, spermatozoa encounter different environments with varying viscoelastic properties in the female reproductive tract. Here, we examine whether viscosity affects sperm ATP levels and kinematics during capacitation in vitro. Sperm from three mouse species (Mus musculus, M. spretus, M. spicilegus) were incubated under capacitating conditions in a modified Tyrode's medium containing bicarbonate, glucose, pyruvate, lactate, and bovine serum albumin (mT-BH) or in a bicarbonate-free medium as a non-capacitating control. Viscosity was increased with the inclusion of polyvinylpyrrolidone. ATP was measured with a bioluminescence kit, and kinematics were examined with a computer-aided sperm analysis system. In M. musculus sperm, ATP declined during capacitation, but no differences were found between non-capacitating and capacitating sperm. In contrast, in M. spretus and M. spicilegus, ATP levels decreased in capacitating sperm. Increasing viscosity in the medium did not modify the timing or proportion of cells undergoing capacitation but did result in additional time- and concentration-dependent decreases in ATP in M. spretus and M. spicilegus under capacitating conditions. Additionally, increased viscosity altered both velocity and trajectory descriptors. The limited impact of capacitation and higher viscosity on M. musculus sperm ATP and kinematics could be related to the low intensity of postcopulatory sexual selection in this species. Responses seen in the other two species could be linked to the ability of their sperm to perform better under enhanced selective pressures.
Collapse
Affiliation(s)
- Ana Sanchez-Rodriguez
- Departmento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), 28006 Madrid, Spain
| | - Ester Sansegundo
- Departmento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), 28006 Madrid, Spain
| | - Maximiliano Tourmente
- Departmento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), 28006 Madrid, Spain
- Centro de Biología Celular y Molecular, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba (FCEFyN—UNC), Córdoba X5016GCA, Argentina
- Instituto de Investigaciones Biológicas y Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IIByT—CONICET, UNC), Córdoba X5016GCA, Argentina
| | - Eduardo R. S. Roldan
- Departmento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), 28006 Madrid, Spain
- Correspondence:
| |
Collapse
|
5
|
Tourmente M, Sansegundo E, Rial E, Roldan ERS. Capacitation promotes a shift in energy metabolism in murine sperm. Front Cell Dev Biol 2022; 10:950979. [PMID: 36081906 PMCID: PMC9445201 DOI: 10.3389/fcell.2022.950979] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
In mammals, sperm acquire fertilization ability after a series of physiological and biochemical changes, collectively known as capacitation, that occur inside the female reproductive tract. In addition to other requirements, sperm bioenergetic metabolism has been identified as a fundamental component in the acquisition of capacitation. Mammalian sperm produce ATP through two main metabolic processes, oxidative phosphorylation (OXPHOS) and aerobic glycolysis that are localized to two different flagellar compartments, the midpiece, and the principal piece, respectively. In mouse sperm, the occurrence of many events associated with capacitation relies on the activity of these two energy-producing pathways, leading to the hypothesis that some of these events may impose changes in sperm energetic demands. In the present study, we used extracellular flux analysis to evaluate changes in glycolytic and respiratory parameters of murine sperm that occur as a consequence of capacitation. Furthermore, we examined whether these variations affect sperm ATP sustainability. Our results show that capacitation promotes a shift in the usage ratio of the two main metabolic pathways, from oxidative to glycolytic. However, this metabolic rewiring does not seem to affect the rate at which the sperm consume ATP. We conclude that the probable function of the metabolic switch is to increase the ATP supply in the distal flagellar regions, thus sustaining the energetic demands that arise from capacitation.
Collapse
Affiliation(s)
- Maximiliano Tourmente
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
- Centro de Biología Celular y Molecular, Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN—UNC), Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigaciones Biológicas y Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IIByT—CONICET, UNC), Córdoba, Argentina
- *Correspondence: Maximiliano Tourmente, ; Eduardo R. S. Roldan,
| | - Ester Sansegundo
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Eduardo Rial
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Eduardo R. S. Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
- *Correspondence: Maximiliano Tourmente, ; Eduardo R. S. Roldan,
| |
Collapse
|
6
|
Tourmente M, Sanchez-Rodriguez A, Roldan ERS. Effect of Motility Factors D-Penicillamine, Hypotaurine and Epinephrine on the Performance of Spermatozoa from Five Hamster Species. BIOLOGY 2022; 11:526. [PMID: 35453725 PMCID: PMC9032960 DOI: 10.3390/biology11040526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022]
Abstract
Assessments of sperm performance are valuable tools for the analysis of sperm fertilizing potential and to understand determinants of male fertility. Hamster species constitute important animal models because they produce sperm cells in high quantities and of high quality. Sexual selection over evolutionary time in these species seems to have resulted in the largest mammalian spermatozoa, and high swimming and bioenergetic performances. Earlier studies showed that golden hamster sperm requires motility factors such as D-penicillamine, hypotaurine and epinephrine (PHE) to sustain survival over time, but it is unknown how they affect swimming kinetics or ATP levels and if other hamster species also require them. The objective of the present study was to examine the effect of PHE on spermatozoa of five hamster species (Mesocricetus auratus, Cricetulus griseus, Phodopus campbelli, P. sungorus, P. roborovskii). In sperm incubated for up to 4 h without or with PHE, we assessed motility, viability, acrosome integrity, sperm velocity and trajectory, and ATP content. The results showed differences in the effect of PHE among species. They had a significant positive effect on the maintenance of sperm quality in M. auratus and C. griseus, whereas there was no consistent effect on spermatozoa of the Phodopus species. Differences between species may be the result of varying underlying regulatory mechanisms of sperm performance and may be important to understand how they relate to successful fertilization.
Collapse
Affiliation(s)
- Maximiliano Tourmente
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, Spanish Research Council (CSIC), 28006 Madrid, Spain;
- Centro de Biología Celular y Molecular, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Cordoba X5016GCA, Argentina
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Consejo Nacional de Investigaciones Científica y Técnicas (CONICET), Cordoba X5016GCA, Argentina
| | - Ana Sanchez-Rodriguez
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, Spanish Research Council (CSIC), 28006 Madrid, Spain;
| | - Eduardo R. S. Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, Spanish Research Council (CSIC), 28006 Madrid, Spain;
| |
Collapse
|
7
|
Sansegundo E, Tourmente M, Roldan ERS. Energy Metabolism and Hyperactivation of Spermatozoa from Three Mouse Species under Capacitating Conditions. Cells 2022; 11:220. [PMID: 35053337 PMCID: PMC8773617 DOI: 10.3390/cells11020220] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Mammalian sperm differ widely in sperm morphology, and several explanations have been presented to account for this diversity. Less is known about variation in sperm physiology and cellular processes that can give sperm cells an advantage when competing to fertilize oocytes. Capacitation of spermatozoa, a process essential for mammalian fertilization, correlates with changes in motility that result in a characteristic swimming pattern known as hyperactivation. Previous studies revealed that sperm motility and velocity depend on the amount of ATP available and, therefore, changes in sperm movement occurring during capacitation and hyperactivation may involve changes in sperm bioenergetics. Here, we examine differences in ATP levels of sperm from three mouse species (genus Mus), differing in sperm competition levels, incubated under non-capacitating and capacitating conditions, to analyse relationships between energetics, capacitation, and swimming patterns. We found that, in general terms, the amount of sperm ATP decreased more rapidly under capacitating conditions. This descent was related to the development of a hyperactivated pattern of movement in two species (M. musculus and M. spicilegus) but not in the other (M. spretus), suggesting that, in the latter, temporal dynamics and energetic demands of capacitation and hyperactivation may be decoupled or that the hyperactivation pattern differs. The decrease in ATP levels during capacitation was steeper in species with higher levels of sperm competition than in those with lower levels. Our results suggest that, during capacitation, sperm consume more ATP than under non-capacitating conditions. This higher ATP consumption may be linked to higher velocity and lateral head displacement, which are associated with hyperactivated motility.
Collapse
Affiliation(s)
- Ester Sansegundo
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, Spanish Research Council (CSIC), 28006 Madrid, Spain;
| | - Maximiliano Tourmente
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, Spanish Research Council (CSIC), 28006 Madrid, Spain;
- Centro de Biología Celular y Molecular, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Cordoba X5016GCA, Argentina
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Consejo Nacional de Investigaciones Científica y Técnicas (CONICET), Cordoba X5016GCA, Argentina
| | - Eduardo R. S. Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, Spanish Research Council (CSIC), 28006 Madrid, Spain;
| |
Collapse
|
8
|
Saint-Dizier M, Mahé C, Reynaud K, Tsikis G, Mermillod P, Druart X. Sperm interactions with the female reproductive tract: A key for successful fertilization in mammals. Mol Cell Endocrinol 2020; 516:110956. [PMID: 32712384 DOI: 10.1016/j.mce.2020.110956] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/22/2020] [Accepted: 07/20/2020] [Indexed: 12/15/2022]
Abstract
Sperm migration through the female genital tract is not a quiet journey. Uterine contractions quickly operate a drastic selection, leading to a very restrictive number of sperm reaching the top of uterine horns and finally, provided the presence of key molecules on sperm, the oviduct, where fertilization takes place. During hours and sometimes days before fertilization, subpopulations of spermatozoa interact with dynamic and region-specific maternal components, including soluble proteins, extracellular vesicles and epithelial cells lining the lumen of the female tract. Interactions with uterine and oviductal cells play important roles for sperm survival as they modulate the maternal immune response and allow a transient storage before ovulation. The body of work reported here highlights the importance of sperm interactions with proteins originated from both the uterine and oviductal fluids, as well as hormonal signals around the time of ovulation for sperm acquisition of fertilizing competence.
Collapse
Affiliation(s)
- Marie Saint-Dizier
- INRAE, UMR PRC, 37380, Nouzilly, France; University of Tours, Faculty of Sciences and Techniques, 37000, Tours, France.
| | | | | | | | | | | |
Collapse
|
9
|
Gimeno-Martos S, Miguel-Jiménez S, Casao A, Cebrián-Pérez JA, Muiño-Blanco T, Pérez-Pe R. Underlying molecular mechanism in the modulation of the ram sperm acrosome reaction by progesterone and 17β-estradiol. Anim Reprod Sci 2020; 221:106567. [PMID: 32861117 DOI: 10.1016/j.anireprosci.2020.106567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 01/09/2023]
Abstract
Steroid hormones progesterone (P4) and 17β-estradiol (E2) not only have important functions in regulation of reproductive processes in mammals but also have direct effects on spermatozoa. There can be induction of the acrosome reaction in ram spermatozoa by P4 and E2 and, in the present study, there was further investigation of mechanisms underlying this effect. In a medium containing agents that increase cAMP, the presence of both P4 and E2 led to changes in the localization of proteins phosphorylated in tyrosine residues evaluated by indirect immunofluorescence. The inclusion of P4 at 1 μM in the media induced an increase in Ca2+i and mobilization in the area of the acrosome (Fluo-4 and Rhod-5 staining, respectively), an increase in ROS (H2DCFDA staining) and a substantial disruption of the acrosome (evaluated using RCA), while E2 did not have these effects. There were no effects on cAMP concentrations or PKA activity with inclusion of these hormones in the media. The inclusion of P4 at 100 pM in the media led to changes in values for sperm kinematic variables which could indicate there was an inhibition of the hyperactivation caused by agents that induce an increase in cAMP concentrations. In conclusion, results from the present study indicate that P4 and E2 promote mechanisms regulating the acrosome reaction in ram spermatozoa, however, these effects on mechanisms are different for the two hormones, and for E2, require further clarification.
Collapse
Affiliation(s)
- S Gimeno-Martos
- Department of Biochemistry and Molecular and Cell Biology, Institute of Environmental Sciences of Aragón (IUCA), School of Veterinary Medicine, University of Zaragoza, C/Miguel Servet 177, 50013, Zaragoza, Spain.
| | - S Miguel-Jiménez
- Department of Biochemistry and Molecular and Cell Biology, Institute of Environmental Sciences of Aragón (IUCA), School of Veterinary Medicine, University of Zaragoza, C/Miguel Servet 177, 50013, Zaragoza, Spain
| | - A Casao
- Department of Biochemistry and Molecular and Cell Biology, Institute of Environmental Sciences of Aragón (IUCA), School of Veterinary Medicine, University of Zaragoza, C/Miguel Servet 177, 50013, Zaragoza, Spain
| | - J A Cebrián-Pérez
- Department of Biochemistry and Molecular and Cell Biology, Institute of Environmental Sciences of Aragón (IUCA), School of Veterinary Medicine, University of Zaragoza, C/Miguel Servet 177, 50013, Zaragoza, Spain
| | - T Muiño-Blanco
- Department of Biochemistry and Molecular and Cell Biology, Institute of Environmental Sciences of Aragón (IUCA), School of Veterinary Medicine, University of Zaragoza, C/Miguel Servet 177, 50013, Zaragoza, Spain
| | - R Pérez-Pe
- Department of Biochemistry and Molecular and Cell Biology, Institute of Environmental Sciences of Aragón (IUCA), School of Veterinary Medicine, University of Zaragoza, C/Miguel Servet 177, 50013, Zaragoza, Spain
| |
Collapse
|
10
|
Schmoll T, Rudolfsen G, Schielzeth H, Kleven O. Sperm velocity in a promiscuous bird across experimental media of different viscosities. Proc Biol Sci 2020; 287:20201031. [PMID: 32673555 DOI: 10.1098/rspb.2020.1031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In species with internal fertilization, the female genital tract appears challenging to sperm, possibly resulting from selection on for example ovarian fluid to control sperm behaviour and, ultimately, fertilization. Few studies, however, have examined the effects of swimming media viscosities on sperm performance. We quantified effects of media viscosities on sperm velocity in promiscuous willow warblers Phylloscopus trochilus. We used both a reaction norm and a character-state approach to model phenotypic plasticity of sperm behaviour across three experimental media of different viscosities. Compared with a standard medium (Dulbecco's Modified Eagle Medium, DMEM), media enriched with 1% or 2% w/v methyl cellulose decreased sperm velocity by up to about 50%. Spermatozoa from experimental ejaculates of different males responded similarly to different viscosities, and a lack of covariance between elevations and slopes of individual velocity-by-viscosity reaction norms indicated that spermatozoa from high- and low-velocity ejaculates were slowed down by a similar degree when confronted with high-viscosity environments. Positive cross-environment (1% versus 2% cellulose) covariances of sperm velocity under the character-state approach suggested that sperm performance represents a transitive trait, with rank order of individual ejaculates maintained when expressed against different environmental backgrounds. Importantly, however, a lack of significant covariances in sperm velocity involving a cellulose concentration of 0% indicated that pure DMEM represented a qualitatively different environment, questioning the validity of this widely used standard medium for assaying sperm performance. Enriching sperm environments along ecologically relevant gradients prior to assessing sperm performance will strengthen explanatory power of in vitro studies of sperm behaviour.
Collapse
Affiliation(s)
- Tim Schmoll
- Evolutionary Biology, Bielefeld University, Konsequenz 45, D-33615 Bielefeld, Germany
| | - Geir Rudolfsen
- The Arctic University Museum of Norway, The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Holger Schielzeth
- Evolutionary Biology, Bielefeld University, Konsequenz 45, D-33615 Bielefeld, Germany.,Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Str. 159, D-07743 Jena, Germany
| | - Oddmund Kleven
- Norwegian Institute for Nature Research (NINA), P.O. Box 5685 Torgarden, NO-7485 Trondheim, Norway
| |
Collapse
|
11
|
García-Vázquez FA, Soriano-Úbeda C, Laguna-Barraza R, Izquierdo-Rico MJ, Navarrete FA, Visconti PE, Gutiérrez-Adán A, Coy P. Tissue plasminogen activator (tPA) of paternal origin is necessary for the success of in vitro but not of in vivo fertilisation in the mouse. Reprod Fertil Dev 2019; 31:433-442. [DOI: 10.1071/rd18175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/09/2018] [Indexed: 11/23/2022] Open
Abstract
Besides its fibrinolytic function, the plasminogen–plasmin (PLG–PLA) system is also involved in fertilisation, where plasminogen activators bind to plasminogen to produce plasmin, which modulates sperm binding to the zona pellucida. However, controversy exists, depending on the species, concerning the role of the different components of the system. This study focused its attention on the role of the PLG–PLA system on fertilisation in the mouse with special attention to tissue plasminogen activator (tPA). The presence of exogenous plasminogen reduced invitro fertilisation (IVF) rates and this decline was attenuated by the presence of plasmin inhibitors in combination with plasminogen. The incubation of spermatozoa with either oocytes or cumulus cells together with plasminogen did not change the acrosome reaction but reduced the number of spermatozoa attached. When spermatozoa from tPA−/− mice were used, the IVF rate decreased drastically, although the addition of exogenous tPA during gamete co-incubation under invitro conditions increased fertilisation success. Moreover, fertility could not be restored after invivo insemination of tPA−/− spermatozoa in the female ampulla, although tPA−/− males were able to fertilise invivo. This study suggests a regulatory role of the PLG–PLA system during fertilisation in the mouse with possible implications in human reproduction clinics, such as failures in tPA production, which could be partially resolved by the addition of exogenous tPA during IVF treatment.
Collapse
|
12
|
Saymé N, Dite L, Krebs T, Kljajić M, Maas DHA. Positive effect of progesterone on motility and velocity of fresh, vitrified without permeable cryoprotectants and frozen with permeable cryoprotectants human spermatozoa. Andrologia 2018; 50:e13133. [PMID: 30225900 DOI: 10.1111/and.13133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 07/02/2018] [Accepted: 07/18/2018] [Indexed: 11/28/2022] Open
Abstract
Steroid hormone progesterone has been found to play an important role in the migration of spermatozoa through the reproductive tract, as well as to induce hyperactive motility and increase sperm velocity. The aim of this study was to examine whether progesterone could induce beneficial effects in vitrified and slow-frozen spermatozoa. During the research process, 50 semen samples were divided into three treatment groups; noncryopreserved, slow-freezing and vitrification. After thawing and an incubation period of 2 hr to induce capacitation, semen samples from each treatment group were treated with 50 nM, 25 nM progesterone and a control solution for 30 min. Thereafter, the sperm suspensions were examined manually to assess the proportion of viable and motile spermatozoa, as well as using the CASA to evaluate the velocity parameters. The results indicated a higher proportion of progressively motile spermatozoa in vitrified teratozoospermic samples and improved velocity parameters in slow-frozen normozoospermic and teratozoospermic samples. The main conclusion of this research was that the used progesterone concentration of 50 nM was sufficient to significantly improve the motility of vitrified teratozoospermic samples and velocity parameters of cryopreserved sperm samples. The present findings might have important implications in determining ways of improving the current low rates of motility in cryopreserved spermatozoa.
Collapse
Affiliation(s)
- Nabil Saymé
- IVF Laboratory Department, Team Kinderwunsch Hannover Aegidientorplatz, 2b, Hannover, Germany
| | - Lisa Dite
- IVF Laboratory Department, Kinderwunsch Praxis München Nord, Garching bei München, Germany.,UNI for LIFE Department, Karl Franz University of Graz, Graz, Austria
| | - Thomas Krebs
- IVF Laboratory Department, Team Kinderwunsch Hannover Aegidientorplatz, 2b, Hannover, Germany
| | - Marija Kljajić
- IVF Laboratory Department, Team Kinderwunsch Hannover Aegidientorplatz, 2b, Hannover, Germany
| | - Dieter H A Maas
- IVF Laboratory Department, Team Kinderwunsch Hannover Aegidientorplatz, 2b, Hannover, Germany
| |
Collapse
|
13
|
Martínez-Rodríguez C, Anel-López L, Alvarez M, Ortega-Ferrusola C, Boixo JC, Peña FJ, Anel L, de Paz P. Progesterone stimulates the long-distance migration of capacitated ram spermatozoa through viscous media under geotactic condition. Theriogenology 2018; 118:7-15. [PMID: 29859396 DOI: 10.1016/j.theriogenology.2018.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 11/18/2022]
Abstract
Forward progressive motility of spermatozoa is an essential prerequisite for reproductive success, and sperm navigation is assisted by guidance mechanisms that may depend on micro-environmental factors. In the present study, we performed an integrated analysis of long-distance ram sperm migration in vitro that combined two environmental factors (10 μM progesterone and a geotactic effect) and the physiological status of the cells (capacitation treatment). A penetration assay was used in which spermatozoa had to travel 20 mm in a viscous medium (two media of differing viscosity: acrylamide and hyaluronic acid) through a tube device. The number of migrating spermatozoa, the physiology of the cells (motility analyzed using a CASA system; acrosomal status, viability and active mitochondria evaluated by flow cytometry; DNA fragmentation index calculated by quantitative PCR) and the morphometry of sperm heads (performed using an image analysis system) were evaluated after long-distance sperm migration. Ram sperm capacitation significantly stimulates cell migration through viscous media under geotactic conditions, and this effect is enhanced by progesterone induction. The rheological characteristics of viscous media have a marked impact on ram sperm migration, and acrylamide more favorably facilitates navigation over a large distance. The migrating spermatozoa are morphologically better adapted (high ellipticity) for displacement in viscous media and exhibit remarkably depleted mitochondrial membrane potential.
Collapse
Affiliation(s)
- Carmen Martínez-Rodríguez
- Animal Reproduction and Obstetrics, University of León, Spain; Molecular Biology (Cell Biology), University of León, Spain
| | - Luis Anel-López
- Animal Reproduction and Obstetrics, University of León, Spain; ITRA-ULE, INDEGSAL, University of León, 24071, León, Spain
| | - Mercedes Alvarez
- Animal Reproduction and Obstetrics, University of León, Spain; ITRA-ULE, INDEGSAL, University of León, 24071, León, Spain
| | - Cristina Ortega-Ferrusola
- Animal Reproduction and Obstetrics, University of León, Spain; ITRA-ULE, INDEGSAL, University of León, 24071, León, Spain
| | - Juan Carlos Boixo
- Animal Reproduction and Obstetrics, University of León, Spain; ITRA-ULE, INDEGSAL, University of León, 24071, León, Spain
| | - Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Luis Anel
- Animal Reproduction and Obstetrics, University of León, Spain; ITRA-ULE, INDEGSAL, University of León, 24071, León, Spain
| | - Paulino de Paz
- Animal Reproduction and Obstetrics, University of León, Spain; Molecular Biology (Cell Biology), University of León, Spain.
| |
Collapse
|
14
|
Pérez-Cerezales S, Ramos-Ibeas P, Acuña OS, Avilés M, Coy P, Rizos D, Gutiérrez-Adán A. The oviduct: from sperm selection to the epigenetic landscape of the embryo†. Biol Reprod 2017; 98:262-276. [DOI: 10.1093/biolre/iox173] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/07/2017] [Indexed: 01/02/2023] Open
Affiliation(s)
- Serafín Pérez-Cerezales
- Departmento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Priscila Ramos-Ibeas
- School of Agriculture, Food Science and Veterinary Medicine, College of Life Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - Omar Salvador Acuña
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Manuel Avilés
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
- Departamento de Biología de la Reproducción, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca Murcia, Spain
| | - Pilar Coy
- Departamento de Biología de la Reproducción, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca Murcia, Spain
- Physiology of Reproduction Group, Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia-Campus Mare Nostrum, Murcia, Spain
| | - Dimitrios Rizos
- Departmento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Alfonso Gutiérrez-Adán
- Departmento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| |
Collapse
|
15
|
Soriano-Úbeda C, García-Vázquez FA, Romero-Aguirregomezcorta J, Matás C. Improving porcine in vitro fertilization output by simulating the oviductal environment. Sci Rep 2017. [PMCID: PMC5356470 DOI: 10.1038/srep43616] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Differences between the in vitro and in vivo environment in which fertilization occurs seem to play a key role in the low efficiency of porcine in vitro fertilization (IVF). This work proposes an IVF system based on the in vivo oviductal periovulatory environment. The combined use of an IVF medium at the pH found in the oviduct in the periovulatory stage (pHe 8.0), a mixture of oviductal components (cumulus-oocyte complex secretions, follicular fluid and oviductal periovulatory fluid, OFCM) and a device that interposes a physical barrier between gametes (an inverted screw cap of a Falcon tube, S) was compared with the classical system at pHe 7.4, in a 4-well multidish (W) lacking oviduct biological components. The results showed that the new IVF system reduced polyspermy and increased the final efficiency by more than 48%. This higher efficiency seems to be a direct consequence of a reduced sperm motility and lower capacitating status and it could be related to the action of OFCM components over gametes and to the increase in the sperm intracellular pH (pHi) caused by the higher pHe used. In conclusion, a medium at pH 8.0 supplemented with OFCM reduces polyspermy and improves porcine IVF output.
Collapse
|
16
|
Abstract
Fertilization, the union of an oocyte and a sperm, is a fundamental process that restores the diploid genome and initiates embryonic development. For the sperm, fertilization is the end of a long journey, one that starts in the male testis before transitioning to the female reproductive tract's convoluted tubule architecture. Historically, motile sperm were thought to complete this journey using luck and numbers. A different picture of sperm has emerged recently as cells that integrate complex sensory information for navigation. Chemical, physical, and thermal cues have been proposed to help guide sperm to the waiting oocyte. Molecular mechanisms are being delineated in animal models and humans, revealing common features, as well as important differences. Exposure to pheromones and nutritional signals can modulate guidance mechanisms, indirectly impacting sperm motility performance and fertility. These studies highlight the importance of sensory information and signal transduction in fertilization.
Collapse
Affiliation(s)
- Hieu D Hoang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Michael A Miller
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
17
|
Li J, Zhang L, Li B. Correlative study on the JAK-STAT/PSMβ3 signal transduction pathway in asthenozoospermia. Exp Ther Med 2016; 13:127-130. [PMID: 28123480 PMCID: PMC5245151 DOI: 10.3892/etm.2016.3959] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 11/17/2016] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to investigate the possible mechanism of Janus kinase (JAK)-signal transduction and activator of transcription (STAT)/PSMβ3 signaling in the occurrence of asthenozoospermia. We examined seminal fluid samples from 30 cases of asthenozoospermia and 30 healthy controls. Sperm was collected using the Percoll density gradient centrifugation method. The expression of JAK, STAT and PSMβ3 mRNA was assessed by reverse-transcription quantitative PCR and the protein levels of p-JAK, p-STAT and PSMβ3 were measured by western blot analysis. The PSMβ3 mRNA and protein expression levels were also measured after application of a JAK inhibitor, AG-490, to the control group, with a FITC-labeled monoclonal rabbit anti-human PSMβ3 primary antibody. The cells were observed under a laser confocal microscope. The mRNA levels of JAK, STAT and PSMβ3 in asthenozoospermia were decreased significantly (P<0.05). The protein levels of p-JAK, p-STAT and PSMβ3 in asthenozoospermia were also reduced and the differences were statistically significant (P<0.05). The PSMβ3 mRNA and protein expression levels were decreased in the control group after treatment with the JAK inhibitor, and levels were approximately equal to those of the asthenozoospermia group. PSMβ3 was mainly expressed in round-headed sperm, and less in asthenozoospermia. In conclusion, the JAK-STAT/PSMβ3 signaling transduction pathway may be involved in the pathogenic mechanism of asthenozoospermia.
Collapse
Affiliation(s)
- Junguo Li
- Reproductive Medicine Center, General Hospital of Beijing Military Region, Beijing 100700, P.R. China
| | - Li Zhang
- Department of Information, General Hospital of Beijing Military Region, Beijing 100700, P.R. China
| | - Bing Li
- Department of Obstetrics and Gynecology, General Hospital of Beijing Military Region, Beijing 100700, P.R. China
| |
Collapse
|