1
|
Changes in Ovulation-Related Gene Expression during Induced Ovulation in the Amur Sturgeon (Acipenser schrenckii) Ovarian Follicles. Int J Mol Sci 2022; 23:ijms232113143. [PMID: 36361931 PMCID: PMC9656806 DOI: 10.3390/ijms232113143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/30/2022] Open
Abstract
The luteinizing hormone (LH) and maturation-inducing steroids (MIS), such as 17α,20β-dihydroxy-4-pregnen-3-one, regulate the final oocyte maturation in teleosts. Oocyte maturational competence (OMC) and ovulatory competence measure the sensitivity to MIS for oocyte maturation and ovulation, respectively. However, the molecular mechanisms underlying the acquisition of ovulatory competence remain unknown. Sturgeons are an excellent research model for investigating these mechanisms. We examined the seasonal profiles of OMC and ovulatory competence in vitro and the expression of 17 ovulation-related gene candidates using quantitative PCR in Amur sturgeon ovarian follicles. The ovulatory competence was induced by the LH-releasing hormone analog (LHRHa) priming injection after acquiring the OMC, which was spontaneously induced in spring or autumn. Seven genes, including the tissue-type plasminogen activator (plat), were enhanced following the LHRHa priming injection in ovarian follicles sampled from anovulated and ovulated fish. The activin receptor type 1 (acvr1) and prostaglandin G/H synthase 2 (ptgs2) were only upregulated in ovulated fish. Our results suggest that plat/plasmin and prostaglandin (PG)/PG receptor systems are essential for sturgeon ovulation, similar to other vertebrates. Notably, successful ovulation depends on a sufficient PG synthesis, and mediators activating the PG/PG receptor system are essential for acquiring the ovulatory competence. We provide the first report of ovulation-related gene alterations in the ovarian follicles of Amur sturgeons.
Collapse
|
2
|
Tian S, Zhang H, Chang HM, Klausen C, Huang HF, Jin M, Leung PCK. Activin a promotes hyaluronan production and upregulates versican expression in human granulosa cells via the ALK4-SMAD2/3-SMAD4 signaling pathway. Biol Reprod 2022; 107:458-473. [PMID: 35403677 PMCID: PMC9382401 DOI: 10.1093/biolre/ioac070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 12/11/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Hyaluronan is a structural component of the expanded cumulus matrix, and hyaluronan synthase 2 (HAS2) is the major enzyme for the synthesis of hyaluronan in humans. Versican cross-links the hyaluronan-rich matrix to cumulus cells and is critical for successful ovulation. Activin A is a critical intrafollicular regulator of ovarian function. Although activin A has been shown to promote cumulus matrix expansion in mice, the functional role of activin A in the regulation of cumulus expansion in the human ovary remains to be elucidated. Using primary and immortalized human granulosa-lutein (hGL) cells as study models, we provide the first data showing that activin A increased the production of hyaluronan by upregulating the expression of HAS2 in these cells. Additionally, activin A also promoted the expression of the hyaluronan-binding protein versican. Moreover, using inhibitor- and siRNA-mediated inhibition approaches, we found that these stimulatory effects of activin A are most likely mediated through the type I receptor ALK4-mediated SMAD2/SMAD3-SMAD4 signaling pathway. Notably, the ChIP analyses demonstrated that SMAD4 could bind to human HAS2 and VERSICAN promoters. The results obtained from this in vitro study suggest that locally produced activin A plays a functional role in the regulation of hyaluronan production and stabilization in hGL cells.
Collapse
Affiliation(s)
- Shen Tian
- Department of Reproductive Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Reproductive Medicine Center, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Han Zhang
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, Jilin, China
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Reproductive Medicine Center, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Christian Klausen
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - He-Feng Huang
- The Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, Zhejiang, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Min Jin
- Department of Reproductive Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Changes in Transcriptomic Profiles in Different Reproductive Periods in Yaks. BIOLOGY 2021; 10:biology10121229. [PMID: 34943144 PMCID: PMC8698885 DOI: 10.3390/biology10121229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/21/2022]
Abstract
Simple Summary The molecular regulation mechanism of yak ovarian activity has attracted extensive attention. This study investigated the global gene expression profiles in different reproductive stages (anestrus, estrus, and pregnancy) by RNA-seq technology. Enrichment analysis revealed that DEGs were involved in the process of follicular growth, ovulation, and hormone metabolism. This study explored the regulation mechanism of the yak ovary in the reproductive cycle and laid a theoretical foundation for further understanding the reproductive characteristics of yak. Abstract Yak reproductive characteristics have received extensive attention, though the molecular regulation mechanism of its ovarian activity remains to be explored. Therefore, this study initially conducted a comparative analysis of yak ovarian activities in anestrus, estrus, and pregnancy regarding their morphology and histology, followed by implementing RNA sequencing (RNA-seq) technology to detect the overall gene expression and biological mechanism in different reproductive stages. H&E staining showed that there were more growing follicles and mature follicles in ovarian tissue sections during estrus than ovarian tissues during non-estrus. The RNA-seq analysis of yak ovary tissues in three periods showed that DEGs related to follicular development and hormone metabolism were screened in the three comparison groups, such as COL1A2, NR4A1, THBS2, PTGS2, SCARB1, STAR, and WNT2B. Bioinformatics analysis showed that these DEGs are involved in ion binding, cell development, metabolic processes, enriched in ECM–receptor interactions, steroid biosynthesis, together with aldosterone generation/discharge and Wnt/PI3K-Akt signaling pathways. In addition, we speculate alternate splice development events to have important role/s in regulating ovarian functional genomic expression profiles. These results provide essential knowledge aimed at scrutinizing pivotal biomarkers for yak ovarian activity, together with paving the way for enhancing researchers’ focus on improving yak reproductive performance.
Collapse
|
4
|
Li SJ, Chang HM, Xie J, Wang JH, Yang J, Leung PCK. The IL6/sIL-6Rα trans-signaling increases PGE2 production in human granulosa cells. Biol Reprod 2021; 105:1189-1204. [PMID: 34198336 DOI: 10.1093/biolre/ioab128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/25/2021] [Accepted: 06/28/2021] [Indexed: 11/14/2022] Open
Abstract
As a potent autocrine regulator, the proinflammatory cytokine interleukin 6 (IL6) is expressed in granulosa cells and follicular fluid and is involved in the modulation of various follicular functions, including follicular development and ovulation. At present, the detailed molecular mechanisms by which IL6 regulates the event of ovulation remain to be elucidated. In the present study, primary and immortalized (SVOG) human granulosa-lutein (hGL) cells were used to investigate the effects of IL6 on the expression of prostaglandin-endoperoxide synthase 2 (PTGS2) and the subsequent synthesis of prostaglandin E2 (PGE2) and to investigate the underlying molecular mechanisms. We found that instead of classic signaling, IL6/sIL-6Rα trans-signaling induced the expression of PTGS2 and production of PGE2 in both SVOG cells and primary hGL cells. Moreover, IL6/sIL-6Rα activated the phosphorylation of Janus activated kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3), which in turn induced STAT3 nuclear translocation. Additionally, these effects were suppressed by the addition of inhibitors (AG490 for JAK2 and C188-9 for STAT3) and by the siRNA-mediated knockdown of STAT3. Additionally, suppressor of cytokine signaling 3 (SOCS3) acts as a negative-feedback regulator in IL6/sIL-6Rα-induced cellular activities, including the activation and nuclear translocation of STAT3, upregulation of PTGS2 expression, and increase in PGE2 production in SVOG cells. In conclusion, IL6 trans-signaling upregulates the expression of PTGS2 and increases the production of PGE2 via the JAK2/STAT3/SOCS3 signaling pathway in hGL cells. Our findings provide insights into the molecular mechanisms by which IL6 trans-signaling may potentially modulate the event of ovulation in human ovaries.
Collapse
Affiliation(s)
- Sai-Jiao Li
- Reproductive Medicine Center, Renmin hospital of Wuhan University, Wuhan, 430060, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada.,Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Jiamin Xie
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Jeremy H Wang
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Jing Yang
- Reproductive Medicine Center, Renmin hospital of Wuhan University, Wuhan, 430060, China.,Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| |
Collapse
|
5
|
Appiah Adu-Gyamfi E, Tanam Djankpa F, Nelson W, Czika A, Kumar Sah S, Lamptey J, Ding YB, Wang YX. Activin and inhibin signaling: From regulation of physiology to involvement in the pathology of the female reproductive system. Cytokine 2020; 133:155105. [PMID: 32438278 DOI: 10.1016/j.cyto.2020.155105] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/14/2020] [Indexed: 12/17/2022]
Abstract
Activins and inhibins - comprising activin A, B, AB, C and E, and inhibin A and B isoforms - belong to the transforming growth factor beta (TGFβ) superfamily. They regulate several biological processes, including cellular proliferation, differentiation and invasiveness, to enhance the formation and functioning of many human tissues and organs. In this review, we have discussed the role of activin and inhibin signaling in the physiological and female-specific pathological events that occur in the female reproductive system. The up-to-date evidence indicates that these cytokines regulate germ cell development, follicular development, ovulation, uterine receptivity, decidualization and placentation through the activation of several signaling pathways; and that their dysregulated expression is involved in the pathogenesis and pathophysiology of the numerous diseases, including pregnancy complications, that disturb reproduction. Hence, some of the isoforms have been suggested as potential biomarkers and therapeutic targets for the management of some of these diseases. Tackling the research directions highlighted in this review will enhance a detailed comprehension and the clinical utility of these cytokines.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Francis Tanam Djankpa
- Department of Physiology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana.
| | - William Nelson
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Environmental and Occupational Health, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, Dar es salaam, Tanzania.
| | - Armin Czika
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Sanjay Kumar Sah
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Jones Lamptey
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China; Kumasi Centre for Collaborative Research in Tropical Medicine, KCCR, Ghana.
| | - Yu-Bin Ding
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Ying-Xiong Wang
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
6
|
Zhong Y, Li L, He Y, He B, Li Z, Zhang Z, Zhang H, Yuan X, Li J. Activation of Steroidogenesis, Anti-Apoptotic Activity, and Proliferation in Porcine Granulosa Cells by RUNX1 Is Negatively Regulated by H3K27me3 Transcriptional Repression. Genes (Basel) 2020; 11:genes11050495. [PMID: 32365901 PMCID: PMC7290568 DOI: 10.3390/genes11050495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/20/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
H3K27me3 is an epigenetic modification that results in the repression of gene transcription. The transcription factor RUNX1 (the runt-related transcription factor 1) influences granulosa cells' growth and ovulation. This research uses ELISA, flow cytometry, EDU, ChIP-PCR, WB and qPCR to investigate steroidogenesis, cell apoptosis, and the proliferation effect of RUNX1 in porcine granulosa cells (pGCs) as regulated by H3K27me3. Decreased H3K27me3 stimulates the expression of steroidogenesis-related genes, including CYP11A1, PTGS2, and STAR, as well as prostaglandin. H3K27me3 transcriptionally represses RUNX1 here, whereas RUNX1 acts as an activator of FSHR, CYP11A1, and CYP19A1, promoting the production of androgen, estrogen, and prostaglandin, as well as increasing anti-apoptotic and cell proliferation activity, but decreasing progesterone. Both the complementary recovery of the H3K27me3 antagonist with the siRUNX1 signal, and the H3K27me3 agonist with the RUNX1 signal to maintain RUNX1 lead to the activation of CYP19A1, ER1, HSD17β4, and STAR here. Androgen and prostaglandin are significantly repressed but progesterone is markedly increased with the antagonist and siRUNX1. Prostaglandin is significantly promoted with the agonist and RUNX1. Furthermore, H3K27me3-RUNX1 affects the anti-apoptotic activity and stimulation of proliferation in pGCs. The present work verifies the transcriptional suppression of RUNX1 by H3K27me3 during antral follicular development and maturation, which determines the levels of hormone synthesis and cell apoptosis and proliferation in the pGC microenvironment.
Collapse
Affiliation(s)
- Yuyi Zhong
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (L.L.); (Y.H.); (B.H.); (Z.Z.); (H.Z.)
| | - Liying Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (L.L.); (Y.H.); (B.H.); (Z.Z.); (H.Z.)
| | - Yingting He
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (L.L.); (Y.H.); (B.H.); (Z.Z.); (H.Z.)
| | - Bo He
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (L.L.); (Y.H.); (B.H.); (Z.Z.); (H.Z.)
| | - Zhonghui Li
- Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang 830000, China;
| | - Zhe Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (L.L.); (Y.H.); (B.H.); (Z.Z.); (H.Z.)
| | - Hao Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (L.L.); (Y.H.); (B.H.); (Z.Z.); (H.Z.)
| | - Xiaolong Yuan
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (L.L.); (Y.H.); (B.H.); (Z.Z.); (H.Z.)
- Correspondence: (X.Y.); (J.L.); Tel.: +86-8528-2019 (X.Y.); +86-8528-5159 (J.L.)
| | - Jiaqi Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (L.L.); (Y.H.); (B.H.); (Z.Z.); (H.Z.)
- Correspondence: (X.Y.); (J.L.); Tel.: +86-8528-2019 (X.Y.); +86-8528-5159 (J.L.)
| |
Collapse
|
7
|
Chen B, Chang HM, Zhang Z, Cao Y, Leung PCK. ALK4-SMAD3/4 mediates the effects of activin A on the upregulation of PAI-1 in human granulosa lutein cells. Mol Cell Endocrinol 2020; 505:110731. [PMID: 31982478 DOI: 10.1016/j.mce.2020.110731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/03/2020] [Accepted: 01/20/2020] [Indexed: 12/26/2022]
Abstract
In the mammalian ovary, the proteolysis of the extracellular matrix is dynamically regulated by plasminogen activator and plasminogen activator inhibitor (PAI), and it is a critical event that influences various physiological and pathological processes. Activin A is a member of the transforming growth factor-β superfamily and is expressed at a high level in human luteal cells that play an essential role in the regulation of the luteal function. At present, it is not known whether activin A can regulate the expression and production of PAI in human granulosa lutein (hGL) cells. The present study aimed to examine the effects of activin A on the expression and production of intraovarian PAI-1 and the underlying molecular mechanisms. Using primary and immortalized hGL cells as the cell model, we demonstrated that activin A upregulated the expression of PAI-1 and increased the production of PAI-1 in an autocrine/paracrine manner. Additionally, using a dual inhibition approach (molecular inhibitors and siRNA-mediated knockdown), we showed that this biological function is mediated by the ALK4-mediated SMAD3-SMAD4-dependent signaling pathway. Our findings suggest that activin A may be involved in the regulation of luteal function via the induction of PAI-1 expression and an increase in PAI-1 production.
Collapse
Affiliation(s)
- Beili Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
8
|
Zhang JQ, Gao BW, Guo HX, Ren QL, Wang XW, Chen JF, Wang J, Zhang ZJ, Ma Q, Xing BS. miR-181a promotes porcine granulosa cell apoptosis by targeting TGFBR1 via the activin signaling pathway. Mol Cell Endocrinol 2020; 499:110603. [PMID: 31574295 DOI: 10.1016/j.mce.2019.110603] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023]
Abstract
Activin/Smad3 signaling plays a pivotal role in follicle development and atresia. However, the precise mechanisms underlying this process are not yet fully understood. Herein, we identified miR-181a as a central component of activin/Smad3-mediated follicle atresia. miR-181a was strikingly upregulated in porcine atretic follicles, which induced the apoptosis of porcine granulosa cells (GCs) in vitro. Furthermore, the transforming growth factor-β type 1 receptor (TGFBR1) was confirmed as a direct target of miR-181a by bioinformatics analysis and luciferase assays. Transfection with an miR-181a agomir repressed the TGFBR1 mRNA and protein levels. In addition, TGFBR1 overexpression repressed GC apoptosis, whereas TGFBR1 inhibition promoted GC apoptosis. miR-181a overexpression downregulated the phosphorylation of Smad3 and blocked the activation of TGF-β signaling. Moreover, activin A downregulated miR-181a expression and upregulated the TGFBR1 and p-Smad3 protein levels. Collectively, these data suggest that miR-181a regulates porcine GC apoptosis by targeting TGFBR1 via the activin signaling pathway.
Collapse
Affiliation(s)
- Jia-Qing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China; Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Zhengzhou, 450002, China.
| | - Bin-Wen Gao
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China; Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Zhengzhou, 450002, China.
| | - Hong-Xia Guo
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China; Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Zhengzhou, 450002, China.
| | - Qiao-Ling Ren
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China; Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Zhengzhou, 450002, China.
| | - Xian-Wei Wang
- Henan Provincial Animal Husbandry General Station, Zhengzhou, 450008, China.
| | - Jun-Feng Chen
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China; Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Zhengzhou, 450002, China.
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China; Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Zhengzhou, 450002, China.
| | - Zi-Jing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China; Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Zhengzhou, 450002, China.
| | - Qiang Ma
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China; Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Zhengzhou, 450002, China.
| | - Bao-Song Xing
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China; Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Zhengzhou, 450002, China.
| |
Collapse
|
9
|
Liu C, Chang HM, Yi Y, Fang Y, Zhao F, Leung PCK, Yang X. ALK4-SMAD2/3-SMAD4 signaling mediates the activin A-induced suppression of PTX3 in human granulosa-lutein cells. Mol Cell Endocrinol 2019; 493:110485. [PMID: 31185247 DOI: 10.1016/j.mce.2019.110485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 10/26/2022]
Abstract
As one of the members of the transforming growth factor-β (TGF-β) superfamily, activin A plays an important role in regulating follicular development and oocyte maturation. Pentraxin 3 (PTX3) is the key component that promotes the process of cumulus expansion during mammalian ovulation. At present, the regulation of PTX3 expression in human granulosa cells remains largely unknown. This study aimed to examine the effects of activin A on the expression of PTX3 in human granulosa-lutein (hGL) cells and to investigate the underlying molecular mechanisms. Using an established immortalized hGL cell line (SVOG) and primary hGL cells as study models, we demonstrated that activin A significantly increased the phosphorylation of SMAD2 and SMAD3, which suppressed the expression of PTX3 at both the mRNA and protein levels. Additionally, these effects induced by activin A were completely reversed by pretreatment with the TGF-β type I receptor inhibitor SB431542 and knockdown of ALK4. Furthermore, knockdown of SMAD2, SMAD3, or SMAD4 completely reversed the activin A-induced suppressive effects on PTX3 expression. Notably, the ChIP analyses demonstrated that phosphorylated SMADs could bind to human PTX3 promoter. Collectively, our results showed that the ALK4-SMAD2/3-SMAD4 signaling pathway most likely mediates the suppressive effect of activin A on PTX3 expression in hGL cells.
Collapse
Affiliation(s)
- Chang Liu
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China; Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yuyin Yi
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ying Fang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Feiyan Zhao
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Xiaokui Yang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
10
|
|
11
|
Nio-Kobayashi J, Kudo M, Sakuragi N, Iwanaga T, Duncan WC. Loss of luteotropic prostaglandin E plays an important role in the regulation of luteolysis in women. Mol Hum Reprod 2018; 23:271-281. [PMID: 28333263 DOI: 10.1093/molehr/gax011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/02/2017] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION Do intraluteal prostaglandins (PG) contribute to luteal regulation in women? SUMMARY ANSWER Prostaglandin E (PGE), which is produced in human granulosa-lutein cells stimulated with luteotropic hCG, exerts similar luteotropic effects to hCG, and the expression of PG synthetic and metabolic enzymes in the human CL is driven toward less PGE but more prostaglandin F (PGF) during luteolysis. WHAT IS KNOWN ALREADY Uterine PGF is a major luteolysin in many non-primate species but not in women. Increases in the PGF synthase, aldo-ketoreductase family one member C3 (AKR1C3), have been observed in the CL of marmoset monkeys during luteolysis. PGE prevents spontaneous or induced luteolysis in domestic animals. STUDY DESIGN, SIZE, DURATION Human CL tissues staged as the early-luteal (n = 6), mid-luteal (n = 6), late-luteal (n = 5) and menstrual (n = 3) phases were obtained at the time of hysterectomy for benign gynecological conditions. Luteinized granulosa cells (LGCs) were purified from follicular fluids obtained from patients undergoing assisted conception. PARTICIPANTS/MATERIALS, SETTING, METHODS Upon collection, one half of the CL was snap-frozen and the other was fixed with formalin and processed for immunohistochemical analysis of a PGE synthase (PTGES). Quantitative RT-PCR was employed to examine changes in the mRNA abundance of PG synthetic and metabolic enzymes, steroidogenic enzymes, and luteolytic molecules in the staged human CL and in human LGCs in vitro treated with hCG, PGE and PGF. A PGE withdrawal experiment was also conducted in order to reveal the effects of the loss of PGE in LGCs. Progesterone concentrations in the culture medium were measured. MAIN RESULTS AND THE ROLE OF CHANCE The key enzyme for PGE synthesis, PTGES mRNA was abundant in the functional CL during the mid-luteal phase (P < 0.01), while mRNA abundance for genes involved in PGF synthesis (AKR1B1 and AKR1C1-3) increased in the CL during the late-luteal phase and menstruation (P < 0.05-0.001). PTGES mRNA expression positively correlated with that of 3β-hydroxysteroid dehydrogenase (HSD3B1; r = 0.7836, P < 0.001), while AKR1C3 expression inversely correlated with that of HSD3B1 (r = -0.7514, P = 0.0012) and PTGES (r = -0.6923, P = 0.0042). PGE exerted similar effects to hCG-promoting genes, such as steroidogenic acute regulatory protein (STAR) and HSD3B1, to produce progesterone and luteotropic PGE, suppress PGF synthetic enzymes and down-regulate luteolytic molecules such as βA- and βB-inhibin subunits (INHBA and INHBB) and bone morphogenetic proteins (BMP2, BMP4 and BMP6). PGE withdrawal resulted in reductions in the enzymes that produce progesterone (STAR; P < 0.001) and PGE (PTGES; P < 0.001), and the capacity to produce PGE decreased, while the capacity to produce PGF increased during the culture. The addition of PGF did not recapitulate the luteolytic effects of PGE withdrawal. LARGE SCALE DATA None. LIMITATIONS, REASONS FOR CAUTION Changes in mRNA expression of PG synthetic and metabolic enzymes may not represent actual increases in PGF during luteolysis in the CL. The effects of PGF on luteal cells currently remain unclear and the mechanisms responsible for decreases in the synthesis of PGE in vitro and at luteolysis have not been elucidated in detail. WIDER IMPLICATIONS OF THE FINDINGS The results obtained strongly support a luteotropic function of PGE in regulation of the human CL. They suggest that the main PG produced in human luteal tissue changes from PGE to PGF during the maturation and regression of the CL, and the loss of PGE is more important than the effects of PGF during luteolysis in women. This may be accompanied by reduced effects of LH/hCG in luteal cells, particularly decreased activation of cAMP/protein kinase A; however, the underlying mechanisms remain unknown. STUDY FUNDING AND COMPETING INTEREST(S) This study was supported by the Cunningham Trust to WCD, a Postdoctoral Fellowship for Research Abroad from the Japan Society for the Promotion of Science and the Suntory Foundation for Life Sciences to J.N.-K.; W.C.D. is supported by an MRC Centre Grant G1002033 and a Scottish Senior Clinical Fellowship. The authors have nothing to disclose.
Collapse
Affiliation(s)
- Junko Nio-Kobayashi
- Laboratory of Histology and Cytology, Hokkaido University Graduate School of Medicine, Kita 15-Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | - Masataka Kudo
- Department of Reproductive Endocrinology and Oncology, Hokkaido University Graduate School of Medicine, Kita 15-Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | - Noriaki Sakuragi
- Department of Reproductive Endocrinology and Oncology, Hokkaido University Graduate School of Medicine, Kita 15-Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | - Toshihiko Iwanaga
- Laboratory of Histology and Cytology, Hokkaido University Graduate School of Medicine, Kita 15-Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | - W Colin Duncan
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, EdinburghEH16 4TJ, UK
| |
Collapse
|
12
|
Loomans HA, Arnold SA, Quast LL, Andl CD. Esophageal squamous cell carcinoma invasion is inhibited by Activin A in ACVRIB-positive cells. BMC Cancer 2016; 16:873. [PMID: 27829391 PMCID: PMC5101642 DOI: 10.1186/s12885-016-2920-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/01/2016] [Indexed: 01/05/2023] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is a global public health issue, as it is the eighth most common cancer worldwide. The mechanisms behind ESCC invasion and progression are still poorly understood, and warrant further investigation into these processes and their drivers. In recent years, the ligand Activin A has been implicated as a player in the progression of a number of cancers. The objective of this study was to investigate the role of Activin A signaling in ESCC. Methods To investigate the role Activin A plays in ESCC biology, tissue microarrays containing 200 cores from 120 ESCC patients were analyzed upon immunofluorescence staining. We utilized three-dimensional organotypic reconstruct cultures of dysplastic and esophageal squamous tumor cells lines, in the context of fibroblast-secreted Activin A, to identify the effects of Activin A on cell invasion and determine protein expression and localization in epithelial and stromal compartments by immunofluorescence. To identify the functional consequences of stromal-derived Activin A on angiogenesis, we performed endothelial tube formation assays. Results Analysis of ESCC patient samples indicated that patients with high stromal Activin A expression had low epithelial ACVRIB, the Activin type I receptor. We found that overexpression of stromal-derived Activin A inhibited invasion of esophageal dysplastic squamous cells, ECdnT, and TE-2 ESCC cells, both positive for ACVRIB. This inhibition was accompanied by a decrease in expression of the extracellular matrix (ECM) protein fibronectin and podoplanin, which is often expressed at the leading edge during invasion. Endothelial tube formation was disrupted in the presence of conditioned media from fibroblasts overexpressing Activin A. Interestingly, ACVRIB-negative TE-11 cells did not show the prior observed effects in the context of Activin A overexpression, indicating a dependence on the presence of ACVRIB. Conclusions We describe the first observation of an inhibitory role for Activin A in ESCC progression that is dependent on the expression of ACVRIB. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2920-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Holli A Loomans
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - Shanna A Arnold
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Laura L Quast
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Claudia D Andl
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4110 Libra Drive, Building 20, BMS 223, Orlando, FL, 32816, USA.
| |
Collapse
|